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In this paper, we introduce operator (p, h)-convex functions and establish a Hermite–Hadamard inequality for these functions.
As application, we obtain several trace and singular value inequalities of operators.

1. Introduction

In recent years, several extensions and generalizations have
been considered for classical convexity and the theory of
inequalities has made essential contributions to many areas
of mathematics.

In 1973, Elliott Lieb published a ground-breaking article
on operator inequalities [1]. )is and a subsequent article by
Lieb and Ruskai [2] have had a profound effect on quantum
statistical mechanics and more recently on quantum in-
formation theory. Since then, a number of attempts have
been made to elucidate and extend these results. Two elegant
examples are those of Nielsen and Petz [3] and Ruskai [4],
which use the analytic representations for operator convex
functions. In addition, Hansen [5] has developed a powerful
theory that utilizes geometric means of positive operators.
)e latter notion was formulated by Pusz and Woronowicz
[6] and subsequently investigated by Ando [7] (see the
discussion in Section 3) and by Kubo and Ando [8].

We recall some concepts of convexity that is well-known
in the literature.

)e following inequality holds for any convex function f

defined on R and a, b ∈ R, with a< b,

f
a + b

2
 ≤

1
b − a


b

a
f(x) dx≤

f(a) + f(b)

2
. (1)

It was firstly discovered byHermite in 1881 in the journal
Mathematics (see [9]) and independetly proved in 1893 by

Hadamard in [10]. )e inequality (1) is known in the lit-
erature as the Hermite–Hadamard inequality.

)e Hermite–Hadamard inequality has several appli-
cations in nonlinear analysis and the geometry of Banach
space (see [11]).

)e Hermite–Hadamard inequality has been the subject
of intensive research; many applications, generalizations, and
improvement of them can be found in the literature (see [12]).

In recent years, many scholars have been interested
in modifying and extending the Hermite–Hadamard
inequality.

In [13], Dragomir and Fitzpatrick proved the following
version of Hermite–Hadamard inequality for s-convex
functions in the second sense: let f: [0,∞)⟶ [0,∞) be
an s-convex function, where s ∈ (0, 1) and a, b ∈ [0,∞),
a< b. If f ∈ L1[a, b], then the following inequalities hold:

2s− 1
f

a + b

2
 ≤

1
b − a


b

a
f(x) dx≤

f(a) + f(b)

s + 1
. (2)

)e authors of [13] defined the operator s-convex and
proved the following inequality for operator s-convex
function. He proved that if f: I⊆ [0,∞)⟶ R is an op-
erator s-convex function, then the following inequalities
hold:

2s− 1
f

A + B

2
 ≤

1
b − a


b

a
f(λA +(1 − λ)B) dλ

≤
f(A) + f(B)

s + 1
.

(3)
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)e following inequalities due to the authors [14] give
the Hermite–Hadamard inequalities for operator h-convex
function.

Let f be an operator h-convex function. )en,

1
2h(1/2)

f
A + B

2
 ≤ 

1

0
f(tA +(1 − t)B) dt

≤ (f(A) + f(B)) 
1

0
h(t) dt,

(4)

for any self-adjoint operators A and B with spectra in K.
Motivated by the above results, we investigate in this

paper the operator version of the Hermite–Hadamard in-
equality for operator (α, h)-preinvex function.

LetB(H) stand for the C∗-algebra of all bounded linear
operators on a complex separable Hilbert space (H, 〈, 〉).
An operator A ∈B(H) is positive if 〈Ax, x〉≥ 0 for all
x ∈H (we write A≥ 0). A positive invertible operator A is
naturally denoted by A> 0. LetB(H)+ stand for all positive
operators B(H). For self-adjoint operators A, B ∈B(H),
we write B≥A if B − A≥ 0. A linear map
φ: B(H)⟶B(H) is positive if φ(A)≥ 0 whenever A≥ 0
and φ is said to be unital if φ(I) � I.

Let A be a self-adjoint operator in B(H). )e Gelfand
map establishes a ∗ -isometrically isomorphism Φ between
the set C(sp(A)) of all continuous functions defined on the
spectrum of A denoting sp(A) and C∗-algebra C∗(A)

generated by A and the identity operator 1B(H) on H as
follows:

For any f, g ∈ C(sp(A)) and any α, β ∈ C, we have

(i) Φ(αf + βg) � αΦ(f) + βΦ(g)

(ii) Φ(fg) � Φ(f)Φ(g) and Φ(f) � Φ(f)∗

(iii) ‖Φ(f)‖ � ‖f‖: � supt∈sp(A)|f(t)|

(iv) Φ(f0) � 1H and Φ(f1) � A, where f0(t) � 1 and
f1(t) � t for all t ∈ sp(A)

If f is a continuous complex valued function on sp(A),
the elementΦ(f) of C∗(A) is denoted by f(A) and we call it
the continuous functional calculus for a bounded self-ad-
joint operator A. If A is a bounded self-adjoint operator and
f is a real-valued continuous function on sp(A), then
f(t)≥ 0 for any t ∈ sp(A) implies that f(A) ≥ 0, i.e., f(A) is
a positive operator onH. Moreover, if both f and g are real-
valued functions on sp(A) such that f(t)≤g(t) for any
t ∈ sp(A), then f(A)≤g(A) in the operator order in
B(H).

