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In this paper, the main aim is to de�ne a statistical distribution that can be used to model COVID-19 data in Mexico and Canada.
Using the method of exponentiation on the gull alpha exponential distribution introduces a new distribution with three pa-
rameters called the exponentiated gull alpha power exponential (EGAPE) distribution. �e distribution has the bene�t of being
able to represent monotonic and nonmonotonic failure rates, both of which are often seen in dependability issues. It is possible to
determine the quantile function as well as the skewness, kurtosis, and order statistics of the suggested distribution. �e approach
of maximum likelihood is used in order to calculate the parameters of the model, and the RMSE and average bias are utilised in
order to evaluate how successful the strategy is. In conclusion, the �exibility of the new distribution is demonstrated by modeling
COVID-19 data. From the practical application, we can conclude that the proposed model outperformed the competing models
and therefore can be used as a better option for modeling COVID-19 and other related datasets.

1. Introduction

Over the last decade, modeling using probability distribu-
tions has attracted the attention of most researchers. �ere
are several ways to modify a distribution, and the most
versatile approach is the introduction of an extra shape
parameter so as to increase the �exibility of the distribution.
Creating a new family of distributions and basing a new
distribution o� of an already existing baseline distribution is
still another technique that may be used. Many families have
been developed in the literature, for instance, Mudholkar
and Srivastava1 developed the exponentiated Weibull family
of distributions, Nadarajah and Kotz 2 developed the
exponentiated types of distributions, the logistic-X family

was proposed by Tahir et al. [3], the exponentiated TX family
was proposed by Alzaghal et al.4, and Kumar-
aswamy–Marshall–Olkin family was proposed by Alizadeh
et al. 5 (for further reading on other families of distributions,
the reader is referred to [6–12]).

�e exponential distribution has been widely used to
model survival analysis data. However, the shortcoming of the
exponential distribution is that it only models data with
constant hazard function. As a consequence of this, numerous
adjustments to the exponential distributions have been
produced in the scienti�c literature. For instance, Bhati et al.
13 were the ones who �rst recommended using the Lindley
exponential distribution. and extended new generalized ex-
ponential distribution was proposed by Eghwerido et al. 14.
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For further reading on the extensions of the exponential
distribution, the reader is referred to [15–21].

Exponentiated gull alpha power exponential distribution is
a highly innovative and simple model introduced in this study.
In Section 2, we give the details of the brand-new design.
Section 3 derives a few additional distributional features. &e
maximum likelihood approach of parameter estimation is
described. It is used to examine the performance of the esti-
mators in Section 4. Section 5 focuses on applying the theory to
real-world data. Section 6 focuses on the findings.

2. The New EGAPE Distribution

&e gull alpha power exponential distribution has been
widely used in survival analysis.&e CDF and the PDF of the
GAPE distribution can be written and formulated as shown
below:

F(x) �
α 1 − e

− (λx)
 

α 1− e−(λx)( )
,

f(x) � λe
− (λx)αe−(λx)

1 − 1 − e
− (λx)

 log α .

(1)

X is assumed to be distributed with the EGAPE dis-
tribution with three parameters α, λ, a if the CDF and PDF,
respectively, are given as

F(x) �
α 1 − e− (λx)( 

α 1− e−(λx)( )
 

a

. (2)

&e following is the formula for the equivalent PDF to
equation (2):

f(x) � aλe
− (λx)αe−(λx)

1 − 1 − e
− (λx)

 log α 
α 1 − e− (λx)( 

α 1− e−(λx)( )
 

a− 1

. (3)

&e following formula may be used to describe the
survival function of the EGAPE distribution:

S(x) � 1 −
α 1 − e− (λx)( 

α 1− e−(λx)( )
 

a

. (4)

&e hazard function is given as

h(x) �
aλe

− (λx)αe−(λx)

1 − 1 − e
− (λx)

 log α  α 1 − e
− (λx)

 /α 1− e−(λx)( ) 
a− 1

1 − α 1 − e
− (λx)

 /α 1− e−(λx)( ) 
a .

(5)

Equations (6) and (7) give the reversed and cumulative
hazard functions, respectively.

