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�is study aims to present the notions of interpolative Prešić-type set-valued contractions for the set-valued operators de�ned on
product spaces. With the help of these notions, we have studied the existence of �xed points for such set-valued operators. An
application of the obtained results is also discussed with the help of graph theory.

1. Introduction and Preliminaries

Banach [1] initiated the study of the existence of �xed points
for self-maps de�ned on a metric space. �is study was
further strengthened by Kannan and Chatterjea through
their �xed point results derived in [2, 3], respectively.
Following this study, Nadler [4] proposed a result to ensure
the existence of �xed points for set-valued maps. Prešić [5]
extended Banach contraction principle to the maps de�ned
on product spaces, that is, Q: Rk⟶ R, for any �xed k ∈ N.
Afterwards, this result was extended by Ćirić and Prešić [6].
�e results of Prešić [5] and Ćirić and Prešić [6] are pre-
sented below.

Theorem 1 (see [5]). Let Q: Rk⟶ R, for any �xed k ∈ N,
be a map on complete metric space (R, dR) and satis�es

dR Q r1, r2, . . . , rk( ), Q r2, r3, . . . , rk+1( )( )≤ ∑
k

j�1
βjdR rj, rj+1( ),

(1)

for each r1, r2, . . . , rk, rk+1 ∈ R, where β1, β2, . . . , βk ≥ 0 with
∑kj�1 βj < 1. �en, there exists a unique �xed point r ∈ R of Q,
that is, r � Q(r, r, . . . , r︸����︷︷����︸

k

).

Theorem 2 (see [6]). Let Q: Rk⟶ R, for any �xed k ∈ N,
be a map on complete metric space (R, dR) and satis�es

dR Q r1, r2, . . . , rk( ), Q r2, r3, . . . , rk+1( )( )

≤ ζmax dR ri, ri+1( ): i ∈ 1, 2, . . . , k{ }{ },
(2)

for each r1, r2, . . . , rk, rk+1 ∈ R, where ζ ∈ (0, 1). �en, there
exists a unique �xed point r ∈ R of Q, that is,
r � Q(r, r, . . . , r︸����︷︷����︸

k

).

Karapınar [7] presented interpolative Kannan contrac-
tion by following the Kannan contraction as follows.

A map Q: (R, dR)⟶ (R, dR) is called an interpolative
Kannan contraction [7] if

dR(Qr, Ql)≤ ζdR(r, Qr)
ϑdR(l, Ql)

1−ϑ, (3)

for each r, l ∈ R with r≠Qr and l≠Ql, where ζ ∈ [0, 1) and
ϑ ∈ (0, 1).

The above work of Karapınar [7] is adopted by several
researchers; for example, the notions of interpolative
Ćirić–Reich–Rus type contractions in Branciari metric
spaces, and partial metric spaces are de�ned by Aydi et al.
[8] and Karapınar et al. [9], the notions of interpolative
type F-contractions are de�ned by Mohammadi et al. [10]
and Alansari and Ali [11], the notions of interpolative
Hardy-Rogers type contractions, and set-valued inter-
polative Hardy–Rogers type contractions are de�ned by
Karapınar et al. [12] and Debnath and Sen [13], the notion
of interpolative Suzuki-type contraction is discussed by
Fulga and Yesilkaya [14], and the notion of interpolative
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proximal contraction is discussed by Altun and Tasdemir
[15].

Gaba and Karapınar [16] redefined the notion of in-
terpolative Kannan contraction through modifying expo-
nential powers in a following way.

A map Q: (R, dR)⟶ (R, dR) is called an
(ζ, ϑ1, ϑ2)-interpolative Kannan contraction if

dR(Qr, Ql)≤ ζdR(r, Qr)
ϑ1dR(l, Ql)

ϑ2 , (4)

for each r, l ∈ R with r≠Qr and l≠Ql, where ϑ1, ϑ2 ∈ (0, 1)

with ϑ1 + ϑ2 < 1 and ζ ∈ [0, 1).
Recently, Alansari and Ali [17] defined the notion of

extended interpolative Prešić-type contraction map as
follows.

A map Q: Rk⟶ R, for any fixed k ∈ N, on a metric
space (R, dR) is called extended interpolative Prešić type
contraction if, for each w1, w2, . . . , wk, p1, p2, . . . , pk

∈ R\Fix(Q), we have

dR Q w1, w2, . . . , wk( 􏼁, Q p1, p2, . . . , pk( 􏼁( 􏼁
min c w1 ,p1( ),c w2 ,p2( ),...,c wk,pk( ){ }

≤ ζdR wk, Q w1, w2, . . . , wk( 􏼁( 􏼁
ϑ1dR pk, Q p1, p2, . . . , pk( 􏼁( 􏼁

ϑ2 ,
(5)

where c: R × R⟶ R\ 0{ } is a map, ϑ1, ϑ2 ∈ (0, 1) with
ϑ1 + ϑ2 � 1, ζ ∈ [0, 1), and Fix(Q) � r ∈ R: r{

� Q(r, r, . . . , r)}.
The purpose of this study is to extend and redefine the

concepts of interpolative Prešić-type contractions by in-
troducing interpolative Prešić-type set-valued contractions
for set-valued maps. We will also present a few fixed-point
results to study the existence of fixed points of such maps.

The literature of metric fixed-point theory contains
several interesting results that are the generalizations of
Banach fixed-point theorem, for example, the study of
common fixed-point results for two or more maps [18] and
the study of the existence of fixed points for themaps defined
on generalized metric spaces, such as b-metric space [19],
partial metric space [20], dislocated quasi-metric [21],
hypergraphical metric space [22], and soft metric space
[23, 24].