An important and useful class of functions are called
operator convex functions. A real-valued continuous
function f on interval K⊆ [0,∞) is said to be operator
convex (operator concave) if

f(λA +(1 − λ)B)≤ (≥ )λf(A) +(1 − λ)f(B), (5)

in the operator order in B(H), for all λ ∈ [0, 1] and for
every bounded self-adjoint operators A and B in B(H)

whose spectra are contained in K.
K⊆R+ is p-convex set if

sp λA
p

+(1 − λ)B
p

( 
1/p

 ⊆K, (6)

for every positive operators A, B ∈B(H)+ with spectra in
K, λ ∈ (0, 1) and p> 0.

Let J⊆R+ such that (0, 1) ⊂ J. A function h: J⟶ R+ is
called super-multiplicative function if h(xy)≥ h(x)h(y) for
all x, y ∈ J.

In this paper, we assume that K⊆R+ is a p-convex set.
We introduce operator (p, h)-convex function. We establish
some properties of operator (p, h)-convex function. )is
paper is organized as follows: In Section 2, we will show
some properties of operator (p, h)-convex functions. In
Section 3, a new refinement of the Hermite–Hadamard type
inequality is presented for operator (p, h)-convex functions.
If f is an operator (p, h)-convex function, then

1
2h(1/2)

f
Ap + Bp

2
 

1/p
⎛⎝ ⎞⎠

≤ 
1

0
f λA

p
+(1 − λ)B

p
( 

1/p
  dλ

≤ (f(A) + f(B)) 
1

0
h(λ) dλ.

(7)

Our results enable us to obtain a new inequality for
positive operators onB(H). For example, let 0< s≤p and φ
be an unital linear operator positive, then

1
2
φp

(A) + φp
(B)( 

s/p

≤
1

0
λφp

(A) +(1 − λ)φp
(B)( 

s/p dλ

≤
p

p + s
φs

(A) + φs
(B)( ,

(8)

for any positive operators A and B belonging to M(H) with
spectra in K.

In some special cases, we show that our result gives a
generalized estimation for operator (p, h)-convex functions
than the corresponding results obtained in [15].

In Section 4, we will show that if f is an operator
(p, h)-convex function, then we have

1
2h(1/2)

Tr f
Ap + Bp

2
 

1/p
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

≤ 
1

0
Tr f tA

p
+(1 − t)B

p
( 

1/p
   dt

≤ (Tr(f(A)) + Tr(f(B))) 
1

0
h(t) dt,

(9)

for any self-adjoint operators A and B. We establish several
trace inequalities for positive operator on B(H).
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2. Some Properties of Operator
(p, h)-Convex Functions

In order to obtain the main result of this section, we need the
following known definitions.

Let f be a real-valued continuous function defined on an
interval K⊆R+. We say thatf is of operator P-class function
on K if

f(λA +(1 − λ)B)≤f(A) + f(B), (10)

for all self-adjoint operators A, B with spectra in K and all
λ ∈ [0, 1].

For some properties of this class of operators, see [16].
Let f be a continuous real-valued function defined on an

interval K⊆R+. We say that f is an operator Q-class
function on K if

f(λA +(1 − λ)B)≤
f(A)

λ
+

f(B)

1 − λ
, (11)

for all self-adjoint operators A, B with spectra in K and all
λ ∈ (0, 1).

See [17] for some results and inequalities on operator
Q-class function.

A continuous function f: K⊆ [0,∞)⟶ R+ is said to
be operator s-convex on K if

f(λA +(1 − λ)B)≤ λs
f(A) +(1 − λ)

s
f(B), (12)

for all λ ∈ [0, 1] and for every positive operators A and B in
B(H)+, whose spectra are contained in K for some fixed
s ∈ (0, 1].

For some properties about operator s-convex function,
see [18].

Let K, J⊆R+, (0, 1)⊆ J, and h: J⟶ R be a nonnegative
function nonidentical to 0. We say that a continuous
function f: K⟶ R+ is said be a operator h-convex
function on K if

f(λA +(1 − λ)B)≤ h(λ)f(A) + h(1 − λ)f(B), (13)

for every A, B ∈B(H)+ whose spectra are contained in K

for all λ ∈ (0, 1).
For some results on operator h-convex, see [14].

