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Let G be a (molecular) graph. A perfect matching of G is defined as a set of edges which are independent and cover every vertex of
G exactly once. In the article, we present the formula on the number of the perfect matchings of two types of hexagons on the
torus by Pfaffians.

1. Introduction

A hexagonal system, or benzenoid system [1], or honeycomb
lattice, is a finite connected subgraph of the infinite hexago-
nal lattice without cut vertices or non-hexagonal interior
faces. Hansen and Zheng [2] and Gutman et al. [3] consid-
ered the problem about the normal components of benze-
noid systems, respectively.

A perfect matching of a (molecular) graph G is defined
as a set of edges which are independent and cover every ver-
tex of G exactly once. It is also named as Kekulé structure in
organic chemistry and closed-packed dimer in statistical
physics, respectively. Denote the number of perfect match-
ings of G by ΦðGÞ. In the 1930s, Cyvin and Lovász et al.
[4–6] firstly focused on the problems about the perfect
matchings of a graph for two different and unrelated pur-
poses. The number of perfect matchings or Kekulé structures
had been widely used in various problems in the chemical
fields [4, 7–9]. Cyvin et al. [10–14] discussed the enumera-
tion of Kekulé structures for all kinds of benzenoids. Qian
and Zhang presented the number of Kekulé structures for
capped armchair nanotubes and capped zigzag nanotubes
by transfer matrix method in [15, 16], respectively. Yan
et al. [17] further discussed the problem about the perfect
matchings for one type of hexagons on a cylinder (cf.
Figure 1(a)). Li and Zhang also obtained the number of per-

fect matchings for two types of hexagons on the cylinder and
the Möbius strip in [18] (cf. Figure 1).

Let G = ðVðGÞ, EðGÞÞ and H = ðVðHÞ, EðHÞÞ be two
given graphs. Let G ×H denote the Cartesian product
of G with H, where VðG ×HÞ = VðGÞ ×VðHÞ,
EðG ×HÞ = ffðu1, u2Þ, ðv1, v2Þgju1 = v1 and fu2, v2g ∈ EðH
Þ, or u2 = v2 and fu1, v1g∈ EðGÞg. A hexagonal cylinder,
which is denoted by HS, of length 2m and breadth n
is a graph obtained from the Cartesian product of a 2
m-cycle (x1u1x2u2 ⋯ xmum) and an n-path (12⋯ n) by
deleting the set of edges

xi, 2s + 1ð Þ, xi, 2s + 2ð Þf g 0 ≤ s ≤
n − 1
2 − 1

� �
, 1 ≤ i ≤m

����
� �

∪

ui, 2sð Þ, ui, 2s + 1ð Þf g 0 ≤ s ≤
n − 1
2

� �
, 1 ≤ i ≤m

����
� �

:

ð1Þ

Let x1u1x2u2 ⋯ xmum and y1v1y2v2⋯ymvm indicate
the vertices of two cycles on the upper and lower
boundaries of HS, respectively, where xi corresponds to
yi and ui corresponds to vi ði = 12,⋯,mÞ (cf. Figure 2).
Without loss of generality, suppose further that both ui
and vi are the vertices of degree 3. The graphs H2m,n,r ,
0 ≤ r ≤ bm/2c and i = 12,⋯,m, are from HS by adding

Hindawi
Journal of Mathematics
Volume 2022, Article ID 4120166, 11 pages
https://doi.org/10.1155/2022/4120166

https://orcid.org/0000-0002-1723-5186
https://orcid.org/0000-0002-5516-1122
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4120166


all edges xiyi−r , where i − r is modulo m (cf. Figure 2).
Clearly, H2m,n,r has a natural embedding on a torus.

The enumerations of perfect matchings of H2m,n,r are
considered by Wu [19] and Klein [20], where Klein gave
the formula of the number of perfect matchings of
H2m,n,r by transfer matrix method when both n and r
are odd or even. In the present article, we consider further
the problem involving perfect matchings of H2m,n,r by
crossing orientation given by Tesler and the plane model
of a graph.

