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In this paper, we present and demonstrate an innovative numerical method, which makes use of fuzzy numbers and fuzzy
parameters that is e�ective in the solution of fuzzy type Volterra integro-di�erential equations, which was previously thought to be
impossible using conventional methods. ­e �rst application of a technique for solving Volterra integro-di�erential equations of
the fuzzy type, which was devised and tested in this paper, is shown here. ­is is the �rst time that this approach has been used.
­is system’s overall quality may be improved as a consequence of the use of the Hilbert space replicating kernel idea, which is a
possibility. Separate evaluations are made of the algorithms’ correctness and sloppiness, as well as their foundations in the
computationally e�ective kernel Hilbert space, which has been extensively researched in the past. Numerical examples are
provided of the article to demonstrate how the technique outlined before may achieve convergence and accuracy. Here are a few
illustrations to help understand that it is possible to deal with physical issues that require complicated geometric calculations with
the assistance of the method explained in this article.

1. Introduction

It is possible to achieve better results using di�erential and
probabilistic techniques rather than conventional processes.
It is possible to uncover system features with more precision
and less work using di�erential and probabilistic techniques
rather than traditional processes, as opposed to traditional
processes. In contrast to this, traditional procedures require
the placement of more resources and time to be successful.
In an attempt to attain this goal, one strategy that may be
used is the application of fuzzy integro-di�erential equations
which are more accurate than typical approaches [1]. A
signi�cant increase in the number of theoretical and com-
putational computations using fuzzy Volterra integro-dif-
ferential equations, as well as the number of publications
referring to these equations, both in terms of quantity and
quality, has been seen in recent years [2–5]. Both the number
of products available and the quality of those products have
increased as a result of this expansion (also known as fuzzy
Volterra integro-di�erential equations, or FVIDEs). Only a
few academics (including [6–9] and other published works)

have looked at the consequences of fuzzy modelling in a
quantum gravity context to the best of our knowledge at the
time of writing. With the exception of these issues, other
areas such as fragile biopolymers, quantum gravity, and
quantum optics, among others, have gotten only a sliver of
attention in population dynamics research despite the fact
that they are important. ­is, on the other hand, has just
recently become the case. Biswas and Roy developed a
second-order fuzzy di�erential equations (FVDE) technique
that is based on fuzzy di�erential equations in order to deal
with fuzzy di�erential equations in practice [10, 11]. It may
be used to solve fuzzy di�erential equations as well as other
issues because it is based on the di�erentiability extension
concept established by Seikkala. ­e concept of di�eren-
tiability extension developed by Seikkala, which provided as
inspiration for the method, laid the groundwork for its
development. In fact, upon closer examination, it becomes
clear that fuzzy integro-di�erential equation (as well as the
theory that underpins them) is addressed more thoroughly
in references [2, 3], [10], and [12] than fuzzy di�erential
equations (2), (3), and (10) Using fuzzy integro-di�erential
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equations as a reference point, it is clear that fuzzy integro-
differential equations (and the theory that underpins them)
are treated more leniently in the first two papers. Recently, it
is observed that the Xue et al. presented the comprehensive
study of decline approximations for fuzzy viscoelastic in-
tegral model [12, 13] and compound learning control of
ambiguous nonlinear fractional-order models with actuator
liabilities grounded on command sifting and fuzzy esti-
mation [14]. One can find comprehensive related literature
in Refs. [12–16].

It is observed that the reproducing kernel philosophy
has significant scientific applications in various fields like
ordinary differential, numerical analysis, fractional dif-
ferential, statistics, and probability models [17]. Ahma-
dian et al. recently developed some kind of reproducing
kernel Hilbert space (RKHS) approaches to hand both
ordinary and fractional-order fuzzy differential models
[18, 19]. ,e author’s show many advantages of the
proposed scheme like to start the procedure and choose
any point lies in the limits of integration, and it requires
less effort to investigate the results. Later, various re-
searchers used this strategy to explore the two-point fuzz
BVPs model [20, 21], fuzzy differential model [22], pe-
riodic first-order BVPs of integro-differential model
Fredholm type [23], systems of periodic second-order
BVPs [24], Lane–Emden equation, and fractional-order
model of Lane–Emden [25, 26].

On the basis of comprehensive literature review and
author’s best knowledge, it is observed that no one intro-
duced the algorithm with less computational cost toproduce
more accurate solutions, which motivates us to fill this gap
and provide an efficient scheme for the problem given in
Equation (1).

An in-depth explanation of the essay’s organisational
structure is provided in the next section, which also in-
cludes samples of the essay throughout the rest of the
section. ,e next part will continue the topic that started
in Part I of this chapter by addressing fuzzy integrals and
fuzzy number theories. ,ese two subjects were addressed
in more detail in the part that came before it in the
chapter’s previous section. ,e following is a breakdown
of how Part II of this chapter is organised. ,e use of
methods such as erroneous integrals and fuzzy number
theories, among other things, is required in order to create
functions that take fuzzy numbers as both input and
output values. In Section 2, we will discuss how to use
failure integrals and fuzzy number theories in the con-
struction of fuzzy-valued functions. Failure integrals and
fuzzy number theories are two concepts that are used in
the construction of fuzzy-valued functions. Consider the
ideas of fuzzy integrals and fuzzy number theories, which
were introduced in Section 3 of this chapter. It becomes
clear that these concepts may be understood differently
depending on the context in which they are used. In the
third part of this chapter, we will go over in depth a kind of
differential equation known as second-order integro-
differential equation, also known as Volterra integro-
differential equation, which is also known as Volterra
integro-differential equation.