Lemma 1 (see [19]). Let A, B ∈B(H)+, then AB + BA≥ 0 if
and only if f(A + B)≤f(A) + f(B) for all nonnegative
operator monotone function f on [0,∞).

Lemma 2 (see [20]). Let φ be a unital positive linear map on
H and f an operator monotone function on [0,∞), then for
every A≥ 0,

φ(f(A))≤f(φ(A)). (14)

Lemma 3 (Davis-Choi-Jensen’s inequality). Let φ be a
unital positive linear map on H and g an operator convex
function on [0,∞], then for every A≥ 0,

φ(g(A))≥g(φ(A)). (15)

)e following lemma is the special case of Lemmas 2 and 3.

Lemma 4 (see [20]). Let φ be a unital positive linear map on
H, then

(i) φ(Ar)≤ (φ(A))r for every A≥ 0 and 0≤ r≤ 1
(ii) (φ(A))r ≤φ(Ar) for every A> 0 and 1≤ r≤ 2 or

− 1≤ r≤ 0

)e following lemma is a consequence of theorem
Hansen-Pedersen-Yensen’s inequality.

Lemma 5 (see [21]). Let f be a continuous function mapping
the positive half-line [0,∞) into itself. ,en, f is the operator
monotone if and only if it is operator concave.

Definition 1 (see [22]). Let p> 0 and K, J⊆R+, (0, 1) ⊂ J,
and h: J⟶ R+ be a nonnegative function nonidentical to
0. A continuous function f: K⟶ R+ is said to be operator
(p, h)-convex (concave) if

f λA
p

+(1 − λ)B
p

( 
1/p

 ≤ (≥ )h(λ)f(A) + h(1 − λ)f(B),

(16)

for any positive operators A, B with spectra in K and
λ ∈ (0, 1).

)is class contains several well-known classes of non-
negative operator convex function, operator P-class function,
operator Q-class function, operator s-convex function,
and operator h-convex functions on K. We can see some
results operator (p, h)-convex functions by Dinh and Khue
in [22].

Lemma 6 (see [22]). Let φ be a unital positive linear map on
B(H), A a positive operator in H, and f an operator
(p, h)-convex function on R+ such that f(0) � 0. Let h be a
nonnegative and nonzero super-multiplicative function on J

satisfying 2h(1/2)≤ λ− 1h(λ) (λ ∈ (0, 1)). ,en,

f φ A
p

( ( 
1/p

 ≤ 2h
1
2

 φ(f(A)). (17)

Now, let us prove some properties of operator
(p, h)-convex functions. In this paper, we suppose (0, 1) ⊂ J

and J, K⊆R+.

Proposition 1. Let λ ∈ (0, 1) and h: J⟶ R+ be a nonzero
function and f: K⟶ R+ be an operator (p, h)-convex.
,erefore, for positive operator A with spectra in K,

(i If h(λ) + h(1 − λ)> 1, then f(A) ≥ 0
(ii) If h(λ) + h(1 − λ)< 1, then f(A) ≤ 0

Proof

(i) Suppose that A is a positive operator with spectra in
K and A � B in (16). )en,
f(A)≤ h(λ)f(A) + h(1 − λ)f(A). )erefore,
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f(A)≤ (h(λ) + h(1 − λ))f(A). Hence, (h(λ) + h

(1 − λ) − 1)f(A)≥ 0 and so f(A)≥ 0.
(ii) On account of the mentioned, (i). □

Proposition 2. Let h: J⟶ R+ be a nonzero function;
therefore,

(i) Let f: K⟶ R+ be an operator (p, h)-concave. If
g: [0,∞)⟶ [0,∞) is an operator monotone and
h(λ) + h(1 − λ) � 1, then g°f is an operator
(p, h)-concave.

(ii) Let f: K⟶ R+ be an operator (p, h)-convex and
operator monotone. ,en, for all 1≤p≤ 2, f is the
operator h-convex function.

Proof

(i) Let f: K⟶ R+ be an operator (p, h)-concave and
A and B are positive operators with spectra in K,
then

f λA
p

+(1 − λ)B
p

( 
1/p

 ≥ h(λ)f(A)

+ h(1 − λ)f(B).

(18)

So,

g f λA
p

+(1 − λ)B
p

( ( ( ≥ g(h(λ)f(A)

+ h(1 − λ)f(B))

≥ h(λ)g(f(A))

+ h(1 − λ)g(f(B)).

(19)

)erefore, g°f is the operator (p, h)-concave.
(ii) If 1≤p≤ 2, then r(x) � xp is the operator convex.