2. Pfaffian Orientation

Let G = ðVðGÞ, EðGÞÞ be an undirected graph, where VðGÞ
= f1, 2, 3,⋯,2pg is the vertex set of G. Let each edge fi, jg
of a graph G have a weight denoted by ωij. And the weight
ωij = 1 for all edges in each unweighted graph. Suppose that

G
!
is an arbitrary orientation of G. If the direction of an edge

fi, jg in G
!
is from the vertex i to vertex j, then ði, jÞ denotes

the arc of G
!
and the set of all the arcs of it is denoted by EðG!Þ

. Denote the skew adjacency matrix of G
!

by AðG!Þ. And it is
defined as

A G
!	 


= aij
� �

2p×2p, ð2Þ

where

aij =

ωij, if i, jð Þ ∈ E G
!	 


;

−ωij, if j, ið Þ ∈ E G
!	 


;

0, otherwise:

8>>>><
>>>>:

ð3Þ

Suppose that M=ffj1, j1′g,⋯,fjp, jp′gg is a perfect match-
ing. Then the signed weight of the perfect matching M is

ωM = sgn
1 2 ⋯ 2p − 1 2p
j1 j1′ ⋯ jp jp′

 !
⋅ aj1 j1′ ⋯ ajp jp′ ,

ð4Þ

where

sgn
1 2 ⋯ 2p − 1 2p
j1 j1′ ⋯ jp jp′

 !
=

1, if the permutation is even ;
−1, if the permutation is odd:

(

ð5Þ

One can define the Pfaffian of the matrix A as

Pf A =〠
M
ωM, ð6Þ

where M is over all perfect matchings of G.
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Figure 1: Two types of hexagons.
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Figure 2: Plane spanning subgraphs of H2m,n,r : (a) n is even and (b) n is odd.
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Theorem 1 ([21]). If A = ðaijÞ2p×2p is a skew symmetric

matrix, then

det Að Þ = Pf Að Þ2: ð7Þ

For the perfect matching M, denote its signed weight by
ωM. One can think the sign of ωM is just the sign of the per-

fect matchingM. For an orientation G
!
of a graph, if the signs

of its all perfect matchings are the same, then the orientation
is a Pfaffian orientation of G. If a graph has a Pfaffian orien-
tation, then the graph is named to be Pfaffian.

Theorem 2 ([6]). Let a graph G be Pfaffian. If G
!
is a Pfaffian

orientation of G, then

Φ Gð Þ = Pf A G
!	 
��� ��� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det A G

!	 
	 
r
: ð8Þ

Kasteleyn [22] presented the Pfaffian orientations for
planar graphs and also interpreted that the perfect match-
ings of a graph which is embedded on a surface with genus
g can be computed as a linear combination of 4g Pfaffians
of the graph. Galllucio and Loebl [23], and Tesler [24]
proved Kasteleyn’s conclusion, independently. There are
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Figure 3: H2m,n,r embedded on a torus and a corresponding plane model, where n is odd.
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some related results about using Pfaffian to enumerate per-
fect matchings in the references [17, 25–31].

3. Plane Model on H2m,n,r

Let P denote a 4-polygon with four sides p1, p2, p1′ , p2′. Sup-
pose that G is a graph embedded on a torus. A drawing of
a graph G is defined as a plane model of G, in which if all
the edges of the graph G could be divided into E0, E1 and
E2, and not only the subgraph induced by E0 is a span-
ning plane graph, which wholly contained inside P, but
also the edges in E1 and E2 from the sides pj to pj′ of P
do not cross.