2. Important Concepts and Preliminaries

Many fundamental concepts and theorems will be reviewed
in this part, and they will be used throughout the course.
“Fuzzy numbers” (FN), “fuzzy functions” (FF), and deriv-
ative FF are only a few examples of what is available.

Definition 1 Reference [26]. A FN U⟶ [0, 1] is a “fuzzy
subset” (FS) of H with normal, convex, and superior
“membership function” (MF) of “bounded support” (BS).
Let RF signify of FN. 0< β≤ 1, set [U]β � S ∈ H|U(S)≥ β􏼈 􏼉

and [U]0 � S ∈ H|U(S)> 0{ }. Formerly, the β-level [U]β is a
compact interlude 0≤ β≤ 1 and slightly U ∈ RF. ,e rep-
resentation [U]β � [U1(β), U2(β)] signifies clearly the
β-level set U. We remark to U1 and U2 inferior and superior
divisions on U correspondingly.

Theorem 1 (see [27]). Mapping U⟶ [0, 1] is a FN with
β-cut depiction [U1(β), U2(β)] if and only if the succeeding
circumstances are fulfilled:

(i) U1: [0, 1]⟶ H is restricted nondeclining
(ii) U2: [0, 1]⟶ H is restricted nongrowing
(iii) R ∈ (0, 1], lim

β⟶R−
U1(β) � U1(R) lim

β⟶R−
U2(β) �

U2(R)

(iv) R ∈ (0, 1], lim
β⟶R+

U1(β) � U1(R) lim
β⟶R+

U2(β) �

U2(R)

(v) U1(β)≤U2(β)β ∈ [0, 1]

Definition 2 (see [26]). Suppose Y: [a, c]⟶ RF and
x0 ∈ (a, c). We give or take Y is (1)-differentiable at x0 and
some element Y′(x0) ∈ RF and j> 0 adequately near to 0,
then there will be

Y x0 + j( 􏼁 − Y x0( 􏼁, Y x0( 􏼁 − Y x0 − j( 􏼁. (1)

,e limits

lim
j⟶0+

Y x0 + j( 􏼁 − Y x0( 􏼁

j
� lim

j⟶0+

Y x0( 􏼁 − Y x0 − j( 􏼁

j
� Y′ x0( 􏼁.

(2)

In this circumstance, we signify Y′(x0) by D1
1Y(x0).

Also, Y is (2)-differentiable, j< 0 adequately near to 0, there
be Y(x0 + j) − Y(x0), Y(x0) − Y(x0 − j), and the limits

lim
j⟶0−

Y x0 + j( 􏼁 − Y x0( 􏼁

j
� lim

j⟶0−

Y x0( 􏼁 − Y x0 − j( 􏼁

j
� Y′ x0( 􏼁.

(3)

In circumstance, this imitative is signified by D1
2Y(x0).

Theorem 2 (see [28]). Let Y: [a, c]⟶ RF be a FF, then
[Y(x)]β � [Y1,β(x), Y2,β(x)], β ∈ [0, 1].

(i) If Y (1)-differentiable, then Y1,β and Y2,β are DF and
[D1

1Y(x0)]β � [Y’
1,β(x), Y’

2,β(x)]

(ii) If Y (2)-differentiable, then Y1,β and Y2,β are DF and
[D1

2Y(x0)]β � [Y’
2,β(x), Y’

1,β(x)]
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Theorem 3 (see [29]). Let D1
1Y: [a, c]⟶ RF or

D1
2Y: [a, c]⟶ RF be FF, where

[Y(x)]β � [Y1,β(x), Y2,β(x)], β ∈ [0, 1].

(i) If D1
1Y is (1)-differentiable, then Y1,β′ and Y2,β′ are DF

and [Y″(x)]β � [Y1,β″(x), Y2,β″(x)]

(ii) If D1
1Y is (2)-differentiable, then Y1,β′ and Y2,β′ are DF

and [Y″(x)]β � [Y2,β″(x), Y1,β″(x)]

(iii) If D1
2Y is (1)-differentiable, then Y1,β′ and Y2,β′ are DF

and[Y″(x)]β � [Y2,β″(x), Y1,β″(x)]

(iv) If D1
2Y is (2)-differentiable, then Y1,β′ and Y’

2,β are DF
and [Y″(x)]β � [Y1,β″(x), Y2,β″(x)]

Theorem 4 (see [30]). Let Y: [a, c]⟶ RF be a continuous
FF, where [Y(x)]β � [Y1,β(x), Y2,β(x)]. If Y1,β(x) and
Y2,β(x) are integrable functions (IF) over [a, c], then
􏽒

c

a
Y(x)dx ∈ RF, then we get

􏽚
c

a
Y(x)dx􏼔 􏼕

β
� 􏽚

c

a
Y1,β(x)dx, 􏽚

c

a
Y2,β(x)dx􏼔 􏼕. (4)

3. Modelling of Fuzzy Integral Equation

,is section contains the modelling of the fuzzy integro-
differential equation of Volterra type, where the fuzzy
integro-differential equations of Volterra type are trans-
formed into corresponding system of integro-differential
equations [31]. It comprises the discovery of α-cut repre-
sentation form of g. With the intention of develop the
reproducing kernel Hilbert space algorithm to examine the
accurate solutions of fuzzy integro-differential equations of
Volterra type, first we assume

x″(η) � f(η) + 􏽚
η

a
K(η, ξ)G(x(ξ))dξ, a≤ η,

x(a) � b1, x′(a) � b2.