For positive operators A and B with spectra in K, we
have (λA + (1 − λ)B)p ≤ λAp + (1 − λ)Bp. Since
1/2≤ 1/p≤ 1, then k(x) � x1/p is the operator
monotone. Hence,

(λA +(1 − λ)B)≤ λA
p

+(1 − λ)B
p

( 
1/p

. (20)

We have

f(λA +(1 − λ)B)≤f λA
p

+(1 − λ)B
p

( 
1/p

 

≤ h(λ)f(A) + h(1 − λ)f(B).

(21)

)en, f is the operator h-convex function. □

Proposition 3. Let φ be a unital positive linear map on
B(H), A and B be positive operators inH with spectra in K,
and f: K⟶ R+ be an operator (p, h)-convex function such
that f(0) � 0. Let h: J⟶ (0,∞) be a super-multiplicative
function satisfying 2 h(1/2)≤ λ− 1h(λ) for λ ∈ (0, 1). We have

f φ λA
p

+(1 − λ)B
p

( ( 
1/p

 ≤ 2h
1
2

 (h(λ)φ(f(A))

+ h(1 − λ)φ(f(B))).

(22)

Proof. By Lemma 7, f((φ(Ap))1/p)≤ 2h(1/2)φ(f(A)). If
A � (λAp + (1 − λ)Bp)1/p, then

f φ λA
p

+(1 − λ)B
p

( ( 
1/p

 ≤ 2h
1
2

 φ f λA
p

+(1 − λ)B
p

( 
1/p

  

≤ 2h
1
2

 φ(h(λ)f(A) + h(1 − λ)f(B))

≤ 2h
1
2

 (h(λ)φ(f(A)) + h(1 − λ)φ(f(B))).

(23)

□
Corollary 1. With conditions, Proposition 3, we have

f φ
Ap + Bp

2
  

1/p
⎛⎝ ⎞⎠≤ 2h

2 1
2

 (φ(f(A)) + φ(f(B))).

(24)

Proof. Put λ � 1/2 in inequality (22). □

Remark 1. For φ(A) � A, inequality (24) reduces to the
inequality

f
Ap + Bp

2
 

1/p
⎛⎝ ⎞⎠≤ 2h

2 1
2

 (f(A) + f(B)). (25)

Proposition 4. Let p> 0 and h: J⟶ R+ be a nonzero
function, then the following statements are equivalent:

(i) f(x) � xs is an operator (p, h)-convex function
(ii) f(x) � xs/p is an operator h-convex function

Proof

(i)⇒(ii): suppose that f(x) � xs is an operator
(p, h)-convex. )us, (λAp + (1 − λ)Bp)s/p ≤ h(λ)As

+ h(1 − λ)Bs for each positive operator A and B with
spectra in K and λ ∈ (0, 1). For A � A1/p and B � B1/p,
we have (λA + (1 − λ)B)s/p ≤ h(λ)As/p + h(1 − λ)Bs/p.
)erefore, f(x) � xs/p is an operator h-convex.
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(ii)⇒(i): the proof is similarly (i)⇒(ii). □

Remark 2. Let f(x) � xs/p for 0< s≤p be a nonnegative
operator monotone function on (0,∞) and
M(H) � (A, B) ∈B(H)+ × B(H)+|AB + BA≥ 0 . By
Lemma 1 for each (A, B) ∈M(H), we have
f(A + B)≤f(A) + f(B). Put A � λA and B � (1 − λ)B,
λ ∈ (0, 1). Hence, f(λA + (1 − λ)B)≤f(λA) + f((1 − λ)B).
)erefore,

(λA +(1 − λ)B)
s/p ≤ λs/p

A
s/p

+(1 − λ)
s/p

B
s/p

. (26)

)erefore, f(x) � xs/p for h(λ) � λs/p is an operator
h-convex for 0< s≤p.

)e following example is a characteristic example of
operator (p, h)-convex function.

Example 1. Let 0< s≤p. By Remark 2, f(x) � xs/p is an
operator h-convex function for h(λ) � λs/p on M(H). By
Proposition 4, f(x) � xs is an operator (p, h)-convex on
M(H).

In the following preposition, we eliminate condition
A, B ∈M(H) and we get the new example of operator
(p, h)-convex.

Proposition 5. Let p> 0 and f(x) � xs and h(λ) � λ, then
f is the operator (p, h)-convex if and only if s ∈ [p, 2p].