Noting that H2m,n,r is a graph which may be embedded
on a torus, now we can give a plane model of H2m,n,r by
the definition above-mentioned such that the edges of
H2m,n,r are separated into E0, E1 and E2. Moreover, the sub-
graph induced by E0 is a spanning plane graph. The span-
ning plane graph is wholly contained inside P, and its
edges in E1 and E2 from the sides pj and pj′ of P do not cross
(cf. Figure 2). If n is odd, a plane model of H2m,n,r is shown
as in Figure 3(b). If n is even, a plane model of H2m,n,r is
shown as in Figure 4(b). It is obvious that every edge in E1
crosses each every in E2 exactly once. For simplicity, suppose
that 1, 2,⋯, 2mn are 2mn vertices of H2m,n,r and EðH2m,n,rÞ
denote the edge set. Then E0, E1 and E2 are represented as
the followings:
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Figure 4: H2m,n,r embedded on a torus and a corresponding plane model, where n is even.
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(1) If n is even, then we have

E1 = 2t − 1ð Þn + 1, 2tnf g t = 1, 2,⋯,mjf g ;
E2 = 2t − 2ð Þn + 1, 2m − 2r + 2t − 2ð Þn + 2f g t = 1, 2,⋯,rjf g

∪ h, 2m − 1ð Þn + hf g h = 1, 2,⋯,njf g ;
E0 = E H2m,n,rð Þ/ E1 ∪ E2ð Þ:

ð9Þ

(2) If n is even, then we have

E1 = 2t − 1ð Þn + 1, 2tnf g t = 1, 2,⋯,mjf g ;
E2 = 2t − 2ð Þn + 1, 2m − 2r + 2t − 1ð Þn + 2f g t = 1, 2,⋯,rjf g

∪ h, 2m − 1ð Þn + hf g h = 1, 2,⋯,njf g ;
E0 = E H2m,n,rð Þ/ E1 ∪ E2ð Þ

ð10Þ

An orientation of a graph embedded on a torus in a
plane model is the crossing orientation if it conforms to
the rule of cross orientation in reference [24]. For the graph
G which is embedded on torus, let Xðx1, x2Þ be its skew adja-
cent matrix, with the edges in E0 having weight 1 and the
edges in Ej having weight xj ðj = 1, 2Þ. A formula computing
the number for perfect matchings in G was presented by
Tesler [24]:

Φ Gð Þ = 1
2 Pf X 1, 1ð Þ + Pf X −1, 1ð Þ + Pf X 1,−1ð Þ − Pf X −1,−1ð Þ½ �
����

����:
ð11Þ

Theorem 3 ([24]).

(a) A graph may be oriented such that every perfect
matching M has sign

ωM = ω0 −1ð Þκ Mð Þ, ð12Þ

where the constant ω0 = ±1 could be explained as the sign of a
perfect matching without crossing edges if the edges exist, and
κðMÞ denotes the number of times edges in M cross.

(b) An orientation of a graph satisfies (a) if and only if
the orientation is a crossing orientation

According to the crossing orientation by Tesler, one
crossing orientation of H2m,n,r where n is even or n is odd
is indicated in Figures 5 and 6. Figure 5(a) and Figure 5(b)
give an orientations of all the edges E0 ∪ E1 and E0 ∪ E2
when n is even, respectively. Figures 6(a) and 6(b) give the
orientations of the edges E0 ∪ E1 and E0 ∪ E2 when n is
odd, respectively.

4. The Sign Weights of Perfect
Matchings of H2m,n,r

Let the weight of edge of E0 in H2m,n,r be 1. Suppose that x
and y are the weight of edge of E1 (Referring to
Figures 5(a) and 6(a)) and E2 (Referring to Figures 5(b)
and 6(b)) in H2m,n,r , respectively. Let Xðx, yÞ ðx, y = ±1Þ be
the skew adjacency matrix of H2m,n,r if n is even and Yðx, y
Þ ðx, y = ±1Þ the skew adjacency matrix of H2m,n,r if n is
odd. To determine the sign of Pfaffians Pf Xðx, yÞ and Pf Y
ðx, yÞ, the perfect matchings in H2m,n,r are distinguished into
four classes. The perfect matchings belonging to class 1 are
those that have odd number of edges both in E1 and in E2.
The perfect matchings belonging to class 2.

have odd number of edges in E1 and even number of edges
in E2. The perfect matchings belonging to class 3 have even
number of edges in E1 and odd number of edges in E2. The per-
fect matchings belonging to class 4 have even number of edges
both in E1 and in E2. Clearly, κðMÞ is always even, where the
perfect matching M lies in three classes other than class 1.

