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�e usage of the ridge estimators is very common in presence ofmulticollinearity inmultiple linear regressionmodels.�e ridge estimators
are used as an alternative to ordinary least squares in case of multicollinearity as they have lower mean square error. Choosing the optimal
value of the biasing parameter k is vital in ridge regression in terms of bias-variance trade o�. Since the theoretical comparisons among the
ridge estimators are not possible, it is general practice to carry out aMonteCarlo study to compare them.When theMonteCarlo designs on
the existing ridge estimators are examined, it is seen that the performances of the ridge estimators are only considered for the same level of
relationship between the independent variables. However, it is more likely to encounter di�erent levels of relationships between the
independent variables in real data sets. In this study, a new type iterative ridge estimator is proposed based on a modi�ed form of the
estimated mean square error function. Furthermore, a novel search algorithm is provided to achieve the estimations. �e performance of
the proposed estimator is compared with that of the ordinary least squares estimator and existing 18 ridge estimators through an extensive
Monte Carlo design. In the design of theMonte Carlo, both data generation techniques were taken into account, based on the constant and
varying correlation levels between the independent variables. Two illustrative real data examples are presented. �e proposed estimator
outperforms the existing estimators in the sense of themean squared error for both data generating types.Moreover, it is also superior with
respect to the k-fold cross-validation method in the real data examples.

1. Introduction

Let us consider the general form of the multiple linear re-
gression model:

Y � Xβ + ε, (1)

where Y is a (n × 1) vector of response (dependent) variable,
β is a (p × 1) unknown regression coe�cient vector, X is a
(n × p) design matrix of rank p, and ε is a (n × 1) random
error vector, which is multivariate normal distributed with
zero mean vector and σ2I variance-covariance matrix. �e
ordinary least square (OLS) estimator of β is given by β̂OLS �
(X′X)− 1X′Y and the variance-covariance matrix of β̂OLS is
σ2(X′X)− 1 [1].

Recall that the OLS estimator is unbiased and has
minimum variance among all unbiased estimators. �e OLS
estimator maintains its unbiasedness but loses the property
of minimum variance in the presence of multicollinearity.

Consequently, large standard errors lead to wider con�dence
intervals and serious errors in the interpretation of model
parameters. Several estimators have been proposed to solve
the multicollinearity problem [1–10]. �ese studies have
focused on reducing the variance by sacri�cing unbiasedness
and thus �nding estimators that have smaller mean square
error (MSE). �e ridge regression aims to solve the multi-
collinearity problem by adding small positive values to the
diagonal elements of X′Xmatrix. �e ridge estimator kHK �
σ̂2/α̂2max where α � (α1, α2, . . . , αp)′ is an unknown pa-
rameter vector with size (p × 1) given by equation (2) is
proposed by [4]. Most of the ridge estimators were derived
from transformations of previously proposed estimators.
For example, k̂HKB is the harmonic mean of ki � σ2/α2i ;
furthermore, kAM, kGM, and kMED estimators were also
obtained using the arithmetic mean, geometric mean, and
the median of ki � σ2/α2i , respectively [1, 5]. kGM and kKSM
estimators are suggested by [1, 11], respectively. Six ridge
estimators proposed by adding the multiplier include
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different quantiles of Wi � tmax/|αi| (where tmax is maximum
eigenvalue of X′X matrix) to kGM and kKSM estimators by
[12]. 'ese examples can be extended by studies where new
estimators were obtained by applying minimum, maximum,
and square root transformations to existing estimators [8, 9].

In addition to the estimators in which Ridge and Liu type
estimators are combined, the estimators proposed in recent
studies for the solution of problems involving multicollinearity
and outlier problems have come to the fore [13–16]. 'ere are
studies that involve modifying different estimation methods or
using ridge estimators in different regression models. For ex-
ample, the authors in [17] proposed four ridge estimators based
on OLS estimates obtained by the deleted-d jackknife method,
which are proposed as an alternative to the ridge estimator based
on the classical principal components estimator. 'e authors in
[18] also proposed an extention of Kibria Lukman estimator for
the gamma regressionmodel in the presence ofmulticollinearity.