τ(x) �
aλe

− (λx)αe−(λx)

1 − 1 − e
− (λx)

 log α  α 1 − e
− (λx)

 /α 1− e−(λx)( ) 
a− 1

α 1 − e
− (λx)

 /α 1− e−(λx)( ) 
a ,

(6)

H(x) � − ln 1 −
α 1 − e− (λx)( 

α 1− e−(λx)( )
 

a

 .

(7)

Figures 1 and 2 depict the different contours of the
probability density function (PDF) as well as the hazard rate
curves, respectively. As observed, the PDF can exhibit shapes
as unimodal, decreasing, or right skewed.

2.1. EGAPE Submodels. &e EGAPE distribution includes
some well-known submodels which include

(a) If a � 1, then we obtain gull alpha power exponential
distribution.

(b) If a � α � 1, we have exponential distribution.
(c) If α � 1, then we obtain exponentiated exponential

distribution.

3. Important Mathematical Properties

In this section, all the formulae derived here including mo-
ments, incomplete moments, entropies, and order statistics can
be handled by many computational software programs.

3.1. Quantile Function. Random samples from the EGAPE
can be generated by inverting equation (2).

xq � −
1
λ
log

log α + W− 1 − log α × e
log u/a/α 

log α
⎛⎝ ⎞⎠. (8)

To obtain the median of EGAPE, put u � 0.5, and we
have

x0.5 � −
1
λ
log

log α + W− 1 − log α × e
log 0.5/a/α 

log α
⎛⎝ ⎞⎠. (9)

Some quantile values for the EGAPE are displayed in
Table 1.

3.2. Moments. &e EGAPE distribution’s rth moment is
defined as

E x
r

(  � 
∞

0
x

r
f(x)dx,

E x
r

(  � 
∞

0
x

r
aλe

− (λx)αe−(λx)

1 − 1 − e
− (λx)

 log α 
α 1 − e− (λx)( 

α 1− e−(λx)( )
 

a− 1

dx.

(10)
&e above equation does not have an explicit expression,

and therefore we can find the moments numerically by using
R version 4.1.2. Table 2 gives themoments for the EGAPE for
selected parameter values given as I: α � 1.9, λ � 1.0,

a � 0.9, II: α � 1.4, λ � 1.8, a � 0.2, III: α � 2.4, λ � 1.5,

β � 1.3, a � 0.9, and IV: α � 1.4, λ � 0.5, a � 0.9.

3.3. Order Statistics. For an ordered random sample
X1, X2, . . . . . . , Xn, from EGAPE distribution, the PDF of the
ith minimum and maximum order statistics are provided by
the following equations:

fX(1)(x) � nf(x)(1 − F(x))
n− 1

,

fX(n)(x) � nf(x)(F(x))
n− 1

.
(11)
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Figure 1: EGAPE distribution PDF plots. (a) α� 1.5, λ� 3.2, a� 1.2. (b) α� 0.8, λ� 0.5, a� 2.3. (c) α� 0.3, λ� 2.7, a� 0.5. (d) α� 0.2, λ� 0.3,
a� 1.5.
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Figure 2: EGAPE distribution hrf plots. (a) α� 1.5, λ� 3.2, a� 1.2. (b) α� 0.8, λ� 0.05, a� 2.3. (c) α� 0.03, λ� 2.7, a� 0.05. (d) α� 0.2,
λ� 0.3, a� 1.5.

Table 1: Quantile values for EGAPE distribution.

Quantile (0.4, 0.3, 0.8) (0.5, 0.8, 0.3) (1.2, 0.7, 2.3) (0.9, 0.7, 0.5)
0.1 0.004 0.143 0.045 0.059
0.2 0.038 0.352 0.122 0.163
0.3 0.145 0.607 0.223 0.298
0.4 0.359 0.913 0.348 0.464
0.5 0.706 1.281 0.501 0.668
0.6 1.207 1.734 0.690 0.921
0.7 1.908 2.320 0.936 1.248
0.8 2.929 3.144 1.281 1.708
0.9 4.687 4.546 1.867 2.489

Table 2: Moments for EGAPE distribution.