It is convenient to consider the case when y = ±1. For
simplicity, let x and x2 denote the odd power and even
power, respectively. In light of the method deciding the sign
of perfect matchings by Lu, Zhang and Lin [29], we also can
obtain the sings of all the perfect matchings in H2m,n,r . If y
= 1, the signs of perfect matchings in three classes other
than class 1 are always positive by Theorem 3. If y = −1,
the signs of perfect matchings in three classes other than
class 3 are always positive by Theorem 3 because that the
perfect matching belonging to class 1 contains an odd of
number edges in E2 and κðMÞ is always even. Therefore,
we can decide the sign weights of all the perfect matchings
of H2m,n,r shown as in Table 1.

From Table 1, we can observe that the signs of perfect
matchings belonging to classes 3 and 4 when y = 1 are always
positive and the signs of perfect matchings in classes 1 and 2
when y = 1 are always positive. Then by formula (11) we
have the following result.

Lemma 4. The number for perfect matchings in H2m,n,r is
equal to the sum of the number for perfect matchings belong-
ing to classes 3 and 4 when y = 1 and that belonging to classes
1 and 2 when y = −1.

5. Perfect Matchings of H2m,n,r

Suppose that V is a skew block circulant matrix or block cir-
culant matrix as follows:

V =

V0 V1 ⋯ Vm−1

−Vm−1 V0 ⋯ Vm−2

⋮ ⋮ ⋱ ⋮

−V1 −V2 ⋯ V0

0
BBBBB@

1
CCCCCA ð13Þ
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or

V =

V0 V1 ⋯ Vm−1

Vm−1 V0 ⋯ Vm−2

⋮ ⋮ ⋱ ⋮

V1 V2 ⋯ V0

0
BBBBB@

1
CCCCCA: ð14Þ

Then its determinant

det Vð Þ =
Ym−1

t=0
det Jtð Þ, ð15Þ

where

Jt =V0 + ωtV1 + ωt
2V2+⋯+ωt

m−1Vm−1

ωt =
cos 2tπ

m
+ i sin 2tπ

m
, if V is a block circulantmatrix ;

cos 2t + 1ð Þπ
m

+ i sin 2t + 1ð Þπ
m

, if V is a skew block circulantmatrix:

8>><
>>:

ð16Þ

Let H
!

m,2n,r be a crossing orientation of the plane model
of H2m,n,r as shown in Figures 5 and 6. We can obtain the

Pfafian of the matrix corresponding H
!

m,2n,r by formula
(11) and Theorem 1. Consequently, an expression
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Figure 5: A crossing orientation of H2m,n,r , where n is even.
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computing the number for perfect matchings in H
!

m,2n,r can
be obtained by formula (11).

Theorem 5. If n is even, then

Φ H2m,n,rð Þ = f x, 1ð Þ + f x,−1ð Þ, ð17Þ

where f ðx, 1Þ and f ðx,−1Þ denote the sum of coefficients of

even terms in Pf Xðx, 1Þ = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðXðx, 1ÞÞp

and the sum of
coefficients of odd terms in Pf Xðx,−1Þ = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ðXðx,−1ÞÞp
,

respectively; φt = ð2t + 1Þπ/m and θt = 2tπ/m;

det X x, 1ð Þð Þ =
Ym−1

t=0

−1ð Þn/22n cos φt − 1ð Þn − 2n/2 −1ð Þn/2 + 1
� �

cos φt − 1ð Þn/2�
−1ð Þn/2 cos rφt + i sin rφtð Þ + cos rφt − i sin rφtð Þ� �

x + x2
�

ð18Þ

and

det X x,−1ð Þð Þ =
Ym−1

t=0

−1ð Þn/22n cos θt − 1ð Þn − 2n/2 −1ð Þn/2 + 1
� �

cos θt − 1ð Þn/2
n
−1ð Þn/2 cos rθt + i sin rθtð Þ + cos rθt − i sin rθtð Þ� �

x + x2
�
:

ð19Þ
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Figure 6: A crossing orientation of H2m,n,r , where n is odd.