In this study, a new estimator is proposed based on a
modified form of the estimatedMSE function, rather than using
any transformations on existing estimators and also a new fast
search algorithm is given to obtain the ridge estimates. We
examined the available ridge estimators by simulation and found
that the estimatedMSEs of these estimators aremuch larger than
theoretical MSE. Furthermore, we also observed similar esti-
mated MSEs for very large or very small ridge estimates. To
overcome the stated shortcomings of these estimators, we
proposed the new estimator whose estimatedMSE is close to the
theoretical MSE. When the Monte Carlo studies on ridge es-
timators are examined, it is seen that they are carried out by
assuming that the relationships between all independent vari-
ables are equal. However, it is more likely to encounter different
levels of relationships between variables with real data sets. In
this study, the data generation technique can generate data
according to the relationships at different levels between the
independent variables as like in real data sets used for assessing
the performance of estimators in addition to existing artificial
data generation technique. 'e organization of the paper is as
follows: the ridge estimators of concern and proposed estimator
are given in Section 2. In Section 3, the Monte Carlo simulation
and findings on the performance evaluations of the estimators
are discussed. Two real data examples and results are presented
in Section 4. Finally, some concluding remarks are given in
Section 5.

2. Statistical Methodology

'e ridge estimator of β is denoted by
βk � (X′X + kIp)− 1X′Y where k is known as “ridge” or
“shrinkage” parameter. It is also clear that βOLS is a special
case of βk for k � 0 (kOLS � 0) [4].

'e canonical form of equation (1) can be expressed
using Z � X D and α � Dβ as

Y � Zα + ε, (2)

where Λ � diag(λ1, λ2, . . . , λp) represents the eigenvalues of
X′X.D is defined as an orthogonal eigenvector matrix of size
(p × p) such thatD′(X′X)D � Λ. 'e ridge estimator of α is
given as follows:

α(k) � Z′Z + kI( 
− 1Z′Y, (3)

where I is the identity matrix of size p × p, k> 0, and α �

Λ−1Z′Y is the OLS estimator of α. 'e MSE of α(k) is given
in equation (4) and minimized by ki � σ2/α2i (where αi is the
i th element of α ) [3, 4].

MSE(α(k)) � σ2 

p
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In real data examples, the estimated MSE given in
equation (5) is used for performance comparisons of ridge
estimators since σ and α are unknown [1].

MSE(α(k)) � σ2 
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In Table 1, some of the ridge estimators in the literature
are given.

2.1. 'e Proposed Estimator. Generally, in the literature, the
performance of ridge estimators on real datasets is compared
by the least squares-based estimated MSE
[1, 2, 6, 8, 9, 11, 12, 14–18]. From this perspective, we focused
on the estimated MSE based on OLS, and considering the
simulation results, we found that this approach fails and the
estimated MSEs of these estimators are much larger than
theoretical MSE. 'e fact that different ridge estimators give
similar estimated MSEs for very large or very small ridge
estimates indicates that optimal ridge estimation cannot be
obtained considering the convex nature of theMSE function.
For the reasons stated, a new ridge estimator named kMEM is
proposed, based on the optimization of a modified but still
convex function of the estimated MSE function. kMEM given
in equation (6) is obtained by modifying MSE(α(k)) in
equation (5). 'e proposed estimator differs from
MSE(α(k)) in three aspects. First, αi in equation (6) uses the
ridge estimates of canonical parameter for given ridge pa-
rameter not OLS estimates. All αi values in each estimator
given in Table 1 are the OLS estimates of α. Second, the (n −

p) multiplier in variance component is added to take into
account the sample size effect. Finally, the k2/σ2 term ensures
the small ridge estimates; it is clear that large ridge estimates
will increase the MSE.

kMEM � argmink>0 (n − p)σ2 
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Since the solution of k in (6) cannot be obtained ana-
lytically, we proposed a fast search algorithm. 'e steps of
the algorithm are as follows at the t-th iteration.

3. Simulation Study

'is section is about the Monte Carlo simulation including
the factors having a significant impact on the estimators and
the performance evaluation criteria of the estimators under
consideration. We examined the structure of the correlation
matrix (type of the data generation), sample size, degree of
the multicollinearity, and variances of the error terms as the
factors that affect the performance of the estimators.

3.1. Simulation Layout. Many authors assumed that the
relationship between all the variables is equal for numerical
evaluations of ridge estimators [1, 2, 6–9]. 'ese works used
the data generation method proposed by [19]. We denoted
this type of data generation with DG and applied it as
follows. 'e data matrix X of size nxp whose columns is the
explanatory variable which has bivariate correlations with ρ2
generated by

xij �

�������

1 − ρ2 



zij + ρzip; i � 1, 2, . . . , n, j � 1, 2, . . . , p,

(7)

where zij are produced from the standard normal distri-
bution [19].