Before the next section, we recall the Pom-
peiu–Hausdorff distance. %e Pompeiu–Hausdorff distance
is a map HR: CB(R) × CB(R)⟶ [0,∞) defined by

HR(J, K) � max sup
j∈J

dR(j, K), sup
k∈K

dR(k, J)
⎧⎨

⎩

⎫⎬

⎭, (6)

where dR(k, J) � inf dR(k, j): j ∈ J􏼈 􏼉 and CB(R) represents
the collection of all nonvoid closed and bounded subsets of
(R, dR).

2. Main Results

We begin this section with the following definition.

Definition 1. A map Q: R × R⟶ CB(R) is said to be an
interpolative Prešić type-I set-valued contraction if, for all
w1, w2, p1, p2 ∈ R\Fix(Q), the following inequality exhibits

HR Q w1, w2( 􏼁, Q p1, p2( 􏼁( 􏼁
min c w1 ,p1( ),c w2 ,p2( ){ }

≤ ζmax dR w1, p1( 􏼁, dR w2, p2( 􏼁􏼈 􏼉
ϑ1dR w2, Q w1, w2( 􏼁( 􏼁

ϑ2dR p2, Q p1, p2( 􏼁( 􏼁
ϑ3 ,

(7)

where c: R × R⟶ R\ 0{ } is a map, ϑ1, ϑ2, ϑ3 ∈ (0, 1) with
ϑ1 + ϑ2 + ϑ3 � 1, ζ ∈ (0, 1), and Fix(Q) � r ∈ R:{

r ∈ Q(r, r)}.
With the help of below stated result, we will study the

existence of fixed points for the above map.

Theorem 3. Let Q: R × R⟶ CB(R) be an interpolative
Prešić type-I set-valued contraction map on a complete metric
space (R, dR). Also, consider that

(i) Ifmin c(w1, p1), c(w2, p2)􏼈 􏼉 � 1, then c(z1, z2) � 1,
for all z1 ∈ Q(w1, w2) and z2 ∈ Q(p1, p2)

(ii) 3ere exist w1, w2 ∈ R with min c(w1, w2),􏼈

c(w2, z1)} � 1, for all z1 ∈ Q(w1, w2)

(iii) For each sequence rm􏼈 􏼉 in R with
c(rm, rm+1) � 1, ∀m≥m0, for some natural number
m0, and rm⟶ r, we have c(rm, r) � 1, ∀m≥m0

%en, there exists an element r of R with r ∈ Q(r, r).

Proof. By hypothesis (ii), we get two points in R, say r0 and
r1, with

min c r0, r1( 􏼁, c r1, z( 􏼁􏼈 􏼉 � 1, ∀ z ∈ Q r0, r1( 􏼁. (8)

Let r2 ∈ Q(r0, r1); then, by (7), we obtain
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dR r2, Q r1, r2( 􏼁( 􏼁≤HR Q r0, r1( 􏼁, Q r1, r2( 􏼁( 􏼁
min c r0 ,r1( ),c r1 ,r2( ){ }

≤ ζmax dR r0, r1( 􏼁, dR r1, r2( 􏼁􏼈 􏼉
ϑ1dR r1, Q r0, r1( 􏼁( 􏼁

ϑ2dR r2, Q r1, r2( 􏼁( 􏼁
ϑ3 .

(9)

%at is,

dR r2, Q r1, r2( 􏼁( 􏼁
1− ϑ3 ≤ ζmax dR r0, r1( 􏼁, dR r1, r2( 􏼁􏼈 􏼉

ϑ1dR

r1, Q r0, r1( 􏼁( 􏼁
ϑ2 .

(10)

Clearly, dR(r1, Q(r0, r1))≤max dR(r0, r1), dR(r1, r2)􏼈 􏼉;
thus, by (10), we obtain

dR r2, Q r1, r2( 􏼁( 􏼁
1− ϑ3 ≤ ζmax dR r0, r1( 􏼁, dR r1, r2( 􏼁􏼈 􏼉

ϑ1+ϑ2 .

(11)

As 1 − ϑ3 � ϑ1 + ϑ2, thus, by (11), we obtain

dR r2, Q r1, r2( 􏼁( 􏼁≤ ζmax dR r0, r1( 􏼁, dR r1, r2( 􏼁􏼈 􏼉. (12)

%e fact ζ ∈ (0, 1) yields the existence of some
r3 ∈ Q(r1, r2) satisfying the inequality
dR(r2, r3)≤ (1/

�
ζ

􏽰
)dR(r2, Q(r1, r2)). %us, by the last two

inequalities, we obtain

dR r2, r3( 􏼁≤
�
ζ

􏽰
max dR r0, r1( 􏼁, dR r1, r2( 􏼁􏼈 􏼉. (13)

As r2 ∈ Q(r0, r1), r3 ∈ Q(r1, r2), and
min c(r0, r1), c(r1, r2)􏼈 􏼉 � 1, by hypothesis (i), we get
c(r2, r3) � 1. %us, we say that min c(r1, r2), c(r2, r3)􏼈 􏼉 � 1.
Again, by considering (7), we obtain

dR r3, Q r2, r3( 􏼁( 􏼁≤HR Q r1, r2( 􏼁, Q r2, r3( 􏼁( 􏼁
min c r1 ,r2( ),c r2 ,r3( ){ }

≤ ζmax dR r1, r2( 􏼁, dR r2, r3( 􏼁􏼈 􏼉
ϑ1dR r2, Q r1, r2( 􏼁( 􏼁

ϑ2dR r3, Q r2, r3( 􏼁( 􏼁
ϑ3 .