(5)

According to section 2, the above second-order fuzzy
Volterra equations is converted to the following system of
equations as

x1,α″ (η) � f1,α(η) + 􏽚
n

a
V(η, α)ds,

x2,α″ (η) � f2,α(η) + 􏽚
η

η
V(η, α)dξ,

x2,α″ (η) � f2,α(η) + 􏽚
η

η
V(η, α)ds,

x1,α″ (η) � f1,α(η) + 􏽚
η

η
V(η, α)dξ.

(6)

By means of the well-known Zadeh expansion prin-
ciple given in reference [28] and if the function G(x(ξ))

present in Equation (1) is a function of strictly increasing,
then

V(η, α) �
K(η, ξ)G x2,α(ξ)􏼐 􏼑, K(η, ξ)≥ 0,

K(η, ξ)G x1,α(ξ)􏼐 􏼑, K(η, ξ)< 0,

⎧⎪⎨

⎪⎩

V(η, α) �
K(η, ξ)G x1,α(ξ)􏼐 􏼑, K(η, ξ)≥ 0,

K(η, ξ)G x2,α(ξ)􏼐 􏼑, K(η, ξ)< 0.

⎧⎪⎨

⎪⎩

(7)

Similarly, if the function G(x(ξ)) is strictly decreasing,
then we obtain

V(η, α) �
K(η, ξ)G x2,α(ξ)􏼐 􏼑, K(η, ξ)≥ 0,

K(η, ξ)G x1,α(ξ)􏼐 􏼑, K(η, ξ)< 0,

⎧⎪⎨

⎪⎩

V(η, α) �
K(η, ξ)G x1,α(ξ)􏼐 􏼑, K(η, ξ)≥ 0,

K(η, ξ)G x2,α(ξ)􏼐 􏼑, K(η, ξ)< 0.

⎧⎪⎨

⎪⎩

(8)

It is important to mention that the sufficient conditions
for the existence and uniqueness of solution for the problem
subject to Equation (1) are presented in reference [15].

4. Important Results and Convergence Analysis

,is segment encloses the preliminaries, notation, devel-
opment, and application of reproducing kernel Hilbert space
scheme to seek the exact and numerical solutions of second
kind Volterra integral equation. By means of Gram–Schmidt
orthogonalization procedure, we build system of orthogonal
function of H3

2[0, 1] ⊕ H3
2[0, 1].

Definition 3 Reference [32]. Let H and A be denoted by
Hilbert space and abstract set, respectively, then a function
f1: A × A⟶ R is known as reproducing kernel of the
Hilbert space H if it holds the following conditions:

f1(·, t) ∈ H, ∀t ∈ A,

ϕ, f1(·, t) � ϕ(t), ∀ϕ ∈ H, t ∈ A.
(9)

,e second condition is also known as the reproducing
property.

Definition 4 (see [32]). Suppose that Hm
2 [a, b] is an inner

product space and defined as absolutely continuing, thenHm
2

[a,b]� x(η)|x(η),x′(η),...,xm(η)areabsolutelycontinuous,􏼈

xn(a)�0forn�0,1,2,...,m− 1andxm(η) belongsto L2[a,b]}.

In the time being, the norm and inner product in
Hm

2 [a, b] are defined as
���������

x(η), x(η)

􏽱

Hm
2

� ‖x(η)‖Hm
2

,

〈x(η), z(η)〉Hm
2

� 􏽘
m− 1

n�0
x

n
(a)z

n
(a) + 􏽚

b

a
x

m
(v)z

m
(v)dv.

(10)

In the above equation, the functions x(η), z(η) are
belongs to Hm

2 [a, b].
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Definition 5 (see [32, 33]). Hilbert space Hm
2 [a, b]⊕Hm

2
[a, b] for m � 1, 2, . . . , n, can be given as

H
m
2 [a, b] ⊕ H

m
2 [a, b] � x � x1, x2( 􏼁

T
|x1, x2 ∈ H

m
2 [a, b]􏽮 􏽯.

(11)

,e inner product and norms of space
Hm

2 [a, b]⊕Hm
2 [a, b] are given as

�����������

􏽘

2

i�1
xi(η)

����
����
2
Hm

2

􏽶
􏽴

� ‖x(η)‖Hm
2 ⊕Hm

2
,

〈x(η), z(η)〉Hm
2 ⊕Hm

2
� 􏽘

2

i�1
〈xi(η), zi(η)〉Hm

2
.

(12)

Definition 6 (see [32, 33]). Hilbert space Hm
2 [a, b] is called

the reproducing kernel under the condition that ∀η ∈ [a, b],

∃R(η, ξ) ∈ Hm
2 so that x(η) � 〈x(ξ), R(η, ξ)〉H1

2
, ∀x(η) ∈

H1
2[a, b], ξ ∈ [a, b].