We also examined data generating according to different
levels of correlations between independent variables. We
denoted this type of data generation with CG and applied as
follows. 'e equation X � ZC(R) can be written provided
that R is the correlation matrix of X and C(R) is the
Cholesky decomposition of R, and Z is the pseudo random
matrix with standard normal distribution. 'e CG type data
generation is examined by considering the correlation
matrices determined such as R1 and R2. 'ese correlation
matrices are generated according to the partial correlations
specified by the Vine method [20]. 'e correlation coeffi-
cients given inR1 are spread over to a narrow range, whileR2
is in a wider range in absolute value.

R1 �

1.0000 −0.9426 0.9956 −0.9932

−0.9426 1.0000 −0.9473 0.9589

0.9956 −0.9473 1.0000 0.9845

0.9956 0.9589 0.9845 1.0000

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

R2 �

1.0000 −0.9215 −0.7542 0.5679

−0.9215 1.0000 0.9289 −0.2073

−0.7542 0.9289 1.0000 0.0838

0.5679 −0.2073 0.0838 1.0000

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(8)

Table 1: Some of the ridge estimators.

Formulation
kOLS � 0
kHK � σ2/α2max
kHKB � pσ2/α′α
kLW � pσ2/α′X′Xα
kHSL � σ2(
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2
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kY4 � max
������
σ2/λiα

2
i



 i � 1, 2, . . . , p

αmax is themaximum element of α, σ2 � (ε′ε′)/(n − p) and λi is i − th eigenvalue of X′X.

Journal of Mathematics 3



'e simulation study is conducted as follows. First, the
four-variable (p � 4) design matrix X is generated for each
type of data generation. 'e correlations are considered
corresponding to ρ2 � 0.95, 0.99, and 0.999 forDG and
according to R1 and R2 for CG. 'en, for both types of data
generations, the following procedure is applied in the same
manner. Each column of X is centered and standardized by
calculating the z-score and divided by

�����
n − 1

√
. 'e depen-

dent variable is also standardized.'us,X′X andX′y are in a
correlation form. β is chosen as the normalized eigenvector
corresponding to the largest eigenvalue of the X′X matrix.
'e values of the other selected factors in simulation study
are considered as sample size n � 30, 50, and 100 and
standard deviation of error term σ � 0.1, 0.5, 1, 5, and 10.

'e observations for the dependent variable are gener-
ated by (9) where εi are independent and identically dis-
tributed sample from the normal distribution with zero
mean and σ2 variance.

yi � β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + εi, i � 1, 2, . . . , n.

(9)

For selected data generating type and values of n and σ,
different samples are generated using equation (9) and the
simulation is repeated 10000 times. For each replicate, the
average MSE (AMSE) of the αk estimator given in (10) is
used for performance evaluation criteria:

AMSE αk(  �
1
p

×
1

10000
× 

10000

t�1
αk,t − α ′ αk,t − α , (10)

where αk,t is estimated parameter vector for ridge estimator
at the t-th iteration for the true parameter vector α.

3.2. Results and Discussion. 'e results of the simulation
based on DG are given in Tables 2–4. We observed from the
results of DG type data generating that kMEM has the lowest
AMSE value for all given values of ρ2, σ, and n. 'e OLS
estimator is performed theworst in terms of AMSE criteria.We
also observed from Tables 2–4 that as the degree of correlation
increases, AMSEs of kAM, kY1, kY3, kY4, and kMEM estimators
are decreased for all sample size except σ � 0.1 and n � 30.

Generally, the standard deviation of the error terms
increases, and the AMSE values also increase. However, the
change of AMSE values for kKM6, kHSL, kAM, and kKM2

estimators is irregular. As the standard deviation of the error
terms increases, the kMEM estimator is the most homoge-
neous estimator in terms of AMSE values for ρ2 � 0.95 and
ρ2 � 0.99, while it is the second best homogeneous estimator
for ρ2 � 0.999.

We observed from the CG type data generating results
given in Tables 5–7 that the kMEM estimator has the lowest
AMSE value for all values of ρ2, σ, and n. 'e OLS estimator
is also performed the worst among the estimators in terms of
AMSE criteria.