(14)

%at is,

dR r3, Q r2, r3( 􏼁( 􏼁
1−ϑ3 ≤ ζmax dR r1, r2( 􏼁, dR r2, r3( 􏼁􏼈 􏼉

ϑ1+ϑ2 .

(15)

As 1 − ϑ3 � ϑ1 + ϑ2, thus, by (15), we obtain

dR r3, Q r2, r3( 􏼁( 􏼁≤ ζmax dR r1, r2( 􏼁, dR r2, r3( 􏼁􏼈 􏼉. (16)

As ζ ∈ (0, 1), then there is some r4 ∈ Q(r2, r3) such that
dR(r3, r4)≤ (1/

�
ζ

􏽰
)dR(r3, Q(r2, r3)). %us, we obtain

dR r3, r4( 􏼁≤
�
ζ

􏽰
max dR r1, r2( 􏼁, dR r2, r3( 􏼁􏼈 􏼉. (17)

Continuing in that way, we reach to a sequence rm􏼈 􏼉 with
the facts rm+1 ∈ Q(rm−1, rm) for all m ∈ N and

min c rm−1, rm( 􏼁, c rm, rm+1( 􏼁􏼈 􏼉 � 1, ∀m ∈ N, (18)

and

dR rm+1, rm+2( 􏼁≤
�
ζ

􏽰
max dR rm−1, rm( 􏼁, dR rm, rm+1( 􏼁􏼈 􏼉, ∀m ∈ N.

(19)

For simplicity, we use dRm
� dR(rm, rm+1) for each

m ∈ N∪ 0{ }. We will show with induction that dRm−1
≤ βmM

for each m ∈ N, where β � ζ1/4 and M � max dR0
/β, dR1

/β2􏽮 􏽯.
Trivially, dR0

≤ βM and dR1
≤ β2M. Suppose that

dRk−3
≤ βk− 2

M,

dRk−2
≤ βk− 1

M ∀k≥ 3.
(20)

%en,

dRk−1
≤ β2 max dRk−3

, dRk−2
􏽮 􏽯≤ β2 max βk− 2

M, βk−1
M􏽮 􏽯

� βk
M, for each k≥ 3.

(21)

%us, dRm−1
≤ βmM, for each m ∈ N. Now, by considering

this fact and the triangle inequality, for each q, n ∈ N with
q> n, we obtain

dR rn, rq􏼐 􏼑≤ 􏽘

q−1

j�n

dR rj, rj+1􏼐 􏼑 � 􏽘

q−1

j�n

dRj
≤ 􏽘

q−1

j�n

βj+1
M. (22)

Hence, the convergence of 􏽐
∞
j�1 β

j, as β ∈ (0, 1), and the
above inequality yields that rm􏼈 􏼉 is a Cauchy sequence in R.
Now, the completeness of (R, dR) yields the existence of a
point r∗ ∈ R such that rm⟶ r∗. By hypothesis (iii), we get
c(rm, r∗) � 1, as c(rm, rm+1) � 1, ∀m ∈ N and rm⟶ r∗.
Now, we claim r∗ ∈ Q(r∗, r∗). If it is wrong, then, by (7), for
each m ∈ N, we obtain
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HR Q rm, rm+1( 􏼁, Q r
∗
, r
∗

( 􏼁( 􏼁 � HR Q rm, rm+1( 􏼁, Q r
∗
, r
∗

( 􏼁( 􏼁
min c rm,r∗( ),c rm+1 ,r∗( ){ }

≤ ζmax dR rm, r
∗

( 􏼁, dR rm+1, r
∗

( 􏼁􏼈 􏼉
ϑ1dR rm+1, Q rm, rm+1( 􏼁( 􏼁

ϑ2dR r
∗
, Q r
∗
, r
∗

( 􏼁( 􏼁
ϑ3 .

(23)

%at is,

dR rm+2, Q r
∗
, r
∗

( 􏼁( 􏼁≤HR Q rm, rm+1( 􏼁, Q r
∗
, r
∗

( 􏼁( 􏼁

≤ ζmax dR rm, r
∗

( 􏼁, dR rm+1, r
∗

( 􏼁􏼈 􏼉
ϑ1dR rm+1, Q rm, rm+1( 􏼁( 􏼁

ϑ2dR r
∗
, Q r
∗
, r
∗

( 􏼁( 􏼁
ϑ3 .

(24)

By triangle inequality and (24), we obtain

dR r
∗
, Q r
∗
, r
∗

( 􏼁( 􏼁≤ dR r
∗
, rm+2( 􏼁 + dR rm+2, Q r

∗
, r
∗

( 􏼁( 􏼁

≤ dR r
∗
, rm+2( 􏼁 + ζmax dR rm, r

∗
( 􏼁, dR rm+1, r

∗
( 􏼁􏼈 􏼉

ϑ1 × dR rm+1, Q rm, rm+1( 􏼁( 􏼁
ϑ2dR r

∗
, Q r
∗
, r
∗

( 􏼁( 􏼁
ϑ3 .

(25)

Hence, by applying the limit as m⟶∞ in (25), we get
dR(r∗, Q(r∗, r∗)) � 0. %is shows that the claim is true and
r∗ ∈ Q(r∗, r∗). □

Example 1. Let R denote the set of all real numbers with a
usual metric dR(r, l) � |r − l| for each r, l ∈ R. Define maps
Q: R × R⟶ CB(R) and c: R × R⟶ R\ 0{ } by

Q(r, l) �

0,
r+ l

2
􏼢 􏼣, if r,l≥0,

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c(r, l) �

1, if r, l≥0,

1/4, otherwise.