Table 1: The sign weights of perfect matchings in H2m,n,r .

Classs
The signs of the perfect matchings

x, y = 1 x, y = −1
1 −x x

2 x x

3 x2 −x2

4 x2 x2
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Proof. Recall that H
!

m,2n,r is a crossing orientation in the

plane model of H2m,n,r . Then the elements of XðH!m,2n,rÞ
which can be read off from Figure 5 have the following form
when n is even:

X H
!

m,2n,r
	 


= X x, yð Þ = Xij x, yð Þ� �
, ð20Þ

where Xijðx, yÞ is the n × n matrix. If i ≤ j,

Xij x, yð Þ =

A xð Þ, if j = i, i = 1, 2,⋯,m − 1,m ;
B, if j = i + 1, i = 1, 2,⋯,m − 2,m − 1 ;
C, if j = i + r, i = 1, 2,⋯,m − r − 1,m − r ;
C yð Þ, if j = i +m − r, i = 1, 2,⋯, r − 1, r ;
B yð Þ, if i = 1, j =m ;
02n, others:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð21Þ

If i > j, then Xij = −XT
ji (X

T
ji is the transpose of Xij). Let

Ai ði = 1, 2, 3, 4Þ be an n × n matrix as follows:

A1 =

0 0 0 0 0 0 ⋯ 0 0
0 0 0 0 0 0 ⋯ 0 0
0 0 0 1 0 0 ⋯ 0 0
0 0 −1 0 0 0 ⋯ 0 0
0 0 0 0 0 1 ⋯ 0 0
0 0 0 0 −1 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 0 0 0 ⋯ 0 1
0 0 0 0 0 0 ⋯ −1 0

0
BBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCA

, A4

=

0 0 0 ⋯ 0 0 x

0 0 1 ⋯ 0 0 0
0 −1 0 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋯ 0 1 0
0 0 0 ⋯ −1 0 0
−x 0 0 ⋯ 0 0 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

,A2

=

−1 0 ⋯ 0 0
0 1 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋯ −1 0
0 0 ⋯ 0 1

0
BBBBBBBB@

1
CCCCCCCCA
, A3 = −A2: ð22Þ

Then the matrices AðxÞ, B, C, BðyÞ and CðyÞ can be
expressed by the following forms:

ð23Þ

and

ð24Þ

Let 02n be a 2n × 2n matrix. If y = 1, then the matrix of

H
!

m,2n,r = Xðx, yÞ is a skew block circulant matrix, i.e.,

X x, 1ð Þ = scirc A xð Þ, B, 02n,⋯, 02n
r−2

, C, 02n,⋯,02n, CT , 02n,⋯, 02n
r−2

, BT
� �

:

ð25Þ

If y = −1, then the skew adjacency matrix of H
!

m,2n,r = X
ðx, yÞ is a block circulant matrix, i.e.,

X x,−1ð Þ = scirc A xð Þ, B, 02n,⋯, 02n
r−2

, C, 02n,⋯,02n,−CT , 02n,⋯, 02n
r−2

,−BT
� �

:

ð26Þ

Therefore by formula (15) we obtain that

det B x, yð Þð Þ =
Ym−1

t=0
det Jtð Þ, ð27Þ

8 Journal of Mathematics



where

Jt = A xð Þ + ωtB − ωt
−1BT + ωt

rC − ωt
−rCT ð28Þ

ωt =
cos 2tπ

m
+ i sin 2tπ

m
, if y = −1 ;

cos 2t + 1ð Þπ
m

+ i sin 2t + 1ð Þπ
m

, if y = 1:

8>><
>>:

ð29Þ

Now we turn to calculate the determinant det ðJtÞ of Jt .
By formula (28), we have

det Jtð Þ =
J1 J2

J3 J4

�����
�����, ð30Þ

where

J1 =

0 ω−r
t 0 0 ⋯ 0 x

−ω−r
t 0 0 0 ⋯ 0 0
0 0 0 1 ⋯ 0 0
0 0 −1 0 ⋱ ⋮ ⋮

⋮ ⋮ ⋮ ⋱ ⋯ ⋮ ⋮

0 0 0 0 ⋯ 0 1
0 0 0 0 ⋯ −1 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

, J4

=

0 0 0 ⋯ 0 0 x

0 0 1 ⋯ 0 0 0
0 −1 0 ⋯ 0 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋯ 0 1 0
0 0 0 ⋯ −1 0 0
−x 0 0 ⋯ 0 0 0

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

,J1

=

−1 + ω−1
t 0 0 0 ⋯ 0 0

0 1 − ω−1
t 0 0 ⋯ 0 0

0 0 −1 + ω−1
t 0 ⋯ 0 0

0 0 0 1 − ω−1
t ⋱ ⋮ ⋮

⋮ ⋮ ⋮ ⋱ ⋯ ⋮ ⋮

0 0 0 0 ⋯ −1 + ω−1
t 0

0 0 0 0 ⋯ 0 1 − ω−1
t

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

ð31Þ

and

J3 =

1 − ω−1
t 0 0 0 ⋯ 0 0

0 −1 + ω−1
t 0 0 ⋯ 0 0

0 0 1 − ω−1
t 0 ⋯ 0 0

0 0 0 −1 + ω−1
t ⋱ ⋮ ⋮

⋮ ⋮ ⋮ ⋱ ⋯ ⋮ ⋮

0 0 0 0 ⋯ 1 − ω−1
t 0

0 0 0 0 ⋯ 0 −1 + ω−1
t

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

ð32Þ

It is convenient to calculate that we adjust appropriately
the order of labeling for the vertices of H2m,n,r such that the
determinant det ðJtÞ turn out to be the following:

det Jtð Þ =

0 ω−r
t −1 + ω−1

t

−ω−r
t 0 1 − ω−1

t

−1 + ωt 0 1

−1 0 1 − ωt

−1 + ω−1
t 0 1

⋱ ⋱ ⋱

0 −x

1 − ωt x 0

��������������������������

��������������������������
= −xωr

t − 1 − ω−1
t

� �n/2 1 − ωtð Þn/2
h i

−xω−r
t + 1 − ω−1

t

� �n/2
ωt − 1ð Þn/2

h i
= −1ð Þn/2 ωt + ω−1

t − 2
� �n/2 − xωr

t

h i
ωt + ω−1

t − 2
� �n/2 − xω−r

t

h i
:

ð33Þ

Let φt = ð2t + 1Þπ/m and θt = 2tπ/m. Then it is not diffi-
cult to obtain the expressions of ωt , ω−1

t and ωt + ω−1
t when

y = 1 and y = −1 by formula (29). Thus we have the determi-
nant det ðJtÞ if y = 1, i.e.,

det Jtð Þ = −1ð Þn/22n cos φt − 1ð Þn
− 2n/2 −1ð Þn/2 + 1

� �
cos φt − 1ð Þn/2

−1ð Þn/2 cos rφt + i sin rφtð Þ + cos rφt − i sin rφtð Þ� �
x + x2:

ð34Þ

If y = −1, then we have

det Jtð Þ = −1ð Þn/22n cos θt − 1ð Þn
− 2n/2 −1ð Þn/2 + 1

� �
cos θt − 1ð Þn/2

−1ð Þn/2 cos rθt + i sin rθtð Þ + cos rθt − i sin rθtð Þ� �
x + x2:

ð35Þ
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Consequently, by formula (27) we have

det X x, 1ð Þð Þ =
Ym−1

t=0
det Jtð Þ

=
Ym−1

t=0
−1ð Þn/22n cos φt − 1ð Þn�

− 2n/2 −1ð Þn/2 + 1
� �

cos φt − 1ð Þn/2 −1ð Þn/2 cos rφt + i sin rφtð Þ�
+ cos rφt − i sin rφtð Þ�x + x2g