It is also observed that as the number of observations
increases, the AMSE values of kKS

GM and kKM11 increase for
each correlation structure and σ values. However, as the
number of observations increase for σ � 0.1, σ � 5, and
σ � 10 values, AMSE of the kMEM estimator decreases for
both correlation structures.

Generally, we conclude that when σ increases, AMSE
values of all the estimators are increased for all sample size and
both correlation structures. It is also observed that AMSE values
are higher when the correlation matrix has high variability.

4. Real Data Examples

In the previous section, a detailed simulation study is given
to compare the performances of selected estimators. To see
the real performances of the estimators, two real data ex-
amples are given. 'e presence of collinearity is determined
by the condition number (CN). 'e square root of the ratio
of the largest eigenvalue of the matrix X′X to the smallest
eigenvalue is determined as CN. Generally, CN values be-
tween 10 and 30 indicate the moderate multicollinearity. 'e
values of the CN greater than 30 were accepted as indicative of
strong collinearity [2]. Multicollinearity is high if the CN is
between 30 and 100 and severe when its greater than 100 [13].

Unlike Monte Carlo studies, the performance of the
estimators was evaluated with the k-fold cross validation
(CV) method, considering that the true values of the model
parameters are not known in real data applications. In the
CV method, the dataset is randomly divided into k parts
(folds), and each part consists of selected rows of X and Y.
For the partitions created, the data set is randomly divided
into training and test data k times. 'e number of obser-
vations in training and test data is (n − n/k) and n/k, re-
spectively. 'e model estimated from training data is used
for estimating the test data [21]. 'e CV statistic is given in

(1) 'e tolerance value set to Tol� 10−6.
(2) Let k

(t)
1 � 10− 8 and k

(t)
2 � 2k

(t)
1 .

(3) Calculate that MEM(k
(t)
j ) αi are canonical ridge estimates for k

(t)
j (j � 1, 2),

MEM(k
(t)
j ) � (n − p)σ2 

p
i�1(λi/(λi + k

(t)
j )2) + k

(t)2
j 

p
i�1(α2i /(λi + k

(t)
j )2) + k

(t)2
j /σ2, j � 1, 2.

(4) Let D � |MEM(k
(t)
1 ) − MEM(k

(t)
2 )|.

(5) If D< Tol, then go to 9; else 6.
(6) If MEM(k

(t)
1 )>MEM(k

(t)
2 ), then k

(t+1)
1 � k

(t)
2 and k

(t+1)
2 � 2k

(t)
2 .

(7) If MEM(k
(t)
1 )<MEM(k

(t)
2 ), then k

(t+1)
1 � k

(t)
1 and k

(t+1)
2 � (k

(t)
1 + k

(t)
2 )/2.

(8) Go to 3
(9) If MEM(k

(t)
1 )<MEM(k

(t)
2 ), then kMEM � k

(t)
1 else kMEM � k

(t)
2 .

ALGORITHM 1: 'e search algorithm.
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equation (11) where yi,j is the j-th observation in the i-th
fold, yi,j is prediction of j-th observation in the i-th fold
using remaining (k − 1) fold as training data and is used for
evaluating the performance of the each ridge estimator.

CV �
1
k



k

i�1

n/k

j�1
yi,j − yi,j 

2
. (11)

4.1.GasolineConsumptionData. Gasoline consumption and
automotive data are used in the first example [22]. 'e
variables considered in the model are miles/gallon (Y),
displacement (cube inches) (X1), torque (feet/pound) (X2),
carburetor (barrels) (X3), number of transmission speed
(X4), and overall length (inches) (X5). Correlations between
all the variables are given in R3. 'e correlations changing
moderate to high level among the independent variables are

Table 5: AMSEs of the estimators for CG and n� 30.

Estimator
Case 1 with R1 (CN� 61.38) Case 2 with R2 (CN� 50.71)