⎧⎪⎨

⎪⎩

(26)

%e hypotheses of %eorem 3 can be verified on the
above defined maps. Hence, there exists an element r of R

with r ∈ Q(r, r).
We now present an interpolative Prešić type-II set-

valued contraction map along with fixed-point result.

Definition 2. A map Q: R × R⟶ CB(R) is called an in-
terpolative Prešić type-II set-valued contraction if, for each
w1, w2, p1, p2 ∈ R\Fix(Q) with min c(w1, p1),􏼈

c(w2, p2)}≥ 1, we obtain

HR Q w1, w2( 􏼁, Q p1, p2( 􏼁( 􏼁

≤ ζmax dR w1, p1( 􏼁, dR w2, p2( 􏼁􏼈 􏼉
ϑ1dR w2, Q w1, w2( 􏼁( 􏼁

ϑ2dR p2, Q p1, p2( 􏼁( 􏼁
ϑ3 ,

(27)

where c: R × R⟶ R is a map, ϑ1, ϑ2, ϑ3 ∈ (0, 1) with
ϑ1 + ϑ2 + ϑ3 � 1, ζ ∈ (0, 1), and Fix(Q) � r ∈ R:{

r ∈ Q(r, r)}.

Theorem 4. Let Q: R × R⟶ CB(R) be an interpolative
Prešić type-II set-valued contraction map on a complete
metric space (R, dR). Also, consider that

(i) If min c(w1, p1), c(w2, p2)􏼈 􏼉≥ 1, then c(z1, z2)≥ 1,
for all z1 ∈ Q(w1, w2) and z2 ∈ Q(p1, p2)

(ii) 3ere exist w1, w2 ∈ R with min c(w1, w2),􏼈

c(w2, z1)}≥ 1 for all z1 ∈ Q(w1, w2)

(iii) For each sequence rm􏼈 􏼉 in R with
c(rm, rm+1)≥ 1, ∀m≥m0, for some natural number
m0, and rm⟶ r, we have c(rm, r)≥ 1, ∀m≥m0

%en, there exists an element r of R with r ∈ Q(r, r).

Proof. Hypothesis (ii) makes sure the existence of two points
in R, say r0 and r1, that satisfies the following:
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min c r0, r1( 􏼁, c r1, z( 􏼁􏼈 􏼉≥ 1, ∀z ∈ Q r0, r1( 􏼁. (28)

By defining one value of z ∈ Q(r0, r1) as z � r2 in the
above inequality, we reach to

min c r0, r1( 􏼁, c r1, r2( 􏼁􏼈 􏼉≥ 1. (29)

%us, by (27), we obtain

dR r2, Q r1, r2( 􏼁( 􏼁≤HR Q r0, r1( 􏼁, Q r1, r2( 􏼁( 􏼁

≤ ζmax dR r0, r1( 􏼁, dR r1, r2( 􏼁􏼈 􏼉
ϑ1dR r1, Q r0, r1( 􏼁( 􏼁

ϑ2dR r2, Q r1, r2( 􏼁( 􏼁
ϑ3 .

(30)

%at is,

dR r2, Q r1, r2( 􏼁( 􏼁
1− ϑ3 ≤ ζmax dR r0, r1( 􏼁, dR r1, r2( 􏼁􏼈 􏼉

ϑ1dR r1, Q r0, r1( 􏼁( 􏼁
ϑ2

≤ ζmax dR r0, r1( 􏼁, dR r1, r2( 􏼁􏼈 􏼉
ϑ1+ϑ2 .

(31)

Since 1 − ϑ3 � ϑ1 + ϑ2, thus, by (31), we obtain

dR r2, Q r1, r2( 􏼁( 􏼁≤ ζmax dR r0, r1( 􏼁, dR r1, r2( 􏼁􏼈 􏼉. (32)

From the above inequality and by the fact (1/
�
ζ

􏽰
)> 1,

there exists some r3 ∈ Q(r1, r2) such that

dR r2, r3( 􏼁≤
1
�
ζ

􏽰 dR r2, Q r1, r2( 􏼁( 􏼁

≤
�
ζ

􏽰
max dR r0, r1( 􏼁, dR r1, r2( 􏼁􏼈 􏼉.

(33)

Since min c(r0, r1), c(r1, r2)􏼈 􏼉≥ 1 and r2 ∈ Q(r0, r1),
r3 ∈ Q(r1, r2), by hypothesis (i), we get c(r2, r3)≥ 1. By
proceeding the proof on the above steps, we reach to a

sequence rm􏼈 􏼉 of the form rm+1 ∈ Q(rm−1, rm) for all m ∈ N
and

min c rm−1, rm( 􏼁, c rm, rm+1( 􏼁􏼈 􏼉≥ 1, ∀m ∈ N, (34)

and

dR rm+1,rm+2( 􏼁≤
�
ζ

􏽰
max dR rm−1,rm( 􏼁,dR rm,rm+1( 􏼁􏼈 􏼉, ∀m∈N.

(35)

By viewing the above inequality and the proof of the
above theorem, we conclude that rm􏼈 􏼉 is a Cauchy sequence
in R, and there exists a point r∗ ∈ R with rm⟶ r∗. From
hypothesis (iii), we have c(rm, r∗)≥ 1 for each m ∈ N. %is
implies min c(rm, r∗), c(rm+1, r∗)􏼈 􏼉≥ 1, ∀m ∈ N. Suppose
that r∗ ∉ Q(r∗, r∗). %en, by (27), for each m ∈ N, we obtain

dR rm+2, Q r
∗
, r
∗

( 􏼁( 􏼁≤HR Q rm, rm+1( 􏼁, Q r
∗
, r
∗

( 􏼁( 􏼁

≤ ζmax dR rm, r
∗

( 􏼁, dR rm+1, r
∗

( 􏼁􏼈 􏼉
ϑ1dR rm+1, Q rm, rm+1( 􏼁( 􏼁

ϑ2dR r
∗
, Q r
∗
, r
∗

( 􏼁( 􏼁
ϑ3 .