Proof. If f is an operator (p, h)-convex, for each positive
operator A and B with spectra in K, (λAp + (1 − λ)Bp)s/p

≤ h(λ)As + h(1 − λ)Bs. Hence, (λA + (1 − λ)B)s/p ≤ λAs/p+

(1 − λ)Bs/p. )e last inequality means that the function
g(t) � ts/p is the operator convex, which is equivalent to the
condition s ∈ [p, 2p]. □

Corollary 2. Let f(x) � xs, h(λ) � λ, and p> 0, then we
have

(i) If s ∈ [p, 2p]∩ [0, 1], then the function f is an op-
erator (p, h)-convex and operator concave

(ii) If s ∈ [p, 2p]∩ [1, 2], then the function f is an op-
erator (p, h)-convex and operator convex

Proof. Because f(x) � xs for 0≤ s≤ 1 is operator concave
and f(x) � xs for 1≤ s≤ 2 is operator convex, then proof is
trivial. □

Proposition 6. Let f: K⟶ R+ be an operator
(p, h)-convex and h: J⟶ R+ be a nonzero function and
A, B are two positive operators with spectra in K, then
φx,A,B(t): [0, 1]⟶ R+ defined by φx,A,B(t) � 〈f((tAp+

(1 − t)Bp)1/p)x, x〉 is a h-convex function on [0, 1] for any
x ∈H with ‖x‖ � 1.

Proof. For each u, v ∈ [0, 1], we have

φx,A,B(tu +(1 − t)v) �〈f tu +(1 − t)v )Ap
+(1 − (tu +(1 − t)v))B

p
( 

1/p
 x, x〉

�〈f t uA
p

+(1 − u)B
p

(  +(1 − t) vA
p

+(1 − v)B
p

( ( 
1/p

 x, x〉

�〈f t uA
p

+(1 − u)B
p

( 
1/p

 
p

+(1 − t) vA
p

+(1 − v)B
p

( 
1/p

 
p

 
1/p

 x, x〉

≤ h(t)〈f uA
p

+(1 − u)B
p

( 
1/p

 x, x〉

+ h(1 − t)〈f vA
p

+(1 − v)B
p

( 
1/p

 x, x〉

� h(t)φx,A,B(u) + h(1 − t)φx,A,B(v).

(27)

□
3. Hermite–Hadamard Inequality for Operator

(p, h)-Convex Functions

Now, we are ready to state the main result of this paper.

Theorem 1. Let f be a continuous operator (p, h)-convex
function and h: J⟶ R+ be a continuous nonzero function.
,en, for any A, B ∈B(H)+ with spectra in K, we have

1
2h(1/2)

f
Ap + Bp

2
 

1/p
⎛⎝ ⎞⎠≤ 

1

0
f λA

p
+(1 − λ)B

p
( 

1/p
  dλ≤ (f(A) + f(B)) 

1

0
h(λ) dλ. (28)
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Proof. Let λ � 1/2 in Definition 1, then

f
Ap + Bp

2
 

1/p
⎛⎝ ⎞⎠≤ h

1
2

 (f(A) + f(B)). (29)

Put A1 � (λAp + (1 − λ)Bp)1/p and B1 � ((1 − λ)Ap+

λBp)1/p. )en, we have A
p
1 + B

p
1 � Ap + Bp. So,

f
Ap + Bp

2
 

1/p
⎛⎝ ⎞⎠≤ h

1
2

  f λA
p

+(1 − λ)B
p

( 
1/p

 

+ f (1 − λ)A
p

+ λB
p

( 
1/p

 .

(30)

)erefore,

f
Ap + Bp

2
 

1/p
⎛⎝ ⎞⎠≤ h

1
2

  
1

0
f λA

p
+(1 − λ)B

p
( 

1/p
 

+f (1 − λ)A
p

+ λB
p

( 
1/p

  dλ

� 2h
1
2

  
1

0
f λA

p
+(1 − λ)B

p
( 

1/p
  dλ.

(31)

As

2h
1
2

  
1

0
f λA

p
+(1 − λ)B

p
( 

1/p
  dλ≤ 2 h

1
2

  
1

0
(h(λ)f(A) + h(1 − λ)f(B)) dλ

≤ 2 h
1
2

  f(A) 
1

0
h(λ) dλ + f(B) 

1

0
h(1 − λ) dλ 

� 2 h
1
2

 (f(A) + f(B)) 
1

0
h(λ) dλ,

(32)

thus (28) holds. □

Remark 3. If p � 1 in inequality (28), then )eorem 1
produces [14].

Corollary 3.3. Let p> 0, s ∈ [p, 2p], and φ be an unital
linear positive map, then

φp(A) + φp(B)

2
 

s/p

≤ 
1

0
λφp

( ( A) + (1 − λ)φp
(B)

(s/p) dλ

≤
φs

(A) + φs
(B)

2
,

(33)

for any positive operators A and B with spectra in K.

Proof. By Corollary 2, f(x) � xs is the operator
(p, h)-convex for h(λ) � λ and s ∈ [p, 2p]. Put f(x) � xs in
)eorem 1.