I II III IV
μ1 1.890 0.287 0.598 0.674
μ2 7.009 0.255 0.514 1.121
μ3 40.516 0.388 0.779 3.038
μ4 318.216 0.876 1.663 11.513
SD 1.852 0.416 0.395 0.816
CV 0.979 1.458 0.661 1.209
CS 2.247 2.996 4.586 2.543
CK 10.513 17.839 21.100 12.977
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&us,

fX(1)(x) � naλe
− (λx)αe−(λx)

1 − 1 − e
− (λx)

 log α 

α 1 − e− (λx)( 

α 1− e−(λx)( )
 

a− 1

1 −
α 1 − e− (λx)( 

α 1− e−(λx)( )
 

a

 

n− 1

,

fX(n)(x) � naλe
− (λx)αe−(λx)

1 − 1 − e
− (λx)

 log α 

α 1 − e− (λx)( 

α 1− e−(λx)( )
 

a− 1 α 1 − e− (λx)( 

α 1− e−(λx)( )
 

a

 

n− 1

.

(12)

3.4. Skewness and Kurtosis. In the context of the EGAPE
distribution, the definitions of Galton skewness and Moors
kurtosis are stated as follows:

ZK �
Q(1/8) + Q(3/4) − Q(1/4) − Q(2/4)

Q(3/4) − Q(1/4)
,

ZM(x) �
Q(1/8) + Q(3/8) − Q(5/8) − Q(1/8)

Q(3/4) − Q(1/4)
,

(13)

where Q describe different quartile values. Clearly, the extra
shape parameters α and a have an effect on the skewness and
kurtosis values Figures 3 and 4.

3.5. Entropy. &e Renyi entropy of EGAPE distribution:

RH(x) �
1

1 − p
log
∞

0
f

p
(x)dx. (14)

From equation (11), the Renyi entropy RH(x) becomes

RH(x) �
1

1 − p
log
∞

0
aλe

− (λx)αe−(λx)

1 − 1 − e
− (λx)

 log α 
α 1 − e− (λx)( 

α 1− e−(λx)( )
 

a− 1
⎡⎣ ⎤⎦

p

dx. (15)

4. Parameter Estimation

To determine the MLEs of the given parameter estimation,
for the model parameters λ, α, a, we use the log likelihood
function, which may be expressed as

lnL � 2nlnαλ + 
n

i�1
2e

− λxi lnα − 2
n

i�1
λxi + lnlnα

− 
n

i�1
ln 1 − e

− λxi  + 2(a − 1) 
n

i�1
ln
α 1 − e

− λxi 

α 1− e− λxi( )
.

(16)

&e equations of the EGAPE that give the maximum
likelihood are provided by

zl

za
� 2

n

i�1
ln
α 1 − e

− λxi 

α1− e− λxi
, (17)

zl

za
�
2n

α
+

α
lnα

+ 
n

i�1

2(a − 1) 1 − e
− λxi /α1− e− λxi

  − 1 − e
− λxi 

2
/α1− e− λxi

  α1− e− λxi

α 1 − e
− λxi 

, (18)
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Figure 3: Kurtosis values for EGAPE distribution.
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zl

zλ
�
2n

λ
− 

n

i�1
2xi − 

n

i�1

xie
− λxi

1 − e
− λxi

+ 
n

i�1

2(a − 1) αxie
− λxi /α1− e− λxi

  − λ 1 − e
− λxi xie

− λxilnα/α1− e− λxi

  α1− e− λxi

α 1 − e
− λxi 

. (19)

Equating equations (17)–(19) to zero and solving si-
multaneously, the maximum likelihood estimators of the
parameters are obtained.

4.1. Monte Carlo Simulation. &e effectiveness of the maxi-
mum likelihood method of estimate is examined by means of a
simulation study, with attention given to both the root mean
squared errors and the average bias. &is evaluation is carried
out with respect to the maximum likelihood technique. &e
simulation was carried out using version 4.1.2 of the R program,
and the following is the technique that was followed for it:

(a) 2000 random samples from different sample sizes
n � 100, 200, 300, . . . , 2000 are generated using the
quantile function.

(b) Two different sets of parameter values are considered
(Set I: λ � 0.2, α � 0.3, a � 0.5 and Set II λ � 0.3,

α � 0.9, a � 0.4).
(c) &e calculated root mean squared errors as well as

the average bias are then presented when the result
has been obtained.

4.1.1. Remarks on Simulation. From Tables 2 and 3, we have
recognized that by increasing the size of the samplethe
average bias of the parameter estimates gets smaller. &e
same observation is made on the root mean squared error.
&is shows clearly that the maximum likelihood method
performs well as a method of estimating the parameters from
Tables 3 and 4.