(36)

By triangle inequality and (36), we obtain

dR r
∗
, Q r
∗
, r
∗

( 􏼁( 􏼁≤ dR r
∗
, rm+2( 􏼁 + dR rm+2, Q r

∗
, r
∗

( 􏼁( 􏼁

≤ dR r
∗
, rm+2( 􏼁 + ζmax dR rm, r

∗
( 􏼁, dR rm+1, r

∗
( 􏼁􏼈 􏼉

ϑ1 × dR rm+1, Q rm, rm+1( 􏼁( 􏼁
ϑ2dR r

∗
, Q r
∗
, r
∗

( 􏼁( 􏼁
ϑ3 .

(37)

%us, by taking the limit m⟶∞ in (37), we get
dR(r∗, Q(r∗, r∗)) � 0. %is shows that the supposition is
wrong and r∗ ∈ Q(r∗, r∗). □

2.1. Results for Extended Interpolative Prešić Type Set-Valued
Operators. %is section presents the extensions of the above
listed results. %eorems 5 and 6 can be considered as an
extended version of %eorems 3 and 4, respectively.
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Theorem 5. Let Q: Rk⟶ CB(R), for any fixed k ∈ N, be
an extended interpolative Prešić type-I set-valued contraction

map on a complete metric space (R, dR), that is, for every
w1, w2, . . . , wk, p1, p2, . . . , pk ∈ R\Fix(Q), we have

HR Q w1, w2, . . . , wk( 􏼁, Q p1, p2, . . . , pk( 􏼁( 􏼁
min c w1 ,p1( ),c w2 ,p2( ),...,c wk,pk( ){ }

≤ ζmax dR wi, pi( 􏼁: i ∈ 1, 2, . . . , k{ }􏼈 􏼉
ϑ1

× dR wk, Q w1, w2, . . . , wk( 􏼁( 􏼁
ϑ2dR pk, Q p1, p2, . . . , pk( 􏼁( 􏼁

ϑ3 ,

(38)

where c: R × R⟶ R\ 0{ } is a map, ϑ1, ϑ2, ϑ3 ∈ (0, 1) with
ϑ1 + ϑ2 + ϑ3 � 1, ζ ∈ (0, 1), and Fix(Q) � r ∈ R:{

r ∈ Q(r, r, . . . , r)}. Also, consider that

(i) If min c(w1, p1), c(w2, p2), . . . , c(wk, pk)􏼈 􏼉 � 1,
then c(z1, z2) � 1 for all z1 ∈ Q(w1, w2, . . . , wk),
z2 ∈ Q(p1, p2, . . . , pk).

(ii) 3ere are w1, w2, . . . , wk ∈ R satisfying

min c w1, w2( 􏼁, c w2, w3( 􏼁, . . . , c wk, z( 􏼁􏼈 􏼉

� 1, ∀z ∈ Q w1, w2, . . . , wk( 􏼁.
(39)

(iii) For each sequence rm􏼈 􏼉 in R with
c(rm, rm+1) � 1, ∀m≥m0, for some natural number
m0, and rm⟶ r, we have c(rm, r) � 1, ∀m≥m0.

Then, there exists an element r of R with
r ∈ Q(r, r, . . . , r􏽼√√√√􏽻􏽺√√√√􏽽

k−times

).

Proof. Hypothesis (ii) says that there are points r1, r2, . . . , rk

in R satisfying the condition:

min c r1, r2( 􏼁, c r2, r3( 􏼁, . . . , c rk, z( 􏼁􏼈 􏼉

� 1, ∀z ∈ Q r1, r2, . . . , rk( 􏼁.
(40)

%us, for rk+1 ∈ Q(r1, r2, . . . , rk), we obtain

min c r1, r2( 􏼁, c r2, r3( 􏼁, . . . , c rk, rk+1( 􏼁􏼈 􏼉 � 1. (41)

%en, by (38), we obtain

dR rk+1, Q r2, r3, . . . , rk+1( 􏼁( 􏼁≤HR Q r1, r2, . . . , rk( 􏼁, Q r2, r3, . . . , rk+1( 􏼁( 􏼁
min c r1 ,r2( ),c r2 ,r3( ),...,c rk,rk+1( ){ }

≤ ζmax dR ri, ri+1( 􏼁: i ∈ 1, 2, . . . , k{ }􏼈 􏼉
ϑ1 × dR rk, Q r1, r2, . . . , rk( 􏼁( 􏼁

ϑ2dR rk+1, Q r2, r3, . . . , rk+1( 􏼁( 􏼁
ϑ3 .

(42)

%at is,

dR rk+1, Q r2, r3, . . . , rk+1( 􏼁( 􏼁
1− ϑ3

≤ ζmax dR ri, ri+1( 􏼁: i ∈ 1, 2, . . . , k{ }􏼈 􏼉
ϑ1dR rk, Q r1, r2, . . . , rk( 􏼁( 􏼁

ϑ2 .
(43)

Since dR(rk, Q(r1, r2, . . . , rk))≤max dR(ri, ri+1): i ∈􏼈

1, 2, . . . , k{ }}, thus, by (43), we obtain

dR rk+1, Q r2, r3, . . . , rk+1( 􏼁( 􏼁
1−ϑ3

≤ ζmax dR ri, ri+1( 􏼁: i ∈ 1, 2, . . . , k{ }􏼈 􏼉
ϑ1+ϑ2 .