In particular, we have the following, □

Corollary 4. Let 0< s≤p and φ be an unital linear positive
map, then

1
2
φp

(A) + φp
(B)( 

s/p ≤ 
1

0
λφp

(A)( + (1 − λ)φp
(B)

(s/p dλ

≤
p

p + s
φs

(A) + φs
(B)( ,

(34)

for any positive operators A and B belonging to M(H) with
spectra in K.

Proof. By Example 1, f(x) � xs is the operator
(p, h)-convex for h(λ) � λs/p and 0< s≤p. )erefore,

1
2(1/2)

s/p
Ap + Bp

2
 

s/p

≤ 
1

0
λA

p
+(1 − λ)B

p
( 

s/p dλ

≤ A
s

+ B
s

(  
1

0
λs/p dλ.

(35)

So,

1
2

A
p

+ B
p

( 
s/p ≤ 

1

0
λA

p
+(1 − λ)B

p
( 

s/p dλ

≤ A
s

+ B
s

( 
p

s + p
 .

(36)

Put A � φ(A) and B � φ(B) in inequality (36). □

Corollary 5. Let 0< s≤p≤ 1 and φ be a positive operator,
then

1
2
φ A

p
+ B

p
( 

s/p
 ≤

1
2
φp

(A) + φp
(B)( 

s/p

≤
p

s + p
  φs

(A) + φs
(B)( .

(37)

for each positive operators A and B in M(H).
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Proof. If 0< s≤p≤ 1, then φ(Ap + Bp)≤φp(A) + φp(B)

(by Lemma 4), we have
1
2
φ A

p
+ B

p
( 

s/p
 ≤

1
2
φp

(A) + φp
(B)( 

s/p

≤ 
1

0
λφp

(A) +(1 − λ)φp
(B)( 

s/p dλ

≤
p

s + p
  φs

(A) + φs
(B)( .

(38)□

Definition 2. Let f, g: K⟶ R+ be operator (p, h)-convex
functions and A, B self-adjoint operators on Hilbert spaceH
with spectra in K. We defined real functions M(A, B) and
N(A, B) on Hilbert space H by

M(A, B)(x) � 〈f(A)x, x〉〈g(A)x, x〉

+〈f(B)x, x〉〈g(B)x, x〉,
(39)

and

N(A, B)(x) � 〈f(A)x, x〉〈g(B)x, x〉

+〈f(B)x, x〉〈g(A)x, x〉,
(40)

for any x ∈H.

Theorem 2. Let h1, h2: J⟶ R+ and f, g: K⟶ R+ be
continuous functions. If f is an operator (p, h1)-convex and g

is an operator (p, h2)-convex function, then for any positive
operators A and B with spectra in K and each x ∈H with
‖x‖ � 1, the following inequality holds:


0

1
〈f λA

p
+(1 − λ)B

p
( 

1/p
 x, x〉〈g λA

p
+(1 − λ)B

p
( 

1/p
 x, x〉 dλ

≤M(A, B)(x) 
1

0
h1(λ)h2(λ) dλ + N(A, B)(x) 

1

0
h1(λ)h2(1 − λ) dλ.

(41)

Proof. On account of the operator (p, h1)-convexity of f

and (p, h2)-convexity of g, we give

〈f λA
p

+(1 − λ)B
p

( 
1/p

 x, x〉 ≤ 〈 h1(λ)f(A) + h1(1 − λ)f(B)( x, x〉, (42)

〈g λA
p

+(1 − λ)B
p

( 
1/p

 x, x〉 ≤ 〈 h2(λ)g(A) + h2(1 − λ)g(B)( x, x〉, (43)

for each λ ∈ (0, 1) and x ∈H with ‖x‖ � 1. We have

〈f λA
p

+(1 − λ)B
p

( 
1/p

 x, x〉〈g λA
p

+(1 − λ)B
p

( 
1/p

 x, x〉

≤ h1(λ)h2(λ)〈f(A)x, x〉〈g(A)x, x〉

+ h1(1 − λ)h2(λ)〈f(B)x, x〉〈g(A)x, x〉

+ h1(λ)h2(1 − λ)〈f(A)x, x〉〈g(B)x, x〉

+ h1(1 − λ)h2(1 − λ)〈f(B)x, x〉〈g(B)x, x〉.

(44)
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)erefore,


1

0
〈f λA

p
+(1 − λ)B

p
( 

1/p
 x, x〉〈g λA

p
+(1 − λ)B

p
( 

1/p
 x, x〉 dλ

≤ 〈f(A)x, x〉〈g(A)x, x〉 
1

0
h1(λ)h2(λ) dλ

+〈f(B)x, x〉〈g(A)x, x〉 
1

0
h1(1 − λ)h2(λ) dλ

+〈〈f(A)x, x〉〈g(B)x, x〉 
1

0
h1(λ)h2(1 − λ) dλ

+〈f(B)x, x〉〈g(B)x, x〉 
1

0
h1(1 − λ)h2(1 − λ) dλ.