σ � 0.1 σ � 0.5 σ � 1 σ � 5 σ � 10 σ � 0.1 σ � 0.5 σ � 1 σ � 5 σ � 10

kMEM 0.05 0.12 0.26 0.90 1.06 0.05 0.23 0.46 1.02 1.13
kKM6 0.36 0.23 0.29 2.92 11.18 0.43 0.26 0.49 9.79 38.91
kY3 0.08 0.16 0.37 5.88 22.92 0.14 0.29 0.71 12.04 47.35
kY1 0.16 0.22 0.37 4.24 16.27 0.24 0.35 0.64 8.53 33.10
kKM3 0.10 0.20 0.38 3.93 14.79 0.30 0.40 0.64 6.17 23.27
kY4 0.32 0.35 0.43 2.58 9.26 0.42 0.47 0.62 4.82 17.86
kAM 0.20 1.06 1.39 8.70 31.63 0.30 0.53 0.95 9.50 35.95
kMED 0.28 2.24 7.94 193.53 773.56 0.10 0.64 1.42 23.03 90.36
kGM 0.25 2.86 7.66 110.66 429.37 0.06 0.78 2.34 43.00 169.59
kKM5 0.25 2.86 7.66 110.66 429.37 0.06 0.78 2.34 43.00 169.59
kKM2 0.11 0.29 1.74 120.75 489.40 0.08 0.89 3.95 144.96 526.75
kHSL 0.55 1.07 6.41 513.64 2144.04 0.25 0.88 3.90 167.07 645.75
kKM11 0.35 5.17 19.07 461.34 1843.37 0.14 2.16 8.22 201.50 805.50
kHMO 0.17 4.04 16.06 400.20 1600.62 0.25 6.04 24.08 601.04 2404.04
kLW 0.48 10.53 41.92 1047.32 4189.66 0.95 22.10 88.14 2201.29 8804.88
kHKB 0.59 11.77 46.64 1162.68 4650.29 0.96 22.15 88.32 2205.93 8823.46
kHK 0.76 13.27 52.77 1317.25 5268.64 1.26 28.87 115.10 2873.13 11491.49
kKS

GM 1.30 26.34 101.61 2502.67 10005.72 0.71 9.63 35.85 872.55 3487.31
kOLS 1.83 45.70 182.81 4570.33 18281.31 4.64 116.02 464.09 11602.28 46409.11

Table 6: AMSEs of the estimators for CG and n� 50.

Estimator
Case 1 with R1 (CN� 61.38) Case 2 with R2 (CN� 50.71)

σ � 0.1 σ � 0.5 σ � 1 σ � 5 σ � 10 σ � 0.1 σ � 0.5 σ � 1 σ � 5 σ � 10

kMEM 0.03 0.11 0.26 0.88 1.03 0.04 0.24 0.48 0.99 1.09
kKM6 0.37 0.24 0.30 2.82 10.74 0.45 0.26 0.52 11.05 44.13
kY3 0.09 0.16 0.36 5.74 22.43 0.15 0.31 0.73 12.39 48.76
kY1 0.17 0.22 0.36 4.13 15.74 0.25 0.36 0.66 8.63 33.22
kKM3 0.10 0.20 0.37 3.95 14.86 0.32 0.42 0.66 6.11 22.96
kY4 0.33 0.35 0.43 2.51 8.92 0.43 0.48 0.64 4.82 17.70
kAM 0.20 0.96 1.29 8.42 30.64 0.33 0.53 0.93 9.07 34.07
kMED 0.31 2.05 7.35 179.52 717.63 0.10 0.57 1.32 21.38 83.80
kGM 0.25 2.75 7.28 105.25 403.82 0.05 0.67 2.04 38.81 152.09
kKM5 0.25 2.75 7.28 105.25 403.82 0.05 0.67 2.04 38.81 152.09
kKM2 0.12 0.34 1.89 123.21 518.77 0.06 0.60 2.85 94.90 479.27
kHSL 0.56 0.89 6.07 489.11 2069.94 0.20 0.78 3.30 111.20 471.55
kKM11 0.41 6.47 24.56 601.97 2406.27 0.16 2.51 9.66 238.44 953.40
kHMO 0.17 4.16 16.55 412.58 1650.14 0.27 6.64 26.45 660.38 2641.38
kLW 0.52 11.13 44.20 1101.75 4406.17 1.08 25.45 101.56 2537.04 10147.98
kHKB 0.62 12.49 49.55 1235.46 4941.43 1.08 25.48 101.68 2540.02 10159.82
kHK 0.82 15.03 59.88 1495.42 5981.36 1.41 33.12 132.14 3298.88 13194.45
kKS

GM 1.61 35.63 140.28 3485.75 13940.08 0.98 14.98 57.35 1411.72 5644.07
kOLS 2.01 50.30 201.19 5029.83 20119.33 5.70 142.42 569.68 14242.04 56968.15
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Table 7: AMSEs of the estimators for CG and n� 100.

