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In this paper, the concept of belligerent fuzzy GE-flter of GE-algebra is introduced. Te relationship between a fuzzy GE-flter of
GE-algebra and a belligerent fuzzy GE-flter of GE-algebra is given. Further, it is shown that a fnite product (union) of belligerent
fuzzy GE-flters of GE-algebras is a belligerent fuzzy GE-flter of the fnite product (union) of GE-algebras.

1. Introduction

In 1966, Diego [1] introduced the concept of Hilbert algebras.
Diego discussed several properties of Hilbert algebras and
deductive systems. More studies on the ideas of Hilbert al-
gebras and deductive systems were performed by Busneag [2,
3]. Bandaru discussed a new algebraic structure, called GE-
algebra [4] as a generalization of Hilbert algebra. Filters, upper
sets, and congruence kernels in GE-algebra are considered, and
the congruence kernel of transitive GE-algebra is characterized.
Te concept of belligerent GE-flter inGE-algebra is introduced
by Bandaru [5]. Relationships between a belligerent GE-flter
and a GE-flter are established, and the necessary and sufcient
conditions on which a GE-flter to be a belligerent GE-flter are
presented. Further, diferent properties of the union and the
product of GE-algebras are investigated.

Zadeh, in 1965, studied the notion of fuzzy sets [6]. Fol-
lowing this, Rosenfeld in 1971, used this theory and has for-
mulated the concept of a fuzzy subgroup of a group [7]. Since
then, many researchers have been studying several algebraic
structures including fuzzy subalgebras, fuzzy subgroups, fuzzy
ideals, and fuzzy flters. Jun and Hong in [8] studied the
concept of a fuzzy deductive system in Hilbert algebra. Akram
and Zham [9] studied sensible fuzzy ideals of BCK-algebras
with respect to a t-conorm. Akram and Dar [10] investigated
T-fuzzy ideals in BCI-algebras. Additionally, Jun, Akram, and
Pasha [11] presented intuitionistic fuzzy quasi-associative

ideals in BCI-algebras. Recently, Alemayehu and EShetie [12]
studied Fuzzy ideals and fuzzy flters of GE-algebras.

Motivated by the above results, in this research, the
concept of belligerent fuzzy GE-flter of GE-algebra is in-
troduced. Te relationship between a fuzzy GE-flter of GE-
algebra and a belligerent fuzzy GE-flter of GE-algebra is
given. Further, it is shown that a fnite product (union) of
belligerent fuzzy GE-flters of GE-algebras is a belligerent
fuzzy GE-flter of a fnite product (union) of GE-algebras.

2. Preliminaries

Tis section deals on defnitions and basic results that we use
in the sequel such as the concepts on GE-algebras, GE-flters
of GE-algebras, belligerent GE-flters, and fuzzy flters on a
given set.

Defnition 1 (see [13]). Hilbert algebra is an algebra (G, ∗, 1)

of type (2, 0) such that the following axioms hold, for all
a, b, c ∈ G.

(1) a∗ (b∗ a) � 1,
(2) (a∗ (b∗ c))∗ ((a∗ b)∗ (a∗ c)) � 1,
(3) if (a∗ b) � (b∗ a) � 1, then a � b.

Defnition 2 (see [4]). GE-algebra is a non-empty set G with
a constant 1 and a binary operation ∗ satisfying axioms:
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(1) (a∗ a) � 1,
(2) (1∗ a) � a ,
(3) a∗ (b∗ c) � a∗ (b∗ (a∗ c)), for all a, b, c ∈ G.

Defnition 3 (see [4]). GE-algebra (G, ∗ , 1) is said to be
transitive if it satisfes

(a∗ b)≤ (c∗ a)∗ (c∗ b), (1)

for all a, b, c ∈ G.

Theorem 1 (see [4]). In a transitive GE-algebra (G, ∗ , 1),
for all a, b, c ∈ G, the following conditions hold

(1) a≤ bimplies(c∗ a)≤ (c∗ b)

(2) (a∗ b)≤ (b∗ c)∗ (a∗ c)

(3) ((a∗ b)∗ b)∗ c≤ (a∗ c)

(4) a≤ bandb≤ cimpliesa≤ c.

Defnition 4 (see [4]). GE-algebra (G, ∗ , 1) is said to be
commutative if it satisfes

(a∗ b)∗ b � (b∗ a)∗ a, (2)

for all a, b ∈ G.

Theorem 2 (see [4]). Every commutative GE-algebra is a
generalized Hilbert algebra.

Defnition 5 (see [4]). A subset S of GE-algebra G is called a
GE-flter of G if it satisfes the following:

(1) 1 ∈ S

(2) if a∗ b ∈ S and a ∈ S, then b ∈ S.

Theorem 3 (see [4]). Let S be a flter of G. If a≤ b and a ∈ S,
then b ∈ S.