(44)

Since 1 − ϑ3 � ϑ1 + ϑ2, then (44) gives

dR rk+1, Q r2, r3, . . . , rk+1( 􏼁( 􏼁

≤ ζmax dR ri, ri+1( 􏼁: i ∈ 1, 2, . . . , k{ }􏼈 􏼉.
(45)

As (1/
�
ζ

􏽰
)> 1, thus, there exists

rk+2 ∈ Q(r2, r3, . . . , rk+1) of a form

dR rk+1, rk+2( 􏼁≤
1
�
ζ

􏽰 dR rk+1, Q r2, r3, . . . , rk+1( 􏼁( 􏼁

≤
�
ζ

􏽰
max dR ri, ri+1( 􏼁: i ∈ 1, 2, . . . , k{ }􏼈 􏼉.

(46)

Hypothesis (i) implies that c(rk+1, rk+2) � 1, since
min c(r1, r2), c(r2, r3), . . . , c(rk, rk+1)􏼈 􏼉 � 1 and
rk+1 ∈ Q(r1, r2, . . . , rk), rk+2 ∈ Q(r2, r3, . . . , rk+1). By the
repeated application of hypothesis (i) and (38), we reach to a
sequence rm􏼈 􏼉 with the facts rm+k ∈ Q(rm, rm+1, . . . , rm+k−1)

for all m ∈ N and

min c rm, rm+1( 􏼁, c rm+1, rm+2( 􏼁, . . . , c rm+k−1, rm+k( 􏼁􏼈 􏼉

� 1, ∀m ∈ N,
(47)

and
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dR rm+k, rm+k+1( 􏼁

≤
�
ζ

􏽰
max dR rm−1+i, rm+i( 􏼁: i ∈ 1, 2, . . . , k{ }􏼈 􏼉, ∀m ∈ N.

(48)

For simplicity, take dRm
� dR(rm, rm+1) for each m ∈ N;

from (48), we obtain

dRm+k
≤

�
ζ

􏽰
max dRm−1+i

: i ∈ 1, 2, . . . , k{ }􏽮 􏽯, ∀m ∈ N. (49)

Now, we prove by induction that dRm
≤ βmM for each

m ∈ N, where β � ζ1/2k and
M � max dR1

/β, dR2
/β2, . . . , dRk

/βk
􏽮 􏽯. Trivially, dRi

≤ βiM, for
each i ∈ 1, 2, . . . , k{ }. Suppose that dRi

≤ βiM for each
i ∈ m, m + 1, . . . , m + k − 1{ } for some given m, as induction
hypothesis. %en, by (49), we obtain

dRm+k
≤

�
ζ

􏽰
max dRm−1+i

: i ∈ 1, 2, . . . , k{ }􏽮 􏽯

≤
�
ζ

􏽰
max βm− 1+i

M: i ∈ 1, 2, . . . , k{ }􏽮 􏽯

� βkβm
M

� βm+k
M.

(50)

Hence, it is shown by induction that dRm
≤ βmM, for each

m ∈ N. %is fact along with triangle inequality yield that

dR rn, rq􏼐 􏼑≤ 􏽘

q−1

j�n

dR rj, rj+1􏼐 􏼑 � 􏽘

q−1

j�n

dRj
≤ 􏽘

q−1

j�n

βj
M, (51)

for each q, n ∈ N with q> n. Hence, the above inequality and
the convergence of 􏽐

∞
j�1 β

j ensure that rm􏼈 􏼉 is a Cauchy
sequence in R. Now, the completeness of (R, dR) yields the
existence of a point r∗ ∈ R with rm⟶ r∗. By hypothesis
(iii), we get c(rm, r∗) � 1, ∀m ∈ N, as c(rm, rm+1)

� 1, ∀m ∈ N and rm⟶ r∗. Now, we claim that
r∗ ∈ Q(r∗, r∗, . . . , r∗). Suppose it is wrong, then, by (38), for
each m ∈ N, we obtain

HR Q rm, rm+1, . . . , rm+k−1( 􏼁, Q r
∗
, r
∗
, . . . , r

∗
( 􏼁( 􏼁

� HR Q rm, rm+1, . . . , rm+k− 1( 􏼁, Q r
∗
, r
∗
, . . . , r

∗
( 􏼁( 􏼁

min c rm,r∗( ),c rm+1 ,r∗( ),...,c rm+k−1 ,r∗( ){ }

≤ ζmax dR rm+i− 1, r
∗

( 􏼁: i ∈ 1, 2, . . . , k{ }􏼈 􏼉
ϑ1

× dR rm+k− 1, Q rm, rm+1, . . . , rm+k− 1( 􏼁( 􏼁
ϑ2dR r

∗
, Q r
∗
, r
∗
, . . . , r

∗
( 􏼁( 􏼁

ϑ3 .

(52)

%at is,

dR rm+k, Q r
∗
, r
∗
, . . . , r

∗
( 􏼁( 􏼁≤HR Q rm, rm+1, . . . , rm+k−1( 􏼁, Q r

∗
, r
∗
, . . . , r

∗
( 􏼁( 􏼁

≤ ζmax dR rm+i− 1, r
∗

( 􏼁: i ∈ 1, 2, . . . , k{ }􏼈 􏼉
ϑ1

× dR rm+k− 1, Q rm, rm+1, . . . , rm+k− 1( 􏼁( 􏼁
ϑ2dR r

∗
, Q r
∗
, r
∗
, . . . , r

∗
( 􏼁( 􏼁

ϑ3 .