Theorem 5 (see [32, 33]). Let Hm
2 [a, b] be the Hilbert space

which is also complete reproducing kernel space. :en, Rη(ξ)

reproducing kernel function is given as

Rη(ξ) �

􏽘

2m− 1

i�1
pi(η)ξi

, ξ ≤ η,

􏽘

2m− 1

i�1
qi(η)ξi

, ξ > η.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

,e reproducing kernel function illustration Rη(ξ) in the
Hilbert space H3

2[0, 1], by means of Maple 2015, is delivered
by

Rη(ξ) �

1 +
1

2! · 3!
η2ξ2(η + 3) + ηξ 1 −

1
4!
η4􏼒 􏼓 +

1
5!
η5, ξ ≤ η,

1 +
1

2! · 3!
η2ξ2(η + 3) + ηξ 1 −

1
4!
η4􏼒 􏼓 +

1
5!
η5, ξ > η.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

In order to apply the proposed scheme on the Hilbert
space H3

2[a, b]⊕H3
2[a, b], first, we introduce a linear and

invertible operator as

L: H
3
2[a, b] ⊕ H

3
2[a, b]⟶ H

1
2[a, b]⊕H

1
2[a, b], (15)

as Lx(η) � x″(η) so that

L �
L1 0

0 L2
􏼢 􏼣, (16)

and x(η) � (x1,α(η), x2,α(η))T. ,erefore, the problem
under study can be transformed as given below:

Lx(η) � F(η, f(η), h(x(η))),

x(a) � b1, x′(a) � b2.
(17)

In the above equations, h(x(η)) � 􏽒
η
a

K(η, ξ)G(x(ξ))

dξ, f(η) ∈ H1
2[a, b]⊕H1

2[a, b], and x(η) ∈ H3
2[a, b] ⊕H3

2
[a, b]. Also, F(η, f(η), h(x(η))) is F(η, f1,α(η), f2,α(η),

h1,α(x(η)), h2,α(x(η))).

Theorem 6 (see [32, 33]). :e invertible and linear operator
L defined as L: H3

2[a, b]⊕H3
2[a, b]⟶ H1

2[a, b] ⊕ H1
2[a, b]

is bounded.

Proof. It is very easy to prove that the operator L is linear
from the space H3

2[a, b] ⊕ H3
2[a, b] to the space

H1
2[a, b]⊕H1

2[a, b]. Now, we have to prove that the operator
L is bounded and bounded by some constant c such that

‖Lx‖H1
2 ⊕H1

2
≤ c‖x‖H3

2 ⊕H3
2
, c> 0, (18)

∀ x belongs to H3
2[a, b] ⊕ H3

2[a, b], then we have

‖Lx(η)‖
2
H1

2 ⊕H1
2

� L1x1,α(η)
����

����
2
H1

2
+ L2x2,α(η)

����
����
2
H1

2

�〈L1x1,α(η), L1x1,α(η)〉H1
2

+〈L2x2,α(η), L2x2,α(η)〉H1
2

� L1x1,α(η)􏼐 􏼑
2

+ L2x2,α(η)􏼐 􏼑
2

+ 􏽚
b

a
L1x1,α(η)􏼐 􏼑η􏼔 􏼕

2
dη + 􏽚

b

a
L2x2,α(η)􏼐 􏼑η􏼔 􏼕

2
dη.

(19)

Bymeans of the property of reproducing kernel of Rη(ξ),
then

x1,α(η) �〈x1,α(ξ), Rη(ξ)〉H3
2
,

x2,α(η) �〈x2,α(ξ), Rη(ξ)〉H3
2
.

(20)

,us, we have

L1x1,α(η) �〈x1,α(ξ), L1Rη(ξ)〉H3
2
,

L1Rη(η) �〈x2,α(ξ), L2Rη(ξ)〉H3
2
,

L1x1,α(η)􏼐 􏼑η �〈x1,α(ξ), L1Rη(ξ)􏼐 􏼑η〉H3
2
,

L1Rη(η)􏼐 􏼑 �〈x2,α(ξ), L2Rη(ξ)η􏼐 􏼑η〉H3
2
.

(21)
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By means of the continuity of the function Rη(ξ) on the
interval [a, b], we obtain

L1x1,α(η) �〈x1,α(ξ), L1Rη(ξ)〉H3
2
≤ x1,α

����
����H3

2
〈L1Rη(ξ)〉H3

2
≤ c1 x1,α

����
����H3

2
,

L2x2,α(η) �〈x2,α(ξ), L2Rη(ξ)〉H3
2
≤ x2,α

����
����H3

2
〈L2Rη(ξ)〉H3

2
≤ c1 x2,α

����
����H3

2
,

L1x1,α(η)􏼐 􏼑η

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 � 〈x1,α(ξ), L1Rη(ξ)〉H3
2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ x1,α
����

����H3
2
〈 L1Rη(ξ)􏼐 􏼑η〉H3

2
≤ c3 x1,α

����
����H3

2
,

L2x2,α(η)􏼐 􏼑η

􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌 � 〈x2,α(ξ), L2Rη(ξ)〉H3
2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ x2,α
����

����H3
2
〈 L2Rη(ξ)􏼐 􏼑η〉H3

2
≤ c4 x2,α

����
����H3

2
.

(22)

Accordingly, we have

‖Lx(η)‖
2
H1

2 ⊕H1
2
≤ c

2
1 x1,α
����

����
2
H3

2
+ c

2
2 x2,α
����

����
2
H3

2
+(b − a)c

2
3 x1,α
����

����
2
H3

2
+(b − a)c

2
4 x2,α
����

����
2
H3

2

� c
2
1 +(b − a)c

2
3􏼐 􏼑 x1,α

����
����
2
H3

2
+ c

2
2 +(b − a)c

2
4􏼐 􏼑 x2,α

����
����
2
H3

2
≤ c

2
x1,α

����
����
2
H3

2
+ x2,α

����
����
2
H3

2
􏼒 􏼓

� c
2

􏽘

2

i�1
xi,α

����
����
2
H3

2
� c

2
‖x‖

2
H3

2 ⊕H3
2
.