Theorem 4 (see [4]). A non-empty subset S of GE-algebra G

is a flter ofG if and only if it satisfes 1 ∈ S, a∗ (b∗ c) ∈ S and
b ∈ S implies that (a∗ c) ∈ S for all a, b, c ∈ G.

Defnition 6 (see [5]). A subset S of GE-algebra G is called a
belligerent GE-flter of G if it satisfes 1 ∈ S and

a∗ (b∗ c) ∈ S and (a∗ b) ∈ S⇒(a∗ c) ∈ S, (3)

for all a, b, c ∈ G.

Defnition 7 (see [5]). GE-algebra G is said to be left ex-
changeable if a∗ (b∗ c) � b∗ (a∗ c) for all a, b, c ∈ G.

Theorem 5 (see [5]). Let S be a GE-flter of a transitive and
left exchangeable GE-algebra G. If S satisfes the condition,
a∗ (a∗ b) ∈ S implies that (a∗ b) ∈ S for all a, b ∈ G, then S

is a belligerent GE-flter of G.

Recall that, for any set G a function,
ζ: G⟶ ([0, 1],∧,∨) is called a fuzzy subset of G [6], where

[0, 1] is a unit interval, δ∧] � min δ, ]{ } and δ∨] � max δ, ]{ }

for all δ, ] ∈ [0, 1]. A fuzzy subset ] of G is proper if it is a
nonconstant function. A fuzzy subset ] such that ](a) � 0
for all a ∈ G is an improper fuzzy subset. Let
ζ: G⟶ ([0, 1]. For every δ ∈ [0, 1], the level subset ζ of G

is ζδ � |a ∈ G|δ ≤ ζ(a)}.

Defnition 8 (see [14, 15]). Let y ∈ G, 0〈α≤ 1. A fuzzy
point yα of G is a fuzzy subset that is defned as

yα(b) �
α, if b � y,

0, otherwise.
 (4)

Defnition 9 (see [16]). A fuzzy subset ζ of a bounded lattice
G is said to be a fuzzy ideal of G, if for all a, b ∈ G,

(1) ζ(0) � 1
(2) ζ(a∧b)≥ ζ(a)∨ζ(b)

(3) ζ(a∨b)≥ ζ(a)∧ζ(b).

In [16], Swamy and Raju discussed that, a fuzzy subset ζ
of a bounded lattice G is a fuzzy ideal if and only if ζ(0) � 1
and ζ(a∨b) � ζ(a)∧ζ(b), for all a, b ∈ G.

Theorem 6 (see [16]). Let ζ be a fuzzy subset of G, then ζ is a
fuzzy ideal of G if and only if, for any α ∈ [0, 1], ζα is an ideal
of G.

Defnition 10 (see [17]). A fuzzy subset ζ of a bounded lattice
G is said to be a fuzzy flter of G, if for all a, b ∈ G,

(1) ζ(1) � 1
(2) ζ(a∧b)≥ ζ(a)∨ζ(b)

(3) ζ(a∨b)≥ ζ(a)∧ζ(b).

3. Belligerent Fuzzy GE-Filters

In this topic, the concept of belligerent fuzzy GE-flter
of GE-algebra is introduced. Te relationship between a
fuzzy GE-flter of GE-algebra and a belligerent fuzzy GE-
flter of GE-algebra is given.

Some concepts of about fuzzy GE-flters of GE-algebras
are recalled.

Defnition 11 (see [12]). Let ζ be a fuzzy subset of a GE-
algebra G, then ζ is called a fuzzy GE-flter on G if the
following conditions hold for any x, y ∈ G:

(1) ζ(1) � 1,
(2) ζ(y)≥ ζ(x∗y)∧ζ(x).

Lemma 1 (see [12]). A fuzzy GE-flter ζ on a GE-algebra G

satisfes the following if x≤y, then ζ(x)≤ ζ(y) for all
x, y ∈ G.

Theorem 7 (see [12]). Let ζ be a fuzzy subset of G such that
ζ(1) � 1 and ζ(b∗ c)≥ ζ(a)∧ζ(a∗ (b∗ c)). Ten, ζ is a fuzzy
GE-flter.
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Defnition 12. Let G be GE-algebra and μ be a fuzzy subset
on G, then ζ is said to be a belligerent fuzzy GE-flter on G if
for any a, b ∈ G.

(1) ζ(1) � 1,
(2) ζ(a∗ c)≥ ζ(a∗ (b∗ c))∧ζ(a∗ b).

Example 1. Consider a set G � a, b, c, d, e, f, 1  and defne a
binary operation ∗ on G as in Table 1.

It is easy to check that G is GE-algebra. Now, defne a
fuzzy subset ζ on G by ζ(1) � 1, ζ(a) � ζ(b) � ζ(f) � 0.9,
and ζ(c) � ζ(d) � ζ(e) � 0.8. It is easy to verify that ζ is a
belligerent fuzzy GE-flter on G.