(53)

By triangle inequality and (53), we obtain

dR r
∗
, Q r
∗
, r
∗
, . . . , r

∗
( 􏼁( 􏼁≤dR r

∗
, rm+k( 􏼁 + dR rm+k, Q r

∗
, r
∗
, . . . , r

∗
( 􏼁( 􏼁

≤dR r
∗
, rm+k( 􏼁 + ζmax dR rm+i− 1, r

∗
( 􏼁: i ∈ 1, 2, . . . , k{ }􏼈 􏼉

ϑ1

× dR rm+k− 1, Q rm, rm+1, . . . , rm+k− 1( 􏼁( 􏼁
ϑ2dR r

∗
, Q r
∗
, r
∗
, . . . , r

∗
( 􏼁( 􏼁

ϑ3 .

(54)
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After applying the limit as m⟶∞ in (54), we get
dR(r∗, Q(r∗, r∗, . . . , r∗)) � 0. Hence, the claim is true and
r∗ ∈ Q(r∗, r∗, . . . , r∗). □

Theorem 6. Let Q: Rk⟶ CB(R), for any fixed k ∈ N, be
an extended interpolative Prešić type-II set-valued contrac-
tion map on a complete metric space (R, dR); that is, for every
w1, w2, . . . , wk, p1, p2, . . . , pk ∈ R\Fix(Q) with
min c(w1, p1), c(w2, p2), . . . , c(wk, pk)􏼈 􏼉≥ 1, we have

HR Q w1, w2, . . . , wk( 􏼁, Q p1, p2, . . . , pk( 􏼁( 􏼁

≤ ζmax dR wi, pi( 􏼁: i ∈ 1, 2, . . . , k{ }􏼈 􏼉
ϑ1

× dR wk, Q w1, w2, . . . , wk( 􏼁( 􏼁
ϑ2dR pk, Q p1, p2, . . . , pk( 􏼁( 􏼁

ϑ3 ,

(55)

where c: R × R⟶ R is a map, ϑ1, ϑ2, ϑ3 ∈ (0, 1) with
ϑ1 + ϑ2 + ϑ3 � 1, ζ ∈ (0, 1), and
Fix(Q) � r ∈ R: r ∈ Q(r, r, . . . , r){ }. Also, consider that

(i) If min c(w1, p1), c(w2, p2), . . . , c(wk, pk)􏼈 􏼉≥ 1,
then c(z1, z2)≥ 1, for all z1 ∈ Q(w1, w2, . . . , wk)

and z2 ∈ Q(p1, p2, . . . , pk).

(ii) 3ere are w1, w2, . . . , wk ∈ R satisfying

min c w1, w2( 􏼁, c w2, w3( 􏼁, . . . , c wk, z( 􏼁􏼈 􏼉

≥ 1, ∀z ∈ Q w1, w2, . . . , wk( 􏼁,
(56)

(iii) For each sequence rm􏼈 􏼉 in R with
c(rm, rm+1)≥ 1, ∀m≥m0, for some natural number
m0, and rm⟶ r, we have c(rm, r)≥ 1, ∀m≥m0.

Then, there exists an element r of R with
r ∈ Q(r, r, . . . , r􏽼√√√√􏽻􏽺√√√√􏽽

k−times

).

This result can be proved on the similar steps as the
proofs of Theorems 5 and 4 are obtained. By considering
p1 � w2, p2 � w3, . . ., pk−1 � wk and denoting pk � wk+1 in
%eorems 5 and 6, we get the following results.

Theorem 7. Let Q: Rk⟶ CB(R), for any fixed k ∈ N, be a
set-valued map on a complete metric space (R, dR) such that,
for every w1, w2, . . . , wk, wk+1 ∈ R\Fix(Q), we have

HR Q w1, w2, . . . , wk( 􏼁, Q w2, w3, . . . , wk+1( 􏼁( 􏼁
min c w1 ,w2( ),c w2,w3( ),...,c wk,wk+1( ){ }

≤ ζmax dR wi, wi+1( 􏼁: i ∈ 1, 2, . . . , k{ }􏼈 􏼉
ϑ1

× dR wk, Q w1, w2, . . . , wk( 􏼁( 􏼁
ϑ2dR wk+1, Q w2, w3, . . . , wk+1( 􏼁( 􏼁

ϑ3 ,

(57)

where c: R × R⟶ R\ 0{ } is a map, ϑ1, ϑ2, ϑ3 ∈ (0, 1) with
ϑ1 + ϑ2 + ϑ3 � 1, ζ ∈ (0, 1), and
Fix(Q) � r ∈ R: r ∈ Q(r, r, . . . , r){ }. Also, consider that

(i) If min c(w1, w2), c(w2, w3), . . . , c(wk, wk+1)􏼈 􏼉 � 1,
then c(z1, z2) � 1, for all z1 ∈ Q(w1, w2, . . . , wk)

and z2 ∈ Q(w2, w3, . . . , wk+1).
(ii) 3ere are w1, w2, . . . , wk ∈ R satisfying

min c w1, w2( 􏼁, c w2, w3( 􏼁, . . . , c wk, z( 􏼁􏼈 􏼉

� 1, ∀z ∈ Q w1, w2, . . . , wk( 􏼁,
(58)

(iii) For each sequence rm􏼈 􏼉 in R with
c(rm, rm+1) � 1, ∀m≥m0, for some natural number
m0, and rm⟶ r, we have c(rm, r) � 1, ∀m≥m0.

Then, there exists an element r of R with
r ∈ Q(r, r, . . . , r􏽼√√√√􏽻􏽺√√√√􏽽

k−times

).