5. Applications

&is section presents the effectiveness and the flexibility of
the EGAPE distribution by two real datasets.&e datasets are
on the COVID-19 mortality rates for different countries. In
addition, we provide the evaluation of the goodness of fit of
the distribution and comparison to other competing models.
&e measures include the BIC, AIC, HQIC, and CAIC. &e
smaller the values of these statistics, the better the model.
&e proposed distribution is compared to the following:

(i) Exponential distribution (E).
&e CDF is given by F(x) � 1 − e− λx.

(ii) Gull alpha power exponential (GAPE).
&e CDF is given by F(x) � α(1 − e− λx)/α1− e− λx .

(iii) &e exponentiated generalized exponential distri-
bution (EGE).
&e CDF is given as F(x) � (1 − (e− λx)a)b.

(iv) &e Marshall–Olkin generalized exponential dis-
tribution (MOGE).
&e CDF is given by

F(x) �
1 − e

− λx
 

a

θ +(1 − θ) 1 − e
− λx

 
α. (20)

(v) Marshall–Olkin alpha power inverted exponential
(MOAPIE) distribution.
&e CDF is given as
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Figure 4: Skewness values for EGAPE distribution.
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F(x) �
αe− λx− 1

− 1

(α − 1)θ − (θ − 1) αe− λx− 1

− 1 

. (21)

(vi) Alpha power inverted exponential (APIE)
distribution.

&e CDF is given as

F(x) �
αe− λx− 1

− 1
(α − 1)

. (22)

(vii) Weibull moment exponential distribution (WME)
distribution.
&e CDF is given as

F(x) � 1 − exp − a
1 − (1 +(x/β))e− x/β

(1 +(x/β))e− x/β 

b
⎧⎨

⎩

⎫⎬

⎭. (23)

Table 4: RMSE and AB for Set I: λ � 0.3, α � 0.4, a � 0.6.

RMSE Bias
n λ α a λ α a
100 0.06053 0.3741 0.2046 0.00356 0.0861 − 0.1909
200 0.0421 0.2557 0.2031 0.00185 0.0402 − 0.1964
300 0.0331 0.1962 0.2010 0.000364 0.0335 − 0.1963
400 0.0283 0.1612 0.2002 0.000179 0.0236 − 0.1969
500 0.0255 0.1437 0.2001 0.000587 0.0193 − 0.1972
600 0.0235 0.1304 0.2009 0.00135 0.01124 − 0.1986
700 0.0216 0.1196 0.2002 0.00107 0.01107 − 0.1983
800 0.0199 0.1108 0.2000 0.0000244 0.01322 − 0.1983
900 0.0189 0.1048 0.2000 0.0004689 0.01069 − 0.1986
1000 0.0178 0.0989 0.1999 0.000533 0.00965 − 0.1985
1100 0.0174 0.0927 0.2000 0.000591 0.00608 − 0.1989
1200 0.0164 0.0906 0.1996 0.0000385 0.008727 − 0.1988
1300 0.0158 0.0873 0.1999 − 0.000253 0.008357 − 0.1989
1400 0.0149 0.0844 0.1999 − 0.0000364 0.00895 − 0.1986
1500 0.0144 0.0809 0.1995 0.000309 0.00701 − 0.1985
1600 0.0141 0.0786 0.1998 0.000270 0.00606 − 0.1989
1700 0.0135 0.0737 0.2000 0.000518 0.00355 − 0.1993
1800 0.0133 0.0714 0.1997 0.000434 0.00407 − 0.1990
1900 0.0126 0.0702 0.1997 0.0000924 0.003956 − 0.1989
2000 0.0125 0.0687 0.1996 0.000438 0.004439 − 0.1989

Table 3: RMSE and AB for Set I: λ � 0.2, α � 0.3, a � 0.5.