(23)

In the above equation, c is maximum of (c2
1 + (b − a)c2

3)

and (c2
2 + (b − a)c2

4).

To apply the illustration form of exact and numerical
solutions of second kind Volterra integral equation, we next
formulate the system of orthogonal functions χij(η)􏽮 􏽯 for
i � 1, 2, . . . ,∞, j � 1, 2 of H3

2[a, b]⊕H3
2[a, b] space, and

thus we assume

χij(η) �
L
∗
1 0

0 L
∗
2

⎡⎣ ⎤⎦Θij � L
∗Θij. (24)

In the above equation, L∗ is known as the adjoint op-
erator of the operator L and Θij � (Θi1,Θi2)

T. ,e system of
orthogonal system χij(η)􏽮 􏽯 for i � 1, 2, . . . ,∞, j � 1, 2 in
H3

2[a, b]⊕H3
2[a, b] space can be computed by means of the

Gram–Schmidt orthogonalization procedure of χij(η)􏽮 􏽯 for
i � 1, 2, . . . ,∞, j � 1, 2 as given below:

χlm(η) � 􏽘
l

i�1
􏽘

m

j�1
βlm

ij χij(η). (25)

,e coefficients βlm
ij can be obtained by means of the

following relation

βlm
11 �

1
χ11

����
����
, βlm

ij �
1

������������������������

χij

�����

�����
2

− 􏽐
i− 1
q�1 〈χij(η), χiq(η)〉2

􏽲 , for i � j≠ 1,

βlm
ij � −

􏽐
i− 1
q�j χij(η), χiq(η)βlm

qj
������������������������

χij

�����

�����
2

− 􏽐
i− 1
q�1 〈χij(η), χiq(η)〉2

􏽲 , for i> j.

(26)

□

Theorem 7. Let ηi􏼈 􏼉 for i � 1, 2, . . . ,∞ is dense in the in-
terval [a, b], x(η) is the solution of fuzzy integro-differential
model given in Equation (1) and x(η) ∈ H3

2[a, b]⊕H3
2[a, b],

then

x(η) � 􏽘
∞

l�1
􏽘

2

m

􏽘

l

i�1
􏽘

m

j�1
βlm

ij Fj ηi, f ηi( 􏼁, h x ηi( 􏼁( 􏼁( 􏼁χlm(η), (27)

x(η) is the convergent series in the logic of. ‖ · ‖H3
2 ⊕H3

2
.
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Proof. In order to prove the required result, first we need to
show that χij(η)􏽮 􏽯 for i � 1, 2, . . . ,∞, j � 1, 2 is a complete
system and belongs to H3

2[a, b]⊕H3
2[a, b] as

χij(η) � L
∗Θij(η) �〈L∗Θij(ξ), Rη(ξ)〉H3

2 ⊕H3
2

�〈Θij(ξ), LξRη(ξ)〉H1
2 ⊕

1
2

� LξRη(ξ)|ξ�ηi
∈ H

3
2[a, b] ⊕ H

3
2[a, b].

(28)

In contrast, for each x(η) ∈ H3
2[a, b] ⊕ H3

2[a, b], assume
x(η), χij(η)H3

2 ⊕H3
2

� 0, also

〈x(η), χij(η)〉H3
2 ⊕H3

2
�〈x1,α(η), χi1(η)〉H3

2
+〈x2,α(η), χi2(η)〉H3

2

�〈x1,α(η), L
∗
1Θi1(η)〉H3

2
+〈x2,α(η), L

∗
2Θi2(η)〉H3

2

�〈L1x1,α(η),Θi1(η)〉H1
2

+〈L2x2,α(η),Θi2(η)〉H1
2

� L1x1,α ηi( 􏼁 + L2x2,α ηi( 􏼁 � Lx ηi( 􏼁.

(29)

Since ηi􏼈 􏼉 for i � 1, 2, . . . ,∞ is dense, then Lx(η) � 0,
and sin e L in invariable which implies that x(η) � 0. We
know that the sequence χij(η)􏽮 􏽯 for i � 1, 2, . . . ,∞, j � 1, 2
is complete in the space H3

2[a, b] ⊕ H3
2[a, b] and

χlm(η) � 􏽘
l

i�1
􏽘

m

j�1
βlm

ij χij(η). (30)

,en the system χij(η)􏽮 􏽯 for i � 1, 2, . . . ,∞, j � 1, 2 is
complete orthonormal in the space H3

2[a, b] ⊕ H3
2[a, b]. By

means of the Fourier series expansion around χij(η)􏽮 􏽯 for
i � 1, 2, . . . ,∞, j � 1, 2, we obtain

x(η) � 􏽘
∞

l�1
􏽘

2

m�1
x(η), χlm(η)H3

2 ⊕H3
2
χlm(η)

� 􏽘
∞

l�1
􏽘

2

m�1
x(η), 􏽘

l

l�1
􏽘

m

m�1
βlm

ij χij(η)H3
2 ⊕H3

2
χlm(η)

