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In order to compare different solvers for systems of nonlinear equations, some novel goodness and qualification criteria are
defined in this paper. These use all parameters of a nonlinear solver such as convergence order, number of function
evaluations, number of iterations, CPU time, etc. To achieve the criteria, different algorithms to solve nonlinear systems are
categorised to three kinds. For any category, two criteria are defined to compare different algorithms in that category. As
numerical results show, these new criteria can use to compare different algorithms which solve systems of nonlinear equations.
Further, we present some corrected formulas for some classical efficiency indices and change them to be more applicable. Also,
some suggestions are presented about the future works.

1. Introduction

One of the attractive problems for mathematicians, engi-
neers, and physicians is finding a (the) root of systems of
nonlinear equations. A system of nonlinear equations can
be written as the following generic form:

F xð Þ = 0, ð1Þ

where F : ℝn ⟶ℝn is a vector valued function. It is known
that in general, one cannot solve (1) analytically. Hence we
have to solve it numerically or more precise by an iterative
method. Even though the classical Newton’s method to solve
(1) is a basic iterative method and widely used, but many
new iterative methods are also introduced every year. It is
well-known that the Newton’s method is a second-order
method if Jacobian of F in (1) is nonsingular in a neighbor-
hood of the solution. To show superiority of new methods
versus the Newton’s method, different criteria have been
used. Some authors use order of convergence, some use
number of iterations to achieve convergence, some use
CPU time, or a combination of some of these mentioned cri-

teria. To remove the weakness of these criteria, for algo-
rithms which solve nonlinear systems like (1), it is
important to take into account the number of required oper-
ations, because in any iteration one must solve some linear
systems. For these cases the classical efficiency index (EI) is
defined by Ostrowski [1] as

EI = p1/d , ð2Þ

where p is the order of convergence and d =mn2 + rn
wherein n is the size of the system, r is the number of func-
tional evaluations per step, andm shows the number of Jaco-
bian evaluations per step. Further, Traub [2] introduced the
operational index as

Iop = p1/op, ð3Þ

where op shows the number of required products or quo-
tients per iteration.

Except these criteria, another ones were defined by
some researchers for example Grau A and Grau N [3]
defined the computational cost per iteration as Cðα, β, nÞ =
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αkn + βrn2 + PðnÞ, where k and r represent the number of
evaluations of FðxÞ and its Jacobian matrix, respectively.
Besides, α and β are the ratios between multiplications and
evaluations required to express the value of Cðα, β, nÞ in
terms of multiplications. Also, PðnÞ is the number of products
in any iteration. By these notations, they introduced the com-
putational efficiency index (CEI) as

CEI = p1/C α,β,nð Þ, ð4Þ

where p is the order of convergence. It must be noted that,CEI
is an extension of EI, to see this extension, it is enough that one
set α = β = 1, and PðnÞ = 0.

Also, the flops-like efficiency index (FLEI) is defined by
Montazeri et al. [4] as

FLEI = p1/c, ð5Þ

where p is the order of convergence of the method, c = A
+ Bn2 + Cn which A shows the cost of LU factorization
(based on the flops). Also, n and C, respectively, are the
size of the system and the number of functional evalua-
tions per step. Finally, B is the number of Jacobian evalu-
ations in any step.

The above mentioned criteria are useful but for two
different reasons, they cannot express superiority of an
algorithm solely. The different categories of nonlinear
solvers are the first reason. Existing different parameters
in any algorithm is the second one. Further, computing
the values of parameters are not easy and straight forward.
Therefore, there are some important gaps for these exist-
ing known criteria in the literature, Iop, CEI, and FLEI.
In this paper, we introduce some new qualification criteria
to remove these lacks. For example, for algorithms which
their order of convergence is known, we present a crite-
rion which contains order of convergence, CPU time,
number of iterations, number of function evaluations,
etc. These parameters have two distinguished roles; the
positive and the negative ones. For example, order of con-
vergence shows a positive index for any algorithm while
CPU time presents a negative one. Hence our criterion
can have a fractional form as

Order of Convergence
ACombination of Negative Parameters

· ð6Þ

Further, we categorise different algorithms and for any
kind we introduce two relevant criteria to compare them
altogether. Finally, we present some corrected formulas
for the classical efficiency indices, Iop, CEI, and FLEI and
change them to be more applicable.