RMSE Average bias
n λ α a λ α a
100 0.04006 0.312 0.1965 0.00421 0.0864 − 0.1897
200 0.0274 0.2006 0.1968 0.00123 0.0481 − 0.1935
300 0.0223 0.1567 0.1977 0.00156 0.0246 − 0.1954
400 0.0189 0.1284 0.1969 0.0000571 0.02462 − 0.1947
500 0.0178 0.1147 0.1972 0.000527 0.0180 − 0.1952
600 0.0156 0.1053 0.1973 0.000338 0.0175 − 0.1958
700 0.0142 0.1005 0.1961 0.0001486 0.0207 − 0.1942
800 0.0136 0.0903 0.1961 0.000376 0.01686 − 0.1941
900 0.0125 0.0853 0.1965 0.000285 0.01359 − 0.1944
1000 0.0121 0.0817 0.1965 0.000278 0.01333 − 0.1927
1100 0.0118 0.0762 0.1961 0.0000742 0.0123 − 0.1937
1200 0.0109 0.0737 0.1961 − 0.0000982 0.01197 − 0.1933
1300 0.0108 0.0692 0.1965 − 0.00004508 0.01061 − 0.1930
1400 0.0100 0.0678 0.1965 0.00000505 0.00975 − 0.1941
1500 0.0092 0.0625 0.1960 0.000210 0.00785 − 0.1932
1600 0.00950 0.0619 0.1955 − 0.0000425 0.00938 − 0.1922
1700 0.00929 0.0604 0.1952 0.000259 0.00756 − 0.1914
1800 0.0090 0.0579 0.1945 0.000239 0.00793 − 0.1903
1900 0.0086 0.05658 0.1958 0.000101 0.0068 − 0.1926
2000 0.0084 0.0562 0.1942 0.0001023 0.00719 − 0.1896
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5.1. Dataset I: Mexico Mortality Data. &e first dataset de-
picts the Mexico mortality rate obtained from the following
link: https://covid19.who.int/. Figure 5 shows the TTT plot
for the Mexico mortality rate data. &e data have an in-
creasing hazard rate. Results for the Mexico application data
are displayed in Tables 5 and 6.

5.2. Dataset II: Canada Data. &e second dataset gives the
COVID-19 mortality rate data for Canada for a length of 36
days obtained from the following link: https://covid19.who.

int/. As depicted in Figure 6, the data are characterized by an
increasing hazard rate. &e results for dataset I are presented
in Tables 7 and 8.

5.3. Concluding Remarks on the Two Applications. Based on
the application from the two datasets, the following con-
clusions are drawn:

(1) Referring to dataset I, it can be observed that EGAPE
provides the lowest values for the Kolmogor-
ov–Smirnov and the W∗ and A∗ distances.

Table 6: Goodness of fit measures for Mexico mortality rate data.

Distribution AIC BIC CAIC HQIC KS W A
EGAPE 537.983 546.034 538.216 541.247 0.069 0.056 0.308
GAPE 539.358 544.720 539.350 541.533 0.079 0.083 0.491
EGE 538.356 546.403 538.580 541.619 0.072 0.059 0.329
E 596.131 598.81 596.160 597.218 0.241 0.062 0.363
MOAPIE 551.267 559.314 551.267 554.530 0.118 0.177 1.069
MOGE 538.355 546.140 538.586 541.618 0.074 0.059 0.328
APIE 550.634 555.998 550.748 552.809 0.089 0.195 1.212
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Figure 5: (a) TTT plot, (b) boxplot, and (c) histogram for Mexico data.

Table 5: Estimates and SE (in parentheses).

Distribution Estimates (SE in parenthesis)
EGAPE (λ, α, a) 5.284 (2.476) 1.456 (0.768) 0.339 (0.059)
GAPE (λ, α) 0.400 (0.035) 0.013 (0.011)
E (λ) 0.174 (0.016)
EE (λ, α) 0.360 (0.034) 3.982 (0.672)
MOAPIE (λ, θ, a) 0.003 (0.002) 1.254 (0.381) 8.887 (0.917)
MOGE (λ, θ, a) 0.360 (0.072) 4.109 (0.784) 0.956 (0.677)
APIE (λ, α) 9.247 (1.018) 0.007 (0.008)
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(2) With regard to dataset II, we can deduce that EGAPE
provides the lowest values for the Kolmogor-
ov–Smirnov and the W∗ and A∗ distances.

(3) Since the datasets are on COVID-19 mortality rates,
the EGAPEmodel is the best model with comparison
to the competing models to handle this set of data.