Te following results show that the relation between
belligerent fuzzy GE-flter and fuzzy GE-flter.

Theorem 8. ζ is a belligerent fuzzy GE-flter of GE-algebra G

if and only if, ∀α ∈ [0, 1], ζα is a belligerent GE-flter.

Proof. Suppose ζ be a belligerent fuzzy GE-flter of GE-
algebra G, then ζ(1) � 1. Tis implies 1 ∈ ζ1
⊆ζα,whereα ∈ [0, 1]. Let a, b, c ∈ G such that a∗ (b∗ c) ∈ ζα
and (a∗ b) ∈ ζα, then ζ(a∗ (b∗ c))≥ α and ζ(a∗ b)≥ α, so
that ζ(a∗ c)≥ ζ(a∗ (b∗ c))∧ζ(a∗ b)≥ α; thus, (a∗ c) ∈ ζα.
Hence ζα is belligerent GE-flter.

Conversely, suppose that ζα be a belligerent GE-flter of
GE-algebra G. Since 1 ∈ ζα for all α ∈ [0, 1], 1 ∈ ζ1. Hence,
ζ(1) � 1. Let a, b, c ∈ G such that ζ(a∗ (b∗ c))∧ζ(a∗ b) � α
for all α ∈ [0, 1]. Clearly, ζ(a∗ (b∗ c))≥ α and ζ(a∗ b)≥ α.
So, a∗ (b∗ c) ∈ ζα and (a∗ b) ∈ ζα which shows that
(a∗ b) ∈ ζα. Consequently, ζ(a∗ b)≥ α � ζ(a∗ (b∗ c))

∧ζ(a∗ b). Hence ζ is a belligerent fuzzy GE-flter. □

Corollary 1. K is a belligerent GE-flter of GE-algebra G if
and only if χK is a belligerent fuzzy GE-flter.

Theorem  . Let ζ be a belligerent fuzzy GE-flter of GE-
algebra G, then ζ is a fuzzy GE-flter.

Proof. Since ζ(1) � 1 and ζ is a belligerent fuzzy GE-flter of
G, we have ζ(1∗ b)≥ ζ(1∗ (a∗ b))∧ζ(1∗ a) which means
ζ(b)≥ ζ(a∗ b)∧ζ(a). So, ζ is a fuzzy GE-flter. But the
converse of this theorem may not be true. □

Example 2. Consider set G and the binary operation ∗ on G

given in the above examples (3) and (5). Defne a fuzzy GE-
flter ζ on G by ζ(1) � 1, ζ(b) � 0.8, ζ(a) � ζ(c) �

ζ(d) � ζ(e) � ζ(f) � 0.6. Since ζ(d∗f) � ζ(f) �

0.6≤ ζ(d∗ (c∗f))∧ζ(d∗ c) � ζ(d∗ (1))∧ζ(1) � ζ(1)∧
ζ(1) � 1∧1 � 1. Tis implies μ is not a belligerent fuzzy GE-
flter on G.

Let G be GE-algebra, and ζ be any fuzzy subset of G. Te
following equation is considered as

ζ((a∗ b)∗ (a∗ c))≥ ζ(a∗ (b∗ c))foranya, b, c ∈ G. (5)

Any fuzzy GE-flter cannot satisfy equation (5), so we
look at the following examples:

Example 3. Consider the GE-algebra G in Example 1 and
fuzzy GE-flters ζ on G as ζ(1) � 1 � ζ(b), ζ(a) � ζ(c) �

ζ(d) � ζ(e) � ζ(f) � 0.5 does not satisfes equation (1),
since ζ(d∗ (c∗f)) � ζ(d∗ 1) � ζ(1) � 1 and ζ((d∗ c)∗
(d∗f)) � ζ(1∗f) � ζ(f) � 0.5. Tus ζ(d∗ (c∗f))≥ ζ
((d∗ c)∗ (d∗f)).

Te next result shows that the condition on which a
fuzzy GE-flter to be a belligerent fuzzy GE-flter.

Theorem 10. Let ζ be a fuzzy GE-flter of GE-algebra G such
that ζ((a∗ b)∗ (a∗ c))≥ ζ(a∗ (b∗ c)), then ζ is a belligerent
fuzzy GE-flter of G.

Proof. Since ζ is a fuzzy GE-flter of G, ζ(1) � 1 and
ζ(a∗ c)≥ ζ((a∗ b)∗ (a∗ c))∧ζ(a∗ b). Also, from the as-
sumption we have ζ((a∗ b)∗ (a∗ c))∧ζ(a∗ b)

≥ ζ(a∗ (b∗ c))∧ζ(a∗ b) so that ζ is a belligerent fuzzy GE-
flter of G. □

Corollary 2. In belligerent GE-algebra, the trivial fuzzy GE-
flter is a belligerent fuzzy GE-flter.