1.1. Test Problems. To investigate qualification of nonlinear
solvers in any category, we applied them to solve four sys-
tems of nonlinear equations. These are selected form differ-
ent areas which need solving of a nonlinear system. These
are moderately simple nonlinear systems such that any algo-
rithms can solve them. As a matter of fact, we only want to

compare the considered algorithms; therefore these test
problems were selected. Besides, all of them at least have
one known exact solution.

Test Problem 1. Suppose that FðxÞ =
ð f1ðxÞ, f2ðxÞ,⋯, f nðxÞÞt with

f i xð Þ = xixi+1xi+2 − 1, i = 1, 2,⋯, n − 2,

f n−1 xð Þ = xn−1xnx1 − 1,  

f n xð Þ = xnx1x2 − 1:  

ð7Þ

The exact zero of FðxÞ = 0 is ð1, 1,⋯, 1Þt . To solve Test
Problem 1, we set the initial guess as ð1:5,1:5,⋯, 1:5Þt .

Test Problem 2. Consider the following trigonometric
system of n nonlinear equations:

F xð Þ = f1 xð Þ, f2 xð Þ,⋯, f n xð Þð Þt , ð8Þ

with f iðxÞ = cos ðxiÞ − 1, i = 1, 2,⋯, n: One of the exact roots
of system FðxÞ = 0 is ð0, 0,⋯, 0Þt . To solve Test Problem 2,
the initial guess is selected as ð0:87,0:87,⋯, 0:87Þt .

Test Problem 3. The third test problem is FðxÞ =
ð f1ðxÞ, f2ðxÞ,⋯, f nðxÞÞt with

f i xð Þ = n xi − 3ð Þ2 + cos xi − 3ð Þ
2

−
xi − 2ð Þ

exp xi − 3ð Þ + log x2i + 1
� � , i = 1, 2,⋯, n:

ð9Þ

The exact zero of FðxÞ = 0 is ð3, 3,⋯, 3Þt . Here, the ini-
tial guess is ð−3,−3,⋯,−3Þt .

Test Problem 4. The last system is FðxÞ = 0, where FðxÞ
= ð f1ðxÞ, f2ðxÞ,⋯, f nðxÞÞt wherein

f i xð Þ = 1 − x2i
� �

+ xi 1 + xixn−2xn−1xnð Þ − 2, i = 1, 2,⋯, n:
ð10Þ

The exact zero of this system is ð1, 1,⋯, 1Þt . To solve
Test Problem 4, we set the initial guess as ð2, 2,⋯, 2Þt .

2. First Category

The first category of the nonlinear solvers contains algo-
rithms which use Jacobian evaluation, and their order of
convergence is known. The parameters of these solvers
are order of convergence (OC) which is an important
index for the method and in the investigation of quality
of the method has a positive role, number of iterations
(IT), number of total function evaluations (FE), total num-
ber of Jacobian evaluations (JE), and CPU time (CPU)
that have negative roles. The most common criteria for
these algorithms can be written as follows:

(i) Criterion 1:
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CR1 =
OC

CPU + IT ∗ FE + JEð Þ · ð11Þ

(ii) Criterion 2:

CR2 =
OC

CPU + IT + FE + JE
· ð12Þ

2.1. Some Selected Iterative Methods. To show goodness of
our criteria, we have chosen some different iterative methods
which are presented in the last two decades. We have com-
puted values of both criteria to compare qualification of these
iterative methods. Bigger qualification value of any criterion
shows the better qualification of the solver. These methods
are selected from different categories which use Jacobian of
function F. We use them to solve Test Problems 1-4.