� 􏽘
∞

l�1
􏽘

2

m�1
􏽘

l

i�1
􏽘

m

j�1
βlm

ij x(η), χij(η)H3
2 ⊕H3

2
χlm(η)

� 􏽘
∞

l�1
􏽘

2

m�1
􏽘

l

i�1
􏽘

m

j�1
βlm

ij x(η), L
∗Θij(η)H3

2 ⊕H3
2
χlm(η)

� 􏽘
∞

l�1
􏽘

2

m�1
􏽘

l

i�1
􏽘

m

j�1
βlm

ij Lx(η),Θij(η)H1
2 ⊕H1

2
χlm(η)

� 􏽘
∞

l�1
􏽘

2

m�1
􏽘

l

i�1
􏽘

m

j�1
βlm

ij Fj(η, f(η), h(x(η))),Θij(η)H1
2 ⊕H1

2
χlm(η)

� 􏽘
∞

l�1
􏽘

2

m�1
􏽘

l

i�1
􏽘

m

j�1
βlm

ij Fj ηi, f ηi( 􏼁, h x ηi( 􏼁( 􏼁( 􏼁χlm(η).

(31)

,is implies that the above series is nothing but Fourier
series in the space H3

2[a, b]⊕H3
2[a, b]. As

H3
2[a, b]⊕H3

2[a, b] is the Hilbert space, the above series is
convergent with the logic ‖ · ‖H3

2 ⊕H3
2
.

For numerical procedure, we place the initial function
x0(ηi) � x(ηi) and the nth-term of the numerical solution of
the problem under study is given as
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xn(η) � 􏽘
∞

l�1
􏽘

2

m�1
􏽘

l

i�1
􏽘

m

j�1
βlm

ij Fj ηi, f ηi( 􏼁, h xi− 1 ηi( 􏼁( 􏼁( 􏼁χlm(η).

(32)
□

Theorem 8. Let the exact solution of (11) be x(η), and xn(η)

denote its approximate solution, then

(i) Suppose ‖x‖nH3
2 ⊕H3

2
is the bounded sequence and the

sequence ηi􏼈 􏼉
∞
i�1 dense on the interval [a, b], then as

n⟶∞, ‖xn − x‖H3
2 ⊕H3

2
⟶ 0

(ii) As n⟶∞ then ‖xn − x‖c⟶ 0
(iii) As n⟶∞ then (xn)ηη⟶ xηη uniformly
(iv) If as n⟶∞‖xn− 1 − x‖H3

2 ⊕H3
2
⟶ 0, ‖xn− 1‖H3

2 ⊕H3
2

is the bounded, as n⟶∞ηn⟶ τ, then the
function F(η, f(η), h(x(η))) is continuous
∀η ∈ [a, b] and the functions h(η), f(η) are con-
tinuous, then

F ηn, f ηn( 􏼁, h xn− 1 ηn( 􏼁( 􏼁( 􏼁⟶ F(η, f(η), h(x(η))).

(33)

Proof

(i) By means of orthonormality of χij(η)􏽮 􏽯
(2,∞)

(j,i)�(1,1)
and

Equation (12), we have

xn+1
����

����
2
H3

2 ⊕H3
2

� x0
����

����
2
H3

2 ⊕H3
2

+ 􏽘
n+1

m�1
􏽘

2

l�1
A
2
lm, (34)

where
Aij � 􏽐

l
i�1 􏽐

m
j�1 β

lm
ij Fj(ηi, f(ηi), h(xi− 1(ηi)))χlm(η).

We know that ‖xn‖H3
2 ⊕H3

2
is bounded and

‖xn‖H3
2 ⊕H3

2
≤ ‖xn+1‖H3

2 ⊕H3
2
, then the sequence

‖xn‖H3
2 ⊕H3

2
is convergent and also 􏽐

2
m�1 A2

lm ∈ l2 for
l � 1, 2, . . . ,∞. If n<m as m, n⟶∞, then

xm

����
���� − xn

����
����
2
H3

2 ⊕H3
2

� 􏽘
m

l�n+1
􏽘

2

m�1
A
2
lm⟶ 0. (35)

Since the space H3
2[a, b] ⊕ H3

2[a, b] is Hilbert, then
as n⟶∞, ‖xn‖ − ‖x‖H3

2 ⊕H3
2
⟶ 0.

(ii) By means of the reproducing property of the
function Rη(ξ), then

xn(η) − x(η)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 〈xn(ξ) − x(ξ), Rη(ξ)〉H3
2 ⊕H3

2

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ xn(ξ) − x(ξ)
����

����H3
2 ⊕H3

2
Rη(ξ)

�����

�����H3
2 ⊕H3

2

≤ c5 xn − x
����

����H3
2 ⊕H3

2
⟶ 0, as n⟶∞.

(36)

,is implies that xn − xC⟶ 0 as n⟶∞.

(iii) We know that xn uniformly converges to x, then

xn
″(η) − x″(η)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 �

d
2

dη2
xn(η) − x(η)( 􏼁

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�

d
2

dη2
〈xn(ξ) − x(ξ), Rη(ξ)〉H3

2 ⊕H3
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 〈xn(ξ) − x(ξ),
d2

dη2
Rη(ξ)〉H3

2 ⊕H3
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
≤ xn(ξ) − x(ξ)

����
����H3

2 ⊕H3
2

d2

dη2
Rη(ξ)

��������

��������H3
2 ⊕H3

2

≤ c6 xn − x
����

����H3
2 ⊕H3

2
⟶ 0, as n⟶∞.