GE-algebra G is said to be left exchangeable and transitive
if a∗ (b∗ c) � b∗ (a∗ c) and (a∗ b)≤ (c∗ a)∗ (c∗ b) for
all a, b, c ∈ G, respectively [4, 5].

Theorem 11. Te trivial fuzzy GE-flter of transitive GE-
algebra G is a belligerent fuzzy GE-flter.

Proof. Let ζ be the trivial fuzzy GE-flter on transitive GE-algebra
G. Let x, y, z ∈ G, then ζ(x∗ z) � 1 � 1∧1 � ζ(x∗ (y∗ z))∧
ζ(x∗y). Hence, ζ is a belligerent fuzzy GE-flter.

Te fuzzy subset given in Teorem 7 is not a belligerent
fuzzy GE-flter. For if we consider set G and the binary
operation ∗ on G given in the above example and defne a
fuzzy subset ζ on G by ζ(1) � ζ(f) � 1, ζ(a) � ζ(b) �

ζ(c) � ζ(d) � ζ(f) � 0.7. Since ζ(c∗ b) � ζ(b) � 0.7≤ 1 �

1∧1 � ζ(1)∧ζ(c∗ 1) � ζ(c∗d)∧ζ (c∗ (d∗ b)). Hence, ζ is
not belligerent fuzzy GE-flter on G. □

Theorem 12. Let ζ be a fuzzy GE-flter on G such that
ζ(a∗ b)≥ ζ(a∗ (a∗ b)). If G is transitive and left ex-
changeable, then ζ((a∗ b)∗ (a∗ c))≥ ζ(a∗ (b∗ c)).

Proof. Assume that G is transitive and left exchangeable and
ζ be a fuzzy GE-flter on G such that ζ(a∗ b)≥
ζ(a∗ (a∗ b)). From the transitivity property of G, we get
ζ(b∗ c)≤ ζ((a∗ b)∗ (a∗ c)) and ζ(a∗ (b∗ c))≤ ζ

Table 1: A binary operation ∗ defned on a set G.

∗ a b c d e f 1
a 1 1 c e e 1 1
b a 1 d d d f 1
c 1 b 1 1 1 1 1
d a 1 1 1 1 z 1
e a b 1 1 1 1 1
f a b e d e 1 1
1 a b c d e f 1
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(a∗ ((a∗ b)∗ (a∗ c))). From the left exchangeable property
of G, we get ζ(a∗ ((a∗ b)∗ (a∗ c))) � ζ(a∗ (a∗
((a∗ b)∗ c))). Now, applying the given condition in the
theorem and the left exchangeable property of G yields
ζ(a∗ (a∗ ((a∗ b)∗ c)))≤ ζ(a∗ ((a∗ b)∗ c)) � ζ((a∗ b)∗
(a∗ c)). □

Theorem 13. Let ζ be a fuzzy GE-flter of a transitive and left
exchangeable GE-algebra G such that ζ(a∗ b)≥
ζ(a∗ (a∗ b)), then ζ is a belligerent fuzzy GE-flter of G.

Proof. Suppose the conditions in the theorem hold, then, by
Teorem 12 , we get ζ((a∗ b)∗ (a∗ c))≥ ζ(a∗ (b∗ c)) and,
hence, from Teorem 10, we conclude that ζ is a belligerent
fuzzy GE-flter of G.

For a point u and a non-empty fuzzy subset ζ of GE-
algebra G, defne a fuzzy subset ζu on G as

ζu(a) � ζ(u∗ a)for all a ∈ G. (6)
□

Lemma 2. If ζ is a fuzzy GE-flter of GE-algebra, then
ζu(1) � ζu(u) � 1.

If ζ is a fuzzy GE-flter of G, then fuzzy subset ζu may not
be a fuzzy GE-flter.

Example 4. Let G � a, b, c, d, e, f, 1  be a GE-algebra of
Example 1. A fuzzy subset ζ of G, such as ζ(1) � ζ(b) � 1
and ζ(a) � ζ(c) � ζ(d) � ζ(e) � ζ(f) � 0.4, is a fuzzy GE-
flter of G but ζd is not a fuzzy GE-flter. Since
ζd(c∗ a) � ζ(d∗ (c∗ a)) � ζ(d∗ 1) � ζ(1) � 1, ζd(c) �

ζ(d∗ c) � ζ(1) � 1, and ζd(a) � ζ(d∗ a) � ζ(a) � 0.4. Tis
implies ζd(c∗ a)∧ζd(c)〉ζd(a). Tus, ζd is not a fuzzy GE-
flter of G.

However, we give the conditions that ζd is a fuzzy GE-
flter of G in the following result.