ð36Þ

and

det X x,−1ð Þð Þ =
Ym−1

t=0
det Jtð Þ

=
Ym−1

t=0
−1ð Þn/22n cos θt − 1ð Þn�

− 2n/2 −1ð Þn/2 + 1
� �

cos θt − 1ð Þn/2 −1ð Þn/2 cos rθt + i sin rθtð Þ�
+ cos rθt − i sin rθtð Þ�x + x2g:

ð37Þ

Note that x and x2 in Table 1 denote the odd power and
even power of x, respectively. Thus the number for perfect
matchings in H2m,n,r is equal to the sum of coefficients of

even terms in Pf Xðx, 1Þ = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðXðx, 1ÞÞp

and coefficients
of odd terms in Pf Xðx,−1Þ = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ðXðx,−1ÞÞp
by Lemma 4

and Theorem 2. Consequently, we get a expression for the
number for perfect matchings in H2m,n,r by det ðXðx, 1ÞÞ,
det ðXðx,−1ÞÞ and Theorem 1 when n is even.

Theorem 6. If n is odd, then

Φ H2m,n,rð Þ = g x, 1ð Þ + g x,−1ð Þ, ð38Þ

where gðx, 1Þ and gðx,−1Þ denote the sum of coefficients of
even terms in Pf Yðx, 1Þ = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det ðYðx, 1ÞÞp
and the sum of

coefficients of odd terms in Pf Yðx,−1Þ = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det ðYðx,−1ÞÞp

,
respectively; φt = ð2t + 1Þπ/m and θt = 2tπ/m;

Proof. Let Yðx, yÞ = YðH!2m,n,rÞ be the skew adjacent matrix
which elements can be read off from Figure 6. By the same
calculation process in Theorem 1, we have the results as
follows:

If y = 1, then det ðJtÞ is expressed by

det Jtð Þ = −2n+1/2 cos φt − 1ð Þn+1/2
− −1ð Þn+1/22n−1/2 cos φt − 1ð Þn−1/2 cos rφt − 2 cos r − 1ð Þφt½ �x + x2:

ð40Þ

If y = −1, then det ðJtÞ is expressed by

det Jtð Þ = −2n+1/2 cos θt − 1ð Þn+1/2
− −1ð Þn+1/22n−1/2 cos θt − 1ð Þn−1/2 cos rθt − 2 cos r − 1ð Þθt½ �x + x2:

ð41Þ

Consequently, by formula (27) we have

det Y x, 1ð Þð Þ =
Ym−1

t=0
−2n+1/2 cos φt − 1ð Þn+1/2 + −2ð Þn−1/2 cos φt − 1ð Þn−1/2 cos rφt − 2ð cos r − 1ð Þφt½ �x + x2
� �

det Y x,−1ð Þð Þ =
Ym−1

t=0
−2n+1/2 cos θt − 1ð Þn+1/2 + −2ð Þn−1/2 cos θt − 1ð Þn−1/2 cos rθt − 2 cos r − 1ð Þθt½ �x + x2
n o

:

ð39Þ

det Y x, 1ð Þð Þ =
Ym−1

t=0
det Jtð Þ =

Ym−1

t=0
−2n+1/2 cos φt − 1ð Þn+1/2�

− −1ð Þn+1/22n−1/2 cos φt − 1ð Þn−1/2 cos rφt − 2 cos r − 1ð Þφt½ �x + x2
� ð42Þ
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and

det Y x,−1ð Þð Þ =
Ym−1

t=0
det Jtð Þ

=
Ym−1

t=0
− 2n+1/2 cos θt − 1ð Þn+1/2

− −1ð Þn+1/22n−1/2 cos θt − 1ð Þn−1/2 cos rθt − 2 cos r − 1ð Þθt½ �x + x2
�
:

ð43Þ

Thus we get an expression of the number for perfect
matchings in H2m,n,r by det ðYðx, 1ÞÞ, det ðYðx,−1ÞÞ and
Theorem 1 when n is odd.
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