(4) In future, the study may be extended to consider
other estimation methods of parameters like maxi-
mum product spacing and weighted least squares,
among others.

(5) Since the study considered complete samples, future
research may incorporate censored data.

(6) For future research, the regression framework may
be considered to incorporate covariates.

6. Conclusion

In this paper, the main purpose was to develop a new three-
parameter distribution called the EGAPE distribution which
can be useful in modeling datasets that exhibit both
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Figure 6: (a) TTT plot, (b) boxplot, and (c) histogram for Canada data.

Table 7: Estimates and SE (in parentheses).

Distribution Estimates (SE in parenthesis)
EGAPE (λ, α, a) 5.420 (5.267) 0.007 (0.041) 1.219 (0.152)
E (λ) 1.058 (0.0507)
EE (λ, α) 1.058 (0.122) 17.977 (5.931)
MOAPIE (λ, θ, a) 8.396 (7.967) 0.005 (0.003) 11.984 (1.856)
EGE (λ, θ, a) 0.654 (0.400) 1.522 (0.950) 16.799 (0.023)
APIE (λ, α) 2.719 (0.672) 0.211 (0.185)

Table 8: Goodness of fit measures for Canada mortality rate data.

Distribution AIC BIC CAIC HQIC KS W A
EGAPE 102.746 107.49 103.496 104.404 0.121 0.106 0.636
EGE 104.634 109.386 105.385 106.293 0.131 0.104 0.614
E 159.559 161.112 159.559 160.112 0.409 0.099 0.574
MOAPIE 112.433 117.183 113.183 114.091 0.409 0.099 1.022
EE 102.341 105.508 102.705 103.447 0.151 0.104 0.622
APIE 160.153 163.320 160.517 161.258 0.390 0.139 0.843
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monotone and nonmonotone hazard shapes. Several
mathematical properties of the EGAPE distribution were
derived.&e estimation of the parameters of the distribution
was estimated through the maximum likelihood method.
Simulation study was performed to investigate the effec-
tiveness of the method of estimation, and it was found that
the root mean squared error and the average bias decrease
with increase in sample size. Two real datasets were used to
demonstrate the flexibility of the EGAPE distribution
against its competing distribution. By use of goodness of fit
tests, we demonstrated that the EGAPE distribution pro-
vides a better fit compared to that of competing distributions
considered. With regard to application of the proposed
model, other domains apart from COVID-19-related data
can be considered like reliability engineering and financial
sciences. Also, we will extend our work in the future by
making regression analyses of the COVID-19 infections in
future infections. &is may help researchers and scientists to
prepare suitable amounts of vaccines and enough space in
hospitals. Also in our future work, we will study the vac-
cination rate and its effect on the mortality rate. Another
approach that could be done is to use machine learning to
predict future infections. Also, we will work on censored
samples to avoid time-consuming and reduce the costs of the
experiments. We will use different censoring schemes such
as type-I and type-II censored schemes.

Data Availability

&e essential documentation that was needed to support the
findings of this study may be located within the entire article
that was written on the study.

Conflicts of Interest

&e writers warrant that they do not have any conflicts of
interest to disclose.

Acknowledgments

&e researchers would like to express their gratitude to their
respective institutions for providing them with the resources
necessary to complete this work.

References

[1] G. S. Mudholkar and D. K. Srivastava, “Exponentiated weibull
family for analyzing bathtub failure-rate data,” IEEE Trans-
actions on Reliability, vol. 42, no. 2, pp. 299–302, 1993.

[2] S. Nadarajah and S. Kotz, “&e exponentiated type distri-
butions,” Acta Applicandae Mathematica, vol. 92, no. 2,
pp. 97–111, 2006.

[3] M. H. Tahir, G. M. Cordeiro, A. Alzaatreh, M. Mansoor, and
M. Zubair, “&e logistic-x family of distributions and its
applications,” Communications in Statistics-@eory and
Methods, vol. 45, no. 24, pp. 7326–7349, 2016.

[4] A. Alzaghal, F. Famoye, and C. Lee, “Exponentiated tx family
of distributions with some applications,” International Jour-
nal of Statistics and Probability, vol. 2, no. 3, pp. 31–49, 2013.