Method 1: The classical Newton’s method (NM) is a
quadratic order convergent one which has the following
formula:

x k+1ð Þ = x kð Þ − J F x kð Þ
� �−1

F x kð Þ
� �

, ð13Þ

where J Fð·Þ shows the Jacobian matrix of function F.
Method 2 (M2): Darvishi and Barati [5] introduced the

following third order convergent method in (2007):

y kð Þ = x kð Þ − J F x kð Þ
� �−1

F x kð Þ
� �

,

x k+1ð Þ = x kð Þ − J F x kð Þ
� �−1

F x kð Þ
� �

+ F y kð Þ
� �� �

:

ð14Þ

Method 3 (M3): The following super cubic convergent
method is introduced by Darvishi and Barati [6] in (2007).
Later, Babajee et al. [7] proved that the method is in fact a
fourth order convergent method.

y kð Þ = x kð Þ − J F x kð Þ
� �−1

F x kð Þ
� �

,

x k+1ð Þ = x kð Þ − J F x kð Þ
� �−1

F x kð Þ
� �

− J F y kð Þ
� �−1

F y kð Þ
� �

:

ð15Þ

Method 4 (M4): Further, a fourth order convergent
method is introduced by Darvishi and Barati [8] in (2007) as

y kð Þ = x kð Þ − J F x kð Þ
� �−1

F x kð Þ
� �

,

z kð Þ = x kð Þ − J F x kð Þ
� �−1

F x kð Þ
� �

+ F y kð Þ
� �� �

,

x k+1ð Þ = x kð Þ −
1
6
J F x kð Þ
� �

+
2
3
J F

x kð Þ + z kð Þ

2

� �
+
1
6
J F z kð Þ
� �� 	−1

F x kð Þ
� �

:

ð16Þ

Method 5 (M5): Soleymani et al. [9] defined the follow-

ing fourth order convergent method in (2013):

y kð Þ = x kð Þ −
2
3
J F x kð Þ
� �−1

F x kð Þ
� �

,

x k+1ð Þ = x kð Þ −
1
2

3J F y kð Þ
� �

− J F x kð Þ
� �� �−1

� 3J F y kð Þ
� �

+ J F x kð Þ
� �� �

× J F x kð Þ
� �−1

F x kð Þ
� �

:

ð17Þ

Method 6 (M6): The following cubic convergent method
is introduced by Frontini and Sormani [10] in (2004):

y kð Þ = x kð Þ −
1
2
J F x kð Þ
� �−1

F x kð Þ
� �

,

x k+1ð Þ = x kð Þ − J F y kð Þ
� �−1

F x kð Þ
� �

:

ð18Þ

Method 7(M7): Cordero et al. [11] presented the follow-
ing fifth order three-step method in (2012):

y kð Þ = x kð Þ − J F x kð Þ
� �−1

F x kð Þ
� �

,

z kð Þ = x kð Þ − 2 J F x kð Þ
� �

+ J F y kð Þ
� �� �−1

F x kð Þ
� �

,

x k+1ð Þ = z kð Þ − J F y kð Þ
� �−1

F z kð Þ
� �

:

ð19Þ

Method 8(M8): In (2016) Xiao and Yin [12] introduced a
three-step, fifth order convergent method as

y kð Þ = x kð Þ + J F x kð Þ
� �−1

F x kð Þ
� �

,

z kð Þ = y kð Þ − J F x kð Þ
� �−1

F y kð Þ
� �

,

x k+1ð Þ = z kð Þ + J F y kð Þ
� �−1

− 2J F x kð Þ
� �−1

� �
F z kð Þ
� �

:

ð20Þ

Method 9 (M9): Soleymani et al. [9] in (2014) presented
the following three-step method which is a sixth order con-
vergent one:

y kð Þ = x kð Þ −
2
3
J F x kð Þ
� �−1

F x kð Þ
� �

,

z kð Þ = x kð Þ −
1
2

3J F y kð Þ
� �

− J F x kð Þ
� �� �−1

� 3J F y kð Þ
� �

+ J F x kð Þ
� �� �

× J F x kð Þ
� �−1

F x kð Þ
� �

,

x k+1ð Þ = z kð Þ −
1
2

3J F y kð Þ
� �

− J F x kð Þ
� �� �−1

�

� 3J F y kð Þ
� �

+ J F x kð Þ
� �� ��2

× J F x kð Þ
� �−1

F z kð Þ
� �

:

ð21Þ
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Method 10 (M10): As the last method, we investigate
qualification criteria for the following sixth order convergent
iterative method which is introduced by Lotfi et al. [13] in
(2015):

y kð Þ = x kð Þ − J F x kð Þ
� �−1

F x kð Þ
� �

,

z kð Þ = x kð Þ − 2 J F x kð Þ
� �

+ J F y kð Þ
� �� �−1

F x kð Þ
� �

,

x k+1ð Þ = z kð Þ −
7
2
I − 4J F x kð Þ

� �−1
J F y kð Þ
� �

+
3
2

J F x kð Þ
� �−1

J F y kð Þ
� �� �2

" #

× J F x kð Þ
� �−1

F z kð Þ
� �

:

ð22Þ

2.2. Numerical Results. As a matter of fact, our aim is show-
ing superiority of different methods on the classical New-
ton’s one. Hence any method which has better results for
the criteria will be better than the Newton’s method. In fact,
we would like to test the mentioned methods M1-M10 to
pass or fail our examinations from the criteria. Any method
which has small values for a criterion in respect with the
Newton’s method is failed from this evaluation. Also, we
can compare the methods altogether. All test problems are
solved for two different values of n, namely, n = 100,500.
The numerical results are reported for these cases as follows.

Case n = 100. Tables 1 and 2, respectively, show the
values of CR1 and CR2 to solve all test problems by iterative
Methods 1-10. From Tables 1 and 2, M9 has bigger values in
comparing with the other methods. Hence for case n = 100,
M9 acts better than the other ones.

Case n = 500. Values of our criteria, for n = 500 are
reported in Tables 3 and 4 for test problems 1-4, respec-
tively. We can see from Tables 3, and 4 that M3 is better
than the other methods for solving all test problems in both
criteria CR1 and CR2, clearly. From these tables, we con-
clude that by increasing size of the system, M3 acts better
than the other methods.

2.3. Discussion on Numerical Results for the First Category.
As we can see from Tables 1–4 four methods, namely, M3,

M7, M9, and M10 have better results among all methods.
Hence, we compared those methods altogether for different
sizes of our problems. As a matter of fact, we investigated
the qualification of these methods by increasing n. The
results are reported only for Test Problem 1. Plots of
Figure 1 shows the results graphically. As one can see from
these plots, even though methods M3, M7, and M9 have bet-
ter results for small n but by increasing the size of the prob-
lem, the third order method M3 has better results. It must be

Table 1: Values of CR1 for methods 1-10 to solve all test problems,
and n = 100.

Method Problem 1 Problem 2 Problem 3 Problem 4

NM 0.1907 0.1192 0.0636 0.1364

M2 0.3135 0.1564 0.0852 0.1880

M3 0.3181 0.2386 0.1194 0.2387

M4 0.2440 0.1831 0.0916 0.1832

M5 0.5635 0.2833 0.1410 0.2825

M6 0.3121 0.1885 0.0941 0.1883

M7 0.5704 0.2865 0.1637 0.2866

M8 0.3820 0.2292 0.1433 0.2860

M9 0.6619 0.3288 0.2198 0.4400

M10 0.6333 0.3176 0.1818 0.3169

Table 2: Values of CR2 for methods 1-10 to solve all test problems,
and n = 100.

Method Problem 1 Problem 2 Problem 3 Problem 4

NM 0.2670 0.1856 0.1084 0.2070

M2 0.4567 0.2947 0.1848 0.3350

M3 0.5281 0.4562 0.2960 0.4566

M4 0.4257 0.3688 0.2397 0.3692

M5 0.6558 0.4387 0.2601 0.4367

M6 0.4537 0.3366 0.2015 0.3360

M7 0.7390 0.5291 0.3692 0.5293

M8 0.6182 0.4623 0.3358 0.5272

M9 0.8492 0.5853 0.4514 0.6948

M10 0.8028 0.5509 0.3748 0.5486

Table 3: Values of CR1 for methods 1-10 to solve all test problems,
and n = 500.