Theorem 14. Let ζ be a belligerent fuzzy GE-flter on G, then
ζu is a fuzzy GE-flter on G.

Proof. Let u, a, b ∈ G. Since ζ is a belligerent fuzzy GE-flter
on G, we obtain that ζ(u∗ b)≥ ζ(u∗ (a∗ b))∧ζ(u∗ a), i.e.,
ζu(b)≥ ζu(a∗ b)∧ζu(a). So, ζu is a fuzzy GE-flter on G.

We suggest the conditions under which a fuzzy GE-flter
can be a belligerent fuzzy GE-flter. □

Theorem 15. Let ζ be a fuzzy subset on G, ζ(1) � 1 and for
any u ∈ G, ζu be a fuzzy GE-flter on G. Ten, ζ is a belligerent
fuzzy GE-flter on G.

Proof. Since ζu is a fuzzy GE-flter on G, for all a ∈ G, we get

ζa(c)≥ ζa(b∗ c)∧ζa(b). (7)

So that ζ(a∗ c)≥ ζ(a∗ (b∗ c))∧ζ(a∗ b). Tus, ζ is a bel-
ligerent fuzzy GE-flter on G. □

Corollary 2. Let ζ be a fuzzy GE-flter and ζu be a fuzzy GE-
flter ofG for every u ∈ G, then ζ is a belligerent fuzzy GE-flter
on G.

Theorem 16. Let ζ be a belligerent fuzzy GE-flter on G, then
fuzzy subset ζu, where u ∈ G is the smallest fuzzy GE-flter on
G such that ζ ⊆ ζu.

Proof. From Teorem 14, ζu is a fuzzy GE-flter on G. For
any u, a ∈ G, we obtain that a≤ (u∗ a) and hence,
ζ(a)≤ ζ(u∗ a) � ζu(a). Hence ζ⊆ζu. Let η be a fuzzy GE-
flter on G such that ζ⊆η and η(u) � 1. Hence ζ⊆ζu. Now, for
any a ∈ G, ζu(a) � ζ(u∗ a)⊆η(u∗ a) � η(u∗ a)∧ η(u)≤ η
(a). Tis implies ζu is the least fuzzy GE-flter of G. □

Theorem 17. Let h: G1⟶ G2 be a GE-morphism from GE-
flters G1 to G2 and ζ be a belligerent fuzzy GE-flter of G2,
then h−1(ζ) is a belligerent fuzzy GE-flter of G1.

Proof. Suppose the conditions hold. Since h−1(ζ)(a) �

ζ(h(a)) for all a ∈ G1 and h is a morphism, h−1(ζ)(1) �

ζ(h(1)) � ζ(1) and

h
− 1

(ζ)(a∗ b)∧h−1
(μ)(a) � ζ(h(a∗ b))∧ζ(h(a))

� ζ(h(a)∗ h(b))∧ζ(h(a)) ≤ ζ(h(b))

� h
− 1

(ζ)(b).

(8)

Hence, h−1(ζ) is a fuzzy GE-flter of G1. Also,

h
− 1

(ζ)(a∗ c) � ζ(h(a∗ c))

� ζ(h(x)∗ h(z))≥ ζ(h(x)∗ (h(y)

∗ h(z)))∧ζ(h(x)∗ h(y))

� ζ(h(a)∗ h(b∗ c))∧ζ(h(a∗ b))

� ζ(h(a)∗ h(b∗ c))∧ζ(h(x∗y))

� ζ(h(x∗ (y∗ z)))∧ζ(h(x∗y))

� h
−1

(ζ)(a∗ (b∗ c))∧h−1
(ζ)(a∗ b),

(9)

so that h−1(ζ) is a belligerent fuzzy GE-flter of G1. □

4. DirectProductofFiniteBelligerentFuzzyGE-
Filters of GE-Algebras

In this section, it is discussed that the fnite product (union)
of belligerent fuzzy GE-flters of GE-algebras becomes a
belligerent fuzzy GE-flter of the fnite product (union) of
GE-algebras. Further the sufcient and necessary conditions
on which the fnite product of a belligerent GE-flter of a
fnite product of GE-algebras becomes a belligerent fuzzy
GE-flter is given.

Defnition 13. Let ζ1: G1⟶ [0, 1] and ζ2: G2⟶ [0, 1] be
fuzzy subsets of GE-algebras G1 and G2, respectively. Ten
the direct product of fuzzy subsets ζ1 and ζ2 is denoted by
(ζ1 × ζ2): (G1 × G2)⟶ [0, 1] and is defned as

ζ1 × ζ2(  a1, a2(  � ζ1 a1( ∧ζ2 a2( , (10)

for any a1 ∈ G1 and a2 ∈ G2.