(37)

,is implies that ‖xn
″ − xC
″‖⟶ 0, as n⟶∞.

(iv) First of all, we show that xn− 1(ηn)⟶ x(τ) as
n⟶∞ as

Table 1: Comparison of exact x1,α, x2,α and approximate 􏽥x1,α, 􏽥x2,α
solutions of problem (13) when η � 0.5 for different values ofα.

↓α x1,α 􏽥x1,α x2,α x2,α

Solution of problem (14)
0.0 − 0.89025 − 0.88849 0.89025 0.88849
0.2 − 0.71220 − 0.71079 0.71220 0.71079
0.4 − 0.5342 − 0.53309 0.53415 0.53309
0.6 − 0.35610 − 0.35539 0.35610 0.35540
0.8 − 0.17805 − 0.17770 0.17805 0.17769
1.0 0 0.0 0.0
Solution of problem (15)
0.0 − 0.85445 − 0.85217 0.85445 0.85217
0.2 − 0.68356 − 0.68174 0.68356 0.68174
0.4 − 0.51267 − 0.51130 0.51267 0.51130
0.6 − 0.34178 − 0.34087 0.34178 0.34087
0.8 − 0.17089 − 0.17043 0.17089 0.17043
1.0 0 0.0 0
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xn− 1 ηn( 􏼁 − x(τ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � xn− 1 ηn( 􏼁 − xn− 1(τ) + xn− 1(τ) − x(τ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

· xn− 1 ηn( 􏼁 − xn− 1(τ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + xn− 1(τ) − x(τ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌.

(38)

We know that n⟶∞, ‖xn− 1 − x‖H3
2 ⊕H3

2
⟶ 0, this

implies that as n⟶∞, ‖xn− 1(τ) − x(τ)‖H3
2 ⊕H3

2
⟶ 0. Now

xn− 1 ηn( 􏼁 − xn− 1(τ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 〈xn− 1(η), Rηn
(ξ)〉 − 〈xn− 1(η), Rτ(ξ)〉

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

� 〈xn− 1(η), Rηn
(ξ) − Rτ(ξ)〉

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤ xn− 1(η)
����

����H3
2 ⊕H3

2
Rηn

(ξ) − Rτ(ξ)
�����

�����H3
2 ⊕H3

2
.

(39)

As the function Rη(ξ) is symmetric, as
n⟶∞; ‖Rηn

(ξ) − Rτ(ξ)‖H3
2 ⊕H3

2
⟶ 0, and this implies

that n⟶∞, |xn− 1(ηn) − xn− 1(τ)|⟶ 0. ,erefore,
|xn− 1(ηn) − x(τ)|⟶ 0, as n⟶∞.

We know that the functions h and f are continuous and
ηn⟶ τ, then as n⟶∞; f(ηn)⟶ f(τ) and
h(xn− 1(ηn))⟶ h(x(τ)) as n⟶∞. By means of the
continuity of the function F, we have
F(ηn, f(ηn), h(xn− 1(ηn)))⟶ F(τ, f(τ), h(x(τ))). □

5. Results and Discussion

A fuzzy integro-differential problem of the Volterra type is
investigated in this part using the expected reproducing
kernel Hilbert space method and the approximate solution
of the integro-differential equation. It is important to note
that the suggested technique is very simple to use, quick
convergent, and trustworthy, and it may be used to find both
approximate and precise solutions to the issue under con-
sideration. ,e Maple code is being created for this men-
tioned issue utilising a replicating kernel Hilbert space
method, and it is being used to produce fresh findings as well
as to make comparisons between results [34–37].

Problem 1. Suppose the following fuzzy integro-differential
model of Volterra type is given as

xηη � [− 1 + α, 1 − α] + 􏽚
η

0
x(ξ)dξ, α, t ∈ [0, 1],

x(0) � [− 1 + α, 1 − α],

xη(0) � [0, 0].

(40)

Allowing to the anticipated reproducing kernel Hilbert
space algorithm, the problem given in Equation (13)
transformed into following system

x1,α″ � − 1 + α + 􏽚
η

0
x1,α(ξ)dξ,

x2,α″ � 1 − α + 􏽚
η

0
x2,α(ξ)dξ, 0≤ η≤ 1,

x1,α(0) � − 1 + α, x1,α′ (0) � 0,

x2,α(0) � 1 − α, x2,α′ (0) � 0,

x1,α″ � 1 − α + 􏽚
η

0
x2,α(ξ)dξ,

x2,α″ � − 1 + α + 􏽚
η

0
x1,α(ξ)dξ, 0≤ η≤ 1,

x1,α(0) � 1 − α, x1,α′ (0) � 0,

x2,α(0) � − 1 + α, x2,α′ (0) � 0.

(41)

,e exact solutions of the problems (14)-(15) are given as

x(η) � cos
η
�
2

√ −
1
�
2

√ sin
η
�
2

√􏼠 􏼡(α − 1)e
(1/2)η

, cos
η
�
2

√ −
1
�
2

√ sin
η
�
2

√􏼠 􏼡(1 − α)e
(1/2)η

􏼢 􏼣,

x(η) � cos
�
3

√

2
η −

1
�
3

√ sin
�
3

√

2
η􏼠 􏼡(α − 1)e

(1/2)η
, cos

�
3

√

2
η −

1
�
3

√ sin
�
3

√

2
η􏼠 􏼡(1 − α)e

(1/2)η
􏼢 􏼣.