[5] M. Alizadeh, M. Tahir, G. M. Cordeiro, M. Mansoor,
M. Zubair, and G. Hamedani, “&e kumaraswamy marshal-

olkin family of distributions,” Journal of the Egyptian
Mathematical Society, vol. 23, no. 3, pp. 546–557, 2015.

[6] H. M. Yousof, E. Altun, T. G. Ramires, M. Alizadeh, and
M. Rasekhi, “A new family of distributions with properties,
regression models and applications,” Journal of Statistics &
Management Systems, vol. 21, no. 1, pp. 163–188, 2018.

[7] A. D. C. Nascimento, K. F. Silva, G. M. Cordeiro, M. Alizadeh,
H. M. Yousof, and G. G. Hamedani, “&e odd nadarajah-
haghighi family of distributions: properties and applications,”
Studia Scientiarum Mathematicarum Hungarica, vol. 56,
no. 2, pp. 185–210, 2019.

[8] S. Cakmakyapan and G. Ozel, “&e lindley family of distri-
butions: properties and applications,” Hacettepe Journal of
Mathematics and Statistics, vol. 46, no. 116, pp. 1113–1137,
2016.

[9] S. Rezaei, B. B. Sadr, M. Alizadeh, and S. Nadarajah, “Top-
p–leone generated family of distributions: properties and
applications,” Communications in Statistics-@eory and
Methods, vol. 46, no. 6, pp. 2893–2909, 2017.

[10] M. Alizadeh, F. Merovci, and G. Hamedani, “Generalized
transmuted family of distributions: properties and applica-
tions,” Hacettepe Journal of Mathematics and Statistics,
vol. 46, no. 109, pp. 645–667, 2016.

[11] Z. Ahmad, “&e zubair-g family of distributions: properties
and applications,” Annals of Data Science, vol. 7, no. 2,
pp. 195–208, 2020.

[12] A. Z. Afify and M. Alizadeh, “&e odd dagum family of
distributions: properties and applications,” Journal of Applied
Probability and Statistics, vol. 15, no. 1, pp. 45–72, 2020.

[13] D. Bhati, M. A. Malik, and H. J. Vaman, “Lindley–exponential
distribution: properties and applications,” Metron, vol. 73,
no. 3, pp. 335–357, 2015.

[14] J. Eghwerido, S. Zelibe, E. Ekuma-Okereke, and E. Efe-Eyefia,
“On the extended new generalized exponential distribution:
properties and applications,” FUPRE Journal of Scientific and
Industrial Research (FJSIR), vol. 3, no. 1, pp. 112–122, 2019.

[15] J. T. Eghwerido, J. &omas, and S. C. Zelibe, “&eoretical
analysis of the weibull alpha power inverted exponential
distribution: properties and applications,” Gazi University
Journal of Science, vol. 33, no. 1, pp. 265–277, 2020.

[16] A. S. Hassan, R. E. Mohamd, M. Elgarhy, and A. Fayomi,
“Alpha power transformed extended exponential distribution:
properties and applications,”@e Journal of Nonlinear Science
and Applications, vol. 12, no. 4, pp. 239–251, 2018.

[17] J. Eghwerido, S. Zelibe, and E. Efe-Eyefia, “Gompertz-alpha
power inverted exponential distribution: properties and ap-
plications,” @ailand Statistician, vol. 18, no. 3, pp. 319–332,
2020.

[18] B. Singh and R. Goel, “&e beta inverted exponential dis-
tribution: properties and applications,” International Journal
of Agile Systems and Management, vol. 2, no. 5, pp. 132–141,
2015.

[19] P. Oguntunde, O. Balogun, H. Okagbue, and S. Bishop, “&e
weibull-exponential distribution: its properties and applica-
tions,” Journal of Applied Sciences, vol. 15, no. 11,
pp. 1305–1311, 2015.

[20] J. &omas, S. C. Zelibe, and E. Eyefia, “Kumaraswamy alpha
power inverted exponential distribution: properties and ap-
plications,” Istatistik Journal of the Turkish Statistical Asso-
ciation, vol. 12, no. 1, pp. 35–48, 2019.

[21] H. M. Salem and M. Selim, “&e generalized weibull-expo-
nential distribution: properties and applications,” Interna-
tional Journal of Statistics and Applications, vol. 4, no. 2,
pp. 102–112, 2014.

Journal of Mathematics 9