(45)

)e proof is complete. □ Corollary 6. In ,eorem 2, if h1(λ) � h2(λ) � h(λ), then


1

0
〈f λA

p
+(1 − λ)B

p
( 

1/p
 x, x〉〈g λA

p
+(1 − λ)B

p
( 

1/p
 x, x〉 dλ

≤M(A, B)(x) 
1

0
h
2
(t) dt + N(A, B)(x) 

1

0
h(t)h(1 − t) dt.

(46)

Remark 4. If h1(λ) � h2(λ) � λ in )eorem 2, then


1

0
〈f λA

p
+(1 − λ)B

p
( 

1/p
 x, x〉〈g λA

p
+(1 − λ)B

p
( 

1/p
 x, x〉 dλ

≤
1
3

M(A, B)(x) +
1
6

N(A, B)(x).

(47)

Hence, in this case,)eorem 2 produces [15],)eorem 3.

Theorem 3. Let h1, h2: J⟶ R+ and f, g: K⟶ R+ be
continuous functions. If f is an operator (p, h1)-convex and g

is an operator (p, h2)-convex function, then for any positive
operators A and B with spectra in K and each x ∈H with
‖x‖ � 1, the following inequality holds:

1
2h1(1/2)h2(1/2)

〈f
Ap + Bp

2
 

1/p
⎛⎝ ⎞⎠x, x〉〈g

Ap + Bp

2
 

1/p
⎛⎝ ⎞⎠x, x〉

≤ 
1

0
〈f λA

p
+(1 − λ)B

p
( 

1/p
 x, x〉〈g λA

p
+(1 − λ)B

p
( 

1/p
 x, x〉 dλ

+ M(A, B)(x) 
1

0
h1(λ)h2(1 − λ) dλ + N(A, B)(x) 

1

0
h1(λ)h2(λ) dλ.

(48)
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Proof. Since Ap + Bp/2 � λAp + (1 − λ)Bp/2 + (1 − λ)Ap

+λBp/2, for any x ∈H with ‖x‖ � 1, we have

〈f
Ap + Bp

2
 

1/p
⎛⎝ ⎞⎠x, x〉〈g

Ap + Bp

2
 

1/p
⎛⎝ ⎞⎠x, x〉

�〈f
λA

p
+(1 − λ)B

p

2
+

(1 − λ)A
p

+ λB
p

2
 x, x〉

〈g
λA

p
+(1 − λ)B

p

2
+

(1 − λ)A
p

+ λB
p

2
 x, x〉

≤ h1
1
2

  〈f λA
p

+(1 − λ)B
p

( 
1/p

 x, x〉 +〈f (1 − λ)A
p

+ λB
p

( 
1/p

 x, x〉 

h2
1
2

  〈g λA
p

+(1 − λ)B
p

( 
1/p

 x, x〉 +〈g (1 − λ)A
p

+ λB
p

( 
1/p

 x, x〉 

≤ h1
1
2

 h2
1
2

  〈f λA
p

+(1 − λ)B
p

( 
1/p

 x, x〉〈g λA
p

+(1 − λ)B
p

( 
1/p

 x, x〉 

+ h1
1
2

 h2
1
2

  〈f (1 − λ)A
p

+ λB
p

( 

1
p⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠x, x〉〈g (1 − λ)A
p

+ λB
p

( 

1
p⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠x, x〉⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

+ h1
1
2

 h2
1
2

  h1(λ)〈f(A)x, x〉 + h1(1 − λ)〈f(B)x, x〉( 

· h2(1 − λ)〈g(A)x, x〉 + h2(λ)〈g(B)x, x〉( 

+ h1
1
2

 h2
1
2

  h1(1 − λ)〈f(A)x, x〉 + h1(λ)〈f(B)x, x〉( 

· h2(λ)〈g(A)x, x〉 + h2(1 − λ)〈g(B)x, x〉( 

� h1
1
2

 h2
1
2

  〈f λA
p

+(1 − λ)B
p

( 
1/p

 x, x〉〈g λA
p

+(1 − λ)B
p

( 
1/p

 x, x〉 

+ h1
1
2

 h2
1
2

  〈f (1 − λ)A
p

+ λB
p

( 
1/p

 x, x〉〈g (1 − λ)A
p

+ λB
p

( 
1/p

 x, x〉 

+ h1
1
2

 h2
1
2

  h1(λ)h2(1 − λ) + h1(1 − λ)h2(λ)( M(A, B)(x)( 

+ h1
1
2

 h2
1
2

  h1(λ)h2(λ) + h1(1 − λ)h2(1 − λ)( N(A, B)(x)( .