Theorem 8. Let Q: Rk⟶ CB(R), for any fixed k ∈ N, be a
set-valued map on a complete metric space (R, dR) such that,
for every w1, w2, . . . , wk, wk+1 ∈ R\Fix(Q) with

min c w1, w2( 􏼁, c w2, w3( 􏼁, . . . , c wk, wk+1( 􏼁􏼈 􏼉≥ 1, (59)

we have

HR Q w1, w2, . . . , wk( 􏼁, Q w2, w3, . . . , wk+1( 􏼁( 􏼁

≤ ζmax dR wi, wi+1( 􏼁: i ∈ 1, 2, . . . , k{ }􏼈 􏼉
ϑ1

× dR wk, Q w1, w2, . . . , wk( 􏼁( 􏼁
ϑ2dR wk+1, Q w2, w3, . . . , wk+1( 􏼁( 􏼁

ϑ3 ,

(60)

where c: R × R⟶ R is a map, ϑ1, ϑ2, ϑ3 ∈ (0, 1) with
ϑ1 + ϑ2 + ϑ3 � 1, ζ ∈ (0, 1) and Fix(Q) � r ∈ R: r ∈{

Q(r, r, . . . , r)}. Also, consider that

(i) If min c(w1, w2), c(w2, w3), . . . , c(wk, wk+1)􏼈 􏼉≥ 1,
then c(z1, z2)≥ 1 for all z1 ∈ Q(w1, w2, . . . , wk) and
z2 ∈ Q(w2, w3, . . . , wk+1).
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(ii) 3ere are w1, w2, . . . , wk ∈ R satisfying

min c w1, w2( 􏼁, c w2, w3( 􏼁, . . . , c wk, z( 􏼁􏼈 􏼉

≥ 1, ∀z ∈ Q w1, w2, . . . , wk( 􏼁,
(61)

(iii) For each sequence rm􏼈 􏼉 in R with
c(rm, rm+1)≥ 1, ∀m≥m0, for some natural number
m0, and rm⟶ r, we have c(rm, r)≥ 1, ∀m≥m0.

Then, there exists an element r of R with
r ∈ Q(r, r, . . . , r􏽼√√√√􏽻􏽺√√√√􏽽

k−times

).

3. Application

In this section, we obtain the following application of the
above result through a combination of graph theory. In the

following, assume that Gr � (Ve, Ed) be a directed graph
defined on a metric space (R, dR) with vertex set Ve � R and
edge set Ed ⊂ R × R contains all loops, but it has no parallel
edge. From %eorem 8, by defining c(w, r) � 1 for each
w, r ∈ R with (w, r) ∈ Ed, for otherwise, c(w, r) � 0, we get
the following result.

Theorem 9. Let Q: Rk⟶ CB(R), for any fixed k ∈ N, be a
set-valued map on a complete metric space (R, dR) equipped
with the graph Gr such that, for every
w1, w2, . . . , wk, wk+1 ∈ R\Fix(Q), with

w1, w2( 􏼁, w2, w3( 􏼁, . . . , wk, wk+1( 􏼁 ∈ Ed, (62)

we have

HR Q w1, w2, . . . , wk( 􏼁, Q w2, w3, . . . , wk+1( 􏼁( 􏼁

≤ ζmax dR wi, wi+1( 􏼁: i ∈ 1, 2, . . . , k{ }􏼈 􏼉
ϑ1

× dR wk, Q w1, w2, . . . , wk( 􏼁( 􏼁
ϑ2dR wk+1, Q w2, w3, . . . , wk+1( 􏼁( 􏼁

ϑ3 ,

(63)

where ϑ1, ϑ2, ϑ3 ∈ (0, 1) with ϑ1 + ϑ2 + ϑ3 � 1, ζ ∈ (0, 1) and
Fix(Q) � r ∈ R: r ∈ Q(r, r, . . . , r){ }. Also, consider that

(i) For all w1, w2, . . . , wk, wk+1 ∈ R with
(w1, w2), (w2, w3), . . . , (wk, wk+1) ∈ Ed, we have
(z1, z2) ∈ Ed, for all z1 ∈ Q(w1, w2, . . . , wk) and
z2 ∈ Q(w2, w3, . . . , wk+1).

(ii) 3ere are w1, w2, . . . , wk ∈ R with

w1, w2( 􏼁, w2, w3( 􏼁, . . . , wk−1, wk( 􏼁, wk, z( 􏼁

∈ Ed, ∀z ∈ Q w1, w2, . . . , wk( 􏼁.
(64)

(iii) For each sequence rm􏼈 􏼉 in R with
(rm, rm+1) ∈ Ed, ∀m≥m0, for some natural number
m0, and rm⟶ r, we have (rm, r) ∈ Ed, ∀m≥m0.

Then, there exists an element r of R with
r ∈ Q(r, r, . . . , r􏽼√√√√􏽻􏽺√√√√􏽽

k−times

).

Sarwar et al. [25] studied the existence of the solution of
Caputo–Fabrizio fractional derivative of order c, which is
defined as

D
c
t u(t) �

N(c)

1 − c
􏽚

t

0
u′(τ)exp −

c

1 − c
(t − τ)􏼢 􏼣dτ, (65)

under boundary condition u(0) � 0, where N(c) is a nor-
malization function satisfying N(0) � N(1) � 1 and
a≤ t≤ τ ≤ b, by using an interpolative Dass and Gupta ra-
tional-type contraction condition. %rough the work of
Sarwar et al. [25], it is obvious that the existence of the
solution of above defined Caputo–Fabrizio fractional

derivative can also be discussed by an interpolative Kannan
contraction that is a particular case of our work.

4. Conclusion

%e notions of interpolative Prešić-type set-valued con-
tractions for the set-valued operators defined on product
spaces along with fixed-point results are presented. %ese
notions can also be considered as an extended version of
interpolative Prešić-type contractions.
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