Estimator
Case 1 with R1 (CN� 61.38) Case 2 with R2 (CN� 50.71)

σ � 0.1 σ � 0.5 σ � 1 σ � 5 σ � 10 σ � 0.1 σ � 0.5 σ � 1 σ � 5 σ � 10

kMEM 0.03 0.11 0.27 0.87 1.02 0.04 0.25 0.51 0.98 1.07
kKM6 0.38 0.24 0.30 2.70 10.28 0.45 0.27 0.52 10.89 43.35
kY3 0.09 0.15 0.35 5.54 21.64 0.16 0.31 0.72 12.27 48.18
kY1 0.16 0.22 0.35 4.08 15.65 0.26 0.37 0.66 8.56 33.27
kKM3 0.09 0.19 0.36 3.94 14.92 0.33 0.43 0.66 6.11 23.00
kY4 0.32 0.35 0.42 2.54 9.11 0.44 0.49 0.64 4.79 17.77
kAM 0.21 1.00 1.28 8.39 30.75 0.33 0.53 0.92 9.07 34.18
kMED 0.29 2.33 8.51 208.72 834.42 0.11 0.59 1.32 20.85 81.71
kGM 0.27 3.04 8.14 121.27 470.69 0.06 0.68 2.02 38.08 150.82
kKM5 0.27 3.04 8.14 121.27 470.69 0.06 0.68 2.02 38.08 150.82
kKM2 0.12 0.28 1.54 120.01 478.49 0.07 0.69 3.09 109.30 429.72
kHSL 0.53 0.86 6.12 494.51 2076.73 0.22 0.83 4.14 115.16 455.29
kKM11 0.51 9.26 36.12 895.30 3580.18 0.29 5.08 19.89 493.66 1974.17
kHMO 0.23 5.50 21.90 546.49 2185.81 0.23 5.48 21.82 544.39 2177.40
kLW 0.68 15.15 60.25 1501.62 6004.89 0.88 20.46 81.58 2036.99 8147.50
kHKB 0.76 16.24 64.56 1610.93 6443.30 0.89 20.53 81.86 2044.41 8177.36
kHK 1.00 19.91 79.40 1983.33 7932.99 1.14 26.14 104.20 2600.36 10400.37
kKS

GM 2.30 53.27 211.64 5278.49 21112.29 1.64 32.41 127.66 3174.67 12696.42
kOLS 2.79 69.65 278.59 6964.81 27859.22 4.52 112.95 451.80 11295.06 45180.25

Table 8: CV results of the estimators for gasoline consumption data.

5 fold 6 fold 10 fold
Estimator CV Estimator CV Estimator CV
kMEM 96.225 kMEM 75.111 kMEM 47.356
kHKB 96.331 kHKB 75.207 kHKB 47.404
kKM11 96.366 kKM11 75.240 kKM11 47.422
kKM5 96.371 kKM5 75.245 kKM5 47.425
kHK 96.912 kHK 76.031 kHK 47.960
kKS

GM 98.197 kKS
GM 77.129 kKS

GM 48.553
kY4 98.602 kHMO 77.842 kHMO 49.000
kHMO 98.866 kY4 78.368 kY4 49.303
kY1 99.607 kY1 79.970 kY1 50.145
kY3 99.808 kY3 80.314 kY3 50.318
kKM6 100.443 kKM3 80.754 kKM6 50.872
kKM2 100.548 kKM6 81.450 kKM3 50.901
kOLS 100.572 kKM2 81.649 kKM2 50.966
kLW 100.572 kLW 81.693 kOLS 50.987
kKM3 101.540 kOLS 81.693 kLW 50.987
kGM 102.779 kGM 82.136 kGM 51.870
kME D 103.353 kAM 82.775 kME D 52.382
kAM 103.666 kME D 82.788 kAM 52.887
kHSL 106.075 kHSL 84.046 kHSL 53.599
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observed in R3. 'e condition number is 1132, which in-
dicates the serious concern about multicollinearity. 'e
results of the CV for different partitions are also given in
Table 8.