(49)

Integrating both sides of inequality over [0, 1], we get the
required inequality (48). □

Remark 5. In )eorem 3, if h1(λ) � h2(λ) � λ, then

〈f
Ap + Bp

2
 

1/p
⎛⎝ ⎞⎠x, x〉〈g

Ap + Bp

2
 

1/p
⎛⎝ ⎞⎠x, x〉

≤ 
1

0
〈f λA

p
+(1 − λ)B

p
( 

1/p
 x, x〉〈g λA

p
+(1 − λ)B

p
( 

1/p
 x, x〉 dλ

+
1
12

M(A, B)(x) +
1
6

N(A, B)(x).

(50)

Journal of Mathematics 9



)erefore, in this case, )eorem 3 produces [15], )e-
orem 4.

4. Some Trace Functional
Inequalities for Operator

Let K(H) be two sided ideal of compact operator B(H).
For A ∈B(H), let ‖A‖ � sup ‖Ax‖: ‖x‖ � 1{ } denote the
usual operator norm of A and |A| � (A∗A)1/2 be the absolute
value of A. )e direct sum A⊕B denotes the block diagonal

matrix A 0
0 B

  defined on H⊕H (see [20]). It is clear that

‖A⊕B‖ � max (‖A‖, ‖B‖).
For any operator A, the operator A∗A is always positive

and its unique positive square root is denoted by |A|.
We remind some basic properties of trace for operators.

Let ei i∈I be an orthonormal basis of H; we say that
A ∈B(H) is the trace class if

‖A‖1 � 
i∈I
〈|A|ei, ei〉 <∞. (51)

)e definition of ‖A‖1 does not depend on the choice of
the orthonormal basis ei i∈I. We denote the set of trace class
operators in B(H) by B1(H). We define the trace of a
trace class operator A ∈B1(H) to be

Tr(A) ≔ 
i∈I
〈Aei, ei〉, (52)

where ei i∈I is an orthonormal basis of H. Tr(·) is a
bounded linear functional on B1(H) with ‖Tr‖ � 1.

Lemma 7. Let f: K⟶ R+ be an operator (p, h)-convex
function and h: J⟶ R+ be a nonzero function, then g(t) �

Tr(f((tAp + (1 − t)Bp)1/p)) is the h-convex on (0, 1) for
self-adjoint operators A and B with spectra in K.

Proof. Because trace functional is convexity and monoto-
nicity, then for each u, v ∈ (0, 1) and 0< α< 1, we obtain

g(αu +(1 − α)v) � Tr f (αu +(1 − α)v)A
p

+(αu +(1 − α)v)B
p

( 
1/p

 

� Tr f α uA
p

+(1 − u)B
p

(  +(1 − α) vA
p

+(1 − v)B
p

( ( 
1/p

 

� Tr f α uA
p

+(1 − u)B
p

( 
1/p

 
p

  +(1 − α) vA
p

+(1 − v)B
p

( 
1/p

 
p

  
1/p

 

≤Tr h(α)f uA
p

+(1 − u)B
p

( 
1/p

 + h(1 − α)f vA
p

+(1 − v)B
p

( 
1/p

  

� h(α)Tr f uA
p

+(1 − u)B
p

( 
1/p

 + h(1 − α)Tr f vA
p

+(1 − v)B
p

( 
1/p

  

� h(α)g(u) + h(1 − α)g(v).

(53)

)erefore, g is h-convex. □

Theorem 4. Let f: K⟶ R+ be an operator (p, h)-convex
function and h: J⟶ R+ be a nonzero function, then we
have

1
2h(1/2)

Tr f
Ap + Bp

2
 

1/p
⎛⎝ ⎞⎠⎛⎝ ⎞⎠

≤ 
1

0
Tr f tA

p
+(1 − t)B

p
( 

1/p
   dt

≤ (Tr(f(A)) + Tr(f(B))) 
1

0
h(t) dt,

(54)

for each self-adjoint operators A and B with spectra in K.

Proof. g(t) � Tr(f(tAp + (1 − t)Bp)1/p) is h-convex on
(0, 1) by Lemma 4. Hence, by inequality (28),

1
2h(1/2)

g
0 + 1
2

 ≤ 
1

0
g(t) dt

≤
g(0) + g(1)

2
  

1

0
h(t) dt.

(55)

)erefore, we have the desired result. □

Remark 6. We think that with the new definition operator
(p, h)-convex function for the Jensen’s inequality and op-
erator convex inequalities in [23], generalization or new
inequalities can be obtained.
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