(42)

Numerous simulation have been implemented for var-
ious values of parameter α and η. ,e comparison between
the exact and approximate solutions when η � 0.5 and
numerous values of α for problem (13) are deliberated in
Table 1. It can be observed that the proposed scheme
demonstrates very accurate solution for solving the problem

under study. Also, the accuracy does not depend on the
selection of α, the analytic solution is obtained of the dis-
cussed problem using proposed scheme when η � 1.

Problem 2. Suppose the following fuzzy integro-differential
model of Volterra type is given as
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xηη � (− 10 + 5α)e
1− η

− 1 +
1
2
α􏼒 􏼓η, (− 3 − 2α)e

1− η
− 0.6 + 0.1α − 0.2α2􏼐 􏼑η􏼔 􏼕

+ 􏽚
η

0
[− 0.2 + 0.1α, − 0.1]e

ξ− 1
x(ξ)dξ , α, t ∈ [0, 1],

x(0) � [(− 10 + 5α)e, (− 3 − 2α)e], xη(0) � [(3 + 2α)e, (10 − 5α)e].

(43)

Allowing the anticipated reproducing kernel Hilbert
space algorithm, the problem given in Equation (13)
transformed into following system

x1,α″ � (− 10 + 5α)e
1− η

− 1 +
1
2
α􏼒 􏼓η + 􏽚

η

0
(− 0.2 + 0.1α)e

ξ− 1
x1,α(ξ)dξ,

x2,α″ � (− 3 − 2α)e
1− η

− 0.6 + 0.1α − 0.2α2􏼐 􏼑η − 􏽚
η

0
0.1e

ξ− 1
x2,α(ξ)dξ,

x1,α(0) � (− 10 + 5α)e, x1,α′ (0) � (3 + 2α)e,

x2,α(0) � (− 3 − 2α)e, x2,α′ (0) � (10 − 5α)e,

x1,α″ � (− 3 − 2α)e
1− η

− 0.6 + 0.1α − 0.2α2􏼐 􏼑η − 􏽚
η

0
0.1e

ξ− 1
x1,α(ξ)dξ,

x2,α″ � (− 10 + 5α)e
1− η

− 1 +
1
2
α􏼒 􏼓η + 􏽚

η

0
(− 0.2 + 0.1α)e

ξ− 1
x2,α(ξ)dξ,

x1,α(0) � (− 3 − 2α)e, x1,α′ (0) � (10 − 5α)e,

x2,α(0) � (− 10 + 5α)e, x2,α′ (0) � (3 + 2α)e.

(44)

,e exact solutions of the problems (17)-(18) are given as

x(η) � (− 10 + 5α)e
1− η

(− 3 − 2α)e
1− η

􏽨 􏽩,

x(η) � (3 + 2α)e
1− η

, (10 − 5α)e
1− η

􏽨 􏽩.
(45)

For η ∈ [0, 1], reproducing the kernel Hilbert space al-
gorithm applied for solving this problem when α � 0.5 and
numerous values of η. Figure 1 is plotted to show the

comparison of approximate and exact solutions. It is sig-
nificant to indicate that the estimated solution attained using
the proposed scheme is well-matched with the exact solu-
tions for every values of α, which is the beauty of the
suggested algorithm [34].

Problem 3. Suppose the following fuzzy integro-differential
model of Volterra type is given as
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Figure 1: Comparison of the approximate X1,α, X2,α and exact solutions x1,α, x2,α for (a) α � 0.5 and (b) α � 0.9.
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Figure 2: Comparison of the approximate X1,α, X2,α and exact solutions x1,α, x2,α for (a) α � 0.5 and (b) α � 0.9.
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xηη �

(3 + 3α)sin η +
3
20

α2 − 6α + 5􏼐 􏼑η cos2 η

(9 − 9α)sin η −
9
20

α2 − 6α + 5􏼐 􏼑η cos2 η

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 􏽚

η

0
[0.1 + 0.3α, 0.5 − 0.1]η cos ξx(ξ)dξ, α, t ∈ [0, 1],

x(0) � [(− 10 + 5α)e, (− 3 − 2α)e],

xη(0) � [(3 + 2α)e, (10 − 5α)e].

(46)

,e exact solutions are given as

x(η) � [(3 + 3α)sin η, (9 − 9α)sin η],

x(η) � [(− 9 + 9α)sin η, (3 − 3α)sin η].
(47)

For η ∈ [0, 1], reproducing the kernel Hilbert space al-
gorithm applied for solving this problem when α � 0.5 and
numerous values of η. ,e comparison of the approximate
and exact solutions is deliberated in Figure 2. It is important
to mention that the approximate solution achieved by means
of the proposed scheme is well-matched with the exact
solutions for every values of α, which is the beauty of the
suggested algorithm.

6. Conclusion

Using replicated kernel theory, we were able to create a
whole new technique for solving complex second-order
FVIDs, which we have just published. ,is method is
explained in more depth farther down this page. ,e
technique under consideration generates responses that are
both broad in scope and particular in kind. Numerical
simulations have been performed in order to demonstrate
the robustness of the technique under discussion. In the
future, we expect that our technique will be used to solve
fuzzy ordinary differential algebraic equations, as well as
fuzzy partial integro-differential equations and various types
of fuzzy differential algebraic equations, among other things.
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