R3 �

1 0.990 0.640 −0.772 0.865 −0.872

0.990 1 0.653 −0.746 0.864 −0.849

0.640 0.653 1 −0.276 0.422 −0.472

−0.772 −0.746 −0.276 1 −0.655 0.708

0.865 0.864 0.422 −0.655 1 −0.752

−0.872 −0.849 −0.472 0.708 −0.752 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(12)

4.2. Stack Loss Data. We used Brownlee’s stack loss data
that contain 21-day data on the oxidation of ammonia to
nitric acid in the second example [23]. 'e response
variable and independent variables considered in the
model are NH3 stack loss percentage (Y), air flow (X1),
cooling water inlet temperature (X2), and acid con-
centration (X3), respectively. Correlations between all
the variables are given in R4 where the correlations
changing moderate to high level are observed among the
independent variables. 'e condition number is 57.51,
which indicates a serious concern about multi-
collinearity. 'e results of CV for two partitions are
given in Table 9.

Table 9: CV results of the estimators for stack loss data.

7 fold 3 fold
Estimator CV Estimator CV
kMEM 67.630 kMEM 112.097
kY4 67.638 kY4 112.110
kKM11 67.642 kY1 112.121
kKM5 67.643 kKM6 112.122
kY1 67.645 kY3 112.126
kKM6 67.646 kKM2 112.129
kY3 67.648 kLW 112.131
kKM2 67.650 kOLS 112.131
kLW 67.651 kKM11 112.210
kOLS 67.651 kKM5 112.213
kHK 67.765 kHK 112.513
kMED 68.282 kMED 113.602
kHKB 68.332 kHKB 113.702
kKM3 68.489 kKM3 114.010
kKS

GM 68.628 kKS
GM 114.277

kGM 70.931 kGM 118.446
kHMO 78.785 kHMO 132.755
kAM 88.190 kAM 151.672
kHSL 110.478 kHSL 200.644

kMEM kKM6 kKM3 kY3 kY4 kY1 kHSL kKM2 kMEM kKM6 kKM3kY3kY4 kY1kGM kKM5
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Figure 1: 'e frequency distribution of the estimators that takes places in top three for DG and CG.
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R4 �

1 0.782 0.500 0.920

0.782 1 0.391 0.876

0.500 0.391 1 0.400

0.920 0.876 0.400 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

According to the real data application results from
Tables 8 and 9, the kMEM estimator has the smallest CV value
among the others for both gasoline consumption and stack
loss data examples.'e kHSL estimator has the largest CV for
both applications for all partitions and performed the worst
among all the estimators.

A total of 75 different scenarios were evaluated in the
simulations, 45 for DG and 30 for CG. 'e kMEM estimator
performed the best considering the number of takes places in
top three for each scenario in terms of AMSE.When Figure 1
is examined, it is seen that the rankings of the other esti-
mators for both DG and CG are inconsistent. We observe
that the second best estimators after kMEM are kKM6 for DG
and kY4 for CG.

5. Conclusion

In this paper, we introduced a new type iterative ridge es-
timator. In previous studies, the performance of estimators
is discussed only for the same relationships between inde-
pendent variables [1, 2, 6, 8, 9]. In this study, the perfor-
mances of the estimators were also compared for the
relationships between the independent variables at different
levels. We evaluated the performance of the estimator via an
extensive Monte Carlo simulation study and two real data
examples. Results of DG, which is used as a standard data
generation technique in similar studies and CG, which
provides more similar data to the real data structures are
compared. Generally, in the literature, the performance of
ridge estimators on real datasets is compared with that of the
estimated MSE [1–3, 6–10]. A comparison based on mean
square error (MSE) may be appropriate since the actual
values of the parameters are known in simulation studies.
However, since the actual values of the parameters are
unknown in real data sets, performance comparison by
estimated MSE based on a single sample may cause erro-
neous inferences. 'ese situations have question marks in
revealing the actual performances of the current estimators.
However, since the actual parameter value is not known in
practice, this approach will not be as reliable as in the
simulation study. For this reason, we compared the per-
formance of the estimators in real data applications with the
k-fold cross-validation method. 'ese results show that the
proposed estimator outperforms than the others in the sense
of AMSE in simulation study and the k-fold cross-validation
for the real data examples. 'erefore, we suggest researchers
who encounter the multicollinearity problem to use kMEM as
an alternative ridge estimator to the other estimators ex-
amined in this study.

In the future, the work may be extended by comparing the
proposed estimator with other estimators for multiple linear
regressions. In these comparisons, the presence of multi-
collinearity and outlier can be evaluated simultaneously. 'e

performance of the proposed estimator in different regression
models such as Gamma regression can be examined. 'e
proposed estimator can be used to obtain new estimators using
the approach including deleted-d Jackknife by [17].

Data Availability

'e data used to support the findings of this study are in-
cluded within the article.
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