4 Journal of Mathematics



Defnition 14. Let ζ1, ζ2, ζ3, . . . , ζn be n fuzzy subsets of GE-
algebras G1, G2, G3, . . . , Gn, respectively. Ten the direct
product of fnite fuzzy subsets of GE-algebras is denoted by
ζ1 × ζ2 × ζ3 × · · · × ζn and is defned as

ζ1 × ζ2 × ζ3 × · · · × ζn: G1 × G2 × G3 × · · · × Gn⟶ [0, 1],

(11)

ζ1 × ζ2 × · · · × ζn(a1, a2, a3, . . . , an) � ζ1(a1)∧ζ2(a2)∧ . . .

∧ζn(an) for any a1 ∈ G1, a2 ∈ G2, . . . , an ∈ Gn.

Theorem 18. Let ζ1, ζ2, ζ3, . . . , ζn be n (belligerent) fuzzy
GE-flters of GE-algebras G1, G2, G3, . . . , Gn, respectively.
Ten ζ1 × ζ2 × ζ3 × · · · × ζn is (belligerent) fuzzy GE-flter of
G1 × G2 × G3 × · · · × Gn.

Proof. Suppose that the assumptions hold and let
a1, b1, c1 ∈ G1; a2, b2, c2 ∈ G2, . . . , an, bn, cn ∈ Gn. Defne a
binary operation ⊛ on G1 × G2 × · · · × Gn by

a1, a2, , . . . , an( ⊛ b1, b2, . . . , bn(  � a1∗1b1, a2∗2b2, . . . , an∗nbn( ,

(12)

where ∗1,∗2, . . . ,∗n are the binary operations on
G1, G2, . . . , Gn, respectively. Since ζ i is fuzzy GE-flter for
each i, 1≤ i≤ n, it is trivial to show that (ζ1 × ζ2) × · · · ×

ζn(a1, a2, . . . , an)≥ (ζ1 × ζ2) × · · · × ζn((b1, b2, . . . , bn)⊛
(a1, a2, . . . , an))∧(ζ1 × ζ2) × · · · × ζn(b1, b2, . . . , bn). From
the given hypothesis ζ i is a belligerent fuzzy GE-flter for
each i, 1≤ i≤ n. So,

ζ1 a1∗1b1( ≥ ζ1 a1∗1 c1∗1b1( ( ∧ζ1 a1∗1c1( ,

ζ2 a2∗2b2( ≥ ζ2 a2∗2 c2∗2b2( ( ∧ζ2 a2∗2c2( ,

·

·

·

ζn an∗nbn( ≥ ζn an∗n cn∗nbn( ( ∧ζn an∗ncn( .

(13)

After some steps it follows that

ζ1 × ζ2(  × · · · × ζn a1, a2, . . . , an( ⊛ b1, b2, . . . , bn( ( 

≥ ζ1 × ζ2(  × · · · × ζn a1, a2, . . . , an( (

⊛ c1, c2, . . . , cn( ⊛ b1, b2, . . . , bn( ( 

∧ ζ1 × ζ2(  × · · · × ζn a1, a2, . . . , an( ⊛ c1, c2, . . . , cn( ( .

(14)

Terefore, (ζ1 × ζ2) × · · · × ζn is a belligerent fuzzy GE-
flter of (G1 × G2) × · · · × Gn. □

Example 5. Let G1 � 1, a, b, c, d{ } and G2 � 1, a, b, c, d, e{ } be
GE-algebras where the binary operations ∗1 and ∗2 are
defned by Tables 2 and 3.

Ten, (G1×G2)� (1,1),(1,a),(1,b),(1,c),(1,d),(1,e),{

(a,1),(a,e),(a,a),(a,b),(a,c),(a,d),(b,1),(b,e),(b,a), (b,b),

(b,c),(b,d),(c,1),(c,e),(c,a),(c,b),(c,c), (c,d),(d,1),(d,e),

(d,a),(d,b),(d,c),(d,d)} is GE-algebra with point wise
operation.

Now, defne ζ1: G1⟶ [0, 1] by ζ1(1) � ζ1(b) � 1,

ζ1(a) � ζ1(c) � ζ1(d) � 0.3 and ζ2: G2⟶ [0, 1] by
ζ2(1) � ζ2(e) � ζ2(a) � 1, ζ2(b) � ζ2(c) � ζ2(d) � 0.4.
Clearly, ζ1 and ζ2 are fuzzy GE-flters of G1 and G2, re-
spectively. Now, we defne (ζ1 × ζ2): (G1 × G2)⟶ [0, 1]

by (ζ1 × ζ2)(1, 1) � (ζ1 × μ2)(1, e) � (ζ1 × ζ2)(1, a) � (ζ1 ×

ζ2) (b, 1) � (ζ1 × ζ2)(b, e) � (ζ1 × ζ2)(b, a) � 1,

ζ1 × ζ2( (1, b) � ζ1 × ζ2( (1, c)

� ζ1 × ζ2( (1, d)

� ζ1 × ζ2( (b, b)

� ζ1 × ζ2( (b, c)

� ζ1 × ζ2( (b, d)

� 0.4.

(15)

(ζ1 × ζ2)(a, 1) � (ζ1 × ζ2) (a, e) � (ζ1 × ζ2)(a, b) �

(ζ1 × ζ2)(a, c) � (ζ1 × ζ2)(a, d) � (ζ1 × ζ2)(c, 1) � (ζ1 × ζ2)
(c, e) � (ζ1 × ζ2)(c, b) � (ζ1 × ζ2)(c, c) � (ζ1 × ζ2)(c, d) �

(ζ1 × ζ2)(d, 1) � (ζ1 × ζ2)(d, e) � (ζ1 × ζ2)(d, b) � (ζ1 ×ζ2)
(d, c) � (ζ1 × ζ2)(d, d) � 0.3. Ten, clearly, (ζ1 × ζ2) is a
fuzzy GE-flter of (G1 × G2).

Theorem 1 . If ζ1 and ζ2 are (belligerent) fuzzy GE-flters of
G1 and G2, respectively, then the union (ζ1 ∪ ζ2) is a (bel-
ligerent) fuzzy GE-flter of (G1 ∪G2).

Proof. Clearly, (ζ1 ∪ ζ2)(1) � ζ1(1)∨ζ2(1) � 1∨1 � 1. Recall
that for any a, b ∈ (G1 ∪G2), defne a binary operation ∗ on
(G1 ∪G2) as

(a∗ b) �

a∗1b, if a, b ∈ G1,

a∗2b, if a, b ∈ G2,

b if a and b are not belong to the sameGE − algebra.

⎧⎪⎨

⎪⎩

Now,

Table 2

∗1 1 w x y z

1 1 w x y z

w 1 1 x 1 1
x 1 z 1 y z

y 1 w x 1 w

z 1 1 x 1 1

Table 3: A binary operation ∗ 2 defned on a set G2.

∗2 1 r w x y z

1 1 r w x y z

r 1 1 1 x y z

w 1 r 1 y y y

x 1 1 w 1 1 1
y 1 r 1 1 1 1
z 1 r 1 1 1 1
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ζ1 ∪ ζ2( (b) � ζ1(b)∨ζ2(b)≥ ζ1(a∗ b)∧ζ1(a)( 

∨ ζ2(a∗ b)∧ζ2(a)( 

� ζ1∨ζ2( (a∗ b)∧ ζ1∨ζ2( (a)

� ζ1 ∪ ζ2( (a∗ b)∧ ζ1 ∪ ζ2( (a).

(16)

Hence, (ζ1 ∪ ζ2) is a fuzzy GE-flter of (G1 ∪G2). Next,
assume that ζ1 and ζ2 be belligerent fuzzy GE-flters of G1
and G2, respectively. Ten

ζ1 ∪ ζ2( (a∗ c) � ζ1 a∗1c( ∨ζ2 a∗2c( 

≥ ζ1 a∗1 b∗1c( ( ∧ζ1 a∗1b( ( 

∨ ζ2 a∗2 b∗2c( ( ∧ζ2 a∗2b( ( 

� ζ1∨ζ2( (a∗ (b∗ c))∧ ζ1∨ζ2( (a∗ b)

� ζ1 ∪ ζ2( (a∗ (b∗ c))∧ ζ1 ∪ ζ2( (a∗ b),

(17)

so that ζ1 ∪ ζ2 is a belligerent fuzzy GE-flter of G1 ∪G2. □

Theorem 20. Let ζ1, ζ2, ζ2, . . . , ζn be n fuzzy subsets of GE-
algebras G1, G2, G3, . . . , Gn, respectively, and lett ∈ [0, 1],
then(ζ1 × ζ2 × ζ2 × · · · × ζn)t � (ζ1)t × (ζ2)t × (ζ2)t ×· · · × (ζn)t.

Proof. Let t ∈ [0, 1] and for any element

a1, a2, a3, . . . , an(  ∈ ζ1 × ζ2 × ζ3 × · · · × ζn( t

⇔ ζ1 × ζ2 × ζ3 × · · · × ζn(  a1, a2, a3, . . . , an( ≥ t

⇔ζ1 a1( ∧ζ2 a2( ∧ζ3 a3( ∧ . . .∧ζn an( ≥ t

⇔ζ1 a1( ≥ t, ζ2 a2( ≥ t, ζ3 a3( ≥ t, . . . , ζn an( ≥ t

⇔a1 ∈ ζ1( t, a2 ∈ ζ2( t, a3 ∈ ζ3( t, . . . , an ∈ ζn( t

⇔ a1, a2, a3, . . . , an(  ∈ ζ1( t × ζ2( t × ζ3( t × · · · × ζn( t.

(18)

Hence (ζ1 × ζ2 × ζ2 × · · · × ζn)t � (ζ1)t × (ζ2)t×

(ζ2)t × · · · × (ζn)t. □

Theorem 21. Let ζ1, ζ2, ζ2, . . . , ζn be n fuzzy subsets of GE-
algebra G1, G2, G3, . . . , Gn, respectively. Ten ζ1 × ζ2 × ζ2 ×

· · · × ζn is a fuzzy GE-flter of a GE-algebra G1 × G2 × G3 ×

· · · × Gn if and only if for any t ∈ [0, 1], (ζ1 × ζ2× ζ2 × · · · ×

ζn)t is a GE-flter of a GE-algebra (G1 × G2) × G3 × · · · × Gn.

Proof. Suppose that (ζ1 × ζ2 × ζ2 × · · · × ζn) is a fuzzy GE-
flter of GE-algebra (G1 × G2), G3 × · · · × Gn. Since
(ζ1 × ζ2 × ζ2 × · · · × ζn)(1) � (ζ1(1)∧ζ2(1)∧ζ2(1)∧
. . .∧ζn)(1) � 1. Tis implies 1 ∈ (ζ1 × ζ2 × ζ2 × · · · × ζn)t.

If (a∗ b) ∈ (ζ1 × ζ2 × ζ2 × · · · × ζn)t and a ∈ (ζ1×
ζ2 × ζ2 × · · · × ζn)t, then (ζ1 × ζ2 × ζ2 × · · · × ζn)(a∗ b)≥ t,
(ζ1 × ζ2 × ζ2 × · · · × ζn)(a)≥ t. Tis implies (ζ1 × ζ2 × ζ2 ×

· · · × ζn)(a∗ b)∧ (ζ1 × ζ2 × ζ2 × · · · × ζn)(a)≥ t. Tis implies
(ζ1 × ζ2 × ζ2 × · · · × ζn)(b)≥ t. Tus, y ∈ (μ1 × μ2× ζ3×
· · · × ζn)t. Tus, (ζ1 × ζ2) × ζ3 × · · · × ζn is a GE-flter of
(G1 × G2) × G3 × · · · × Gn.

Conversely, suppose that (ζ1 × ζ2 × ζ3 × · · · × ζn)t is a
GE-flter. Clearly (ζ1 × ζ2 × ζ3 × · · · × ζn)(1) � 1. Let (ζ1 ×

ζ2 × ζ3 × · · · × ζn)(a∗ b)∧(ζ1 × ζ2× ζ3 × · · · × ζn)(a) � t.
Tis implies (ζ1 × ζ2× ζ3 × · · · × ζn)(a∗ b)≥ t, (ζ1 × ζ2×
ζ3 × · · · × ζn)(a)≥ t. Tis implies a∗ b ∈ (ζ1 × ζ2× ζ2 × · · · ×

ζn)t and a ∈ (ζ1 × ζ2 × ζ2 × · · · × ζn)t. Tus, b ∈ (ζ1 × ζ2×
ζ2 × · · · × ζn)t. Tis implies (ζ1 × ζ2 × ζ3 × · · · × ζn)(b)≥ t �

(ζ1 × ζ2 × ζ3 × · · · × ζn) (a∗ b)∧(ζ1 × ζ2 × ζ3 × · · · × ζn)(a).
Tus, (ζ1 × ζ2 × ζ3 × · · · × ζn)(a∗ b)∧(ζ1 × ζ2 × ζ3 × · · ·

×ζn)(a) is a fuzzy GE-flter. □

Theorem 22. Let ζ1, ζ2, ζ2, . . . , ζn be n fuzzy subsets of GE-
algebra G1, G2, G3, . . . , Gn, respectively. Ten, (ζ1 × ζ2 × ζ3 ×

· · · × ζn) is a belligerent fuzzy GE-flter of GE-algebra (G1 ×

G2) × G3 × · · · × Gn if and only if for any t ∈ [0, 1],
(ζ1 × ζ2 × ζ2 × · · · × ζn)t is belligerent GE-flter of GE-algebra
(G1 × G2) × G3 × · · · × Gn.

Proof. Te proof of it is straight forward byTeorems 8 and
18. □

5. Conclusion and Future Work

In this paper, the concept of belligerent fuzzy GE-flters is
introduced. We investigate the relationships between fuzzy
GE-flter and a belligerent fuzzy GE-flter. Additionally
prove that that the fnite product (union) of belligerent fuzzy
GE-flters of GE-algebras becomes a belligerent fuzzy GE-
flter of the fnite product (union) of GE-algebras. We hope
in the future, we study prominent fuzzy GE-flters, im-
ploring fuzzy GE-flters, soft GE-flter, and Soft GE-ideals of
GE-algebras.
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