Method Problem 1 Problem 2 Problem 3 Problem 4

NM 0.0341 0.0188 0.0098 0.0243

M2 0.0446 0.0222 0.0111 0.0262

M3 0.0566 0.0339 0.0190 0.0418

M4 0.0251 0.0150 0.0083 0.0183

M5 0.0217 0.0131 0.0073 0.0164

M6 0.0446 0.0224 0.0122 0.0268

M7 0.0452 0.0286 0.0145 0.0292

M8 0.0389 0.0228 0.0116 0.0255

M9 0.0484 0.0234 0.0137 0.0293

M10 0.0365 0.0179 0.0091 0.0183

Table 4: Values of CR2 for methods 1-10 to solve all test problems,
and n = 500.

Method Problem 1 Problem 2 Problem 3 Problem 4

NM 0.0360 0.0201 0.0106 0.0258

M2 0.0467 0.0238 0.0120 0.0279

M3 0.0609 0.0374 0.0213 0.0456

M4 0.0263 0.0159 0.0088 0.0192

M5 0.0221 0.0134 0.0075 0.0167

M6 0.0467 0.0240 0.0132 0.0285

M7 0.0461 0.0300 0.0154 0.0307

M8 0.0405 0.0240 0.0123 0.0266

M9 0.0492 0.0242 0.0143 0.0301

M10 0.0370 0.0183 0.0094 0.0188
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noted that, CPU time to compute these results is computed
in hours while the other results were obtained for CPU time
in minutes. As a conclusion on the first category, we claim
that the order of convergence cannot show the quality of a
nonlinear solver. In fact as our results show, even though
for small values of n, high order methods can be used to
solve nonlinear systems, but for large values of the size of
the problem, the moderate convergence method, namely
M3 acts better than the high order convergence methods.
Therefore for the first category, we can apply high order
method M9 for small values of n. But for large values of n,
the cubic order method M3 is the best solver. Finally, any
new method in this category must be compared with M9
for small n while for large n any comparison can be done
with M3.

2.4. Some Other Criteria for the First Category. It must be
noted that in our investigation, to introduce a new criterion,
we tested many different formulas, except CR1 and CR2.
Some other criteria which can be useful in future researches
are as follows:

(i) Criterion 3: The third criterion is defined as

CR3 = OC
CPU ∗ IT ∗ FE + JEð Þ · ð23Þ

(ii) Criterion 4: To give a big weight to the order of con-
vergence, the next criterion receives the following
formula:

CR4 =
2OC

CPU ∗ IT ∗ FE + JEð Þ · ð24Þ

There are similar interpretations for the other criteria.

(iii) Criterion 5:

CR5 =
2OC

CPU + IT + FE + JEð Þ · ð25Þ

(iv) Criterion 6:

CR6 =
OC

CPU/2ð Þ + FE + IT ∗ JEð Þ · ð26Þ

(v) Criterion 7:

CR7 =
OC

CPU/OCð Þ + FE + IT ∗ JEð Þ · ð27Þ

(vi) Criterion 8: To decrease influence of the order of
convergence, we use the following:
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Figure 1: Values of CR1 (a) and CR2 (b) for solving Test Problem 1 by algorithms M3, M7, M9, and M10.
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CR8 =
ln OCð Þ

CPU + FE + IT + JE
· ð28Þ

(vii) Criterion 9:

CR9 =
OC

CPU + FE + IT ∗ JEð Þ · ð29Þ

3. Second Category: Jacobian Free Methods

In this category, we consider Jacobian free methods which
apply to solve systems of nonlinear equations and compare
them by introducing two qualification criteria. In this cate-
gory, our parameters are: order of convergence (OC) or
computational order of convergence (COC), number of iter-
ation(IT), total number of function evaluations(FE), total
number of linear operations evaluations (LOE), number of
LU-decomposition (LU), and CPU time(CPU). It must be
noted that for some iterative methods, we cannot compute
their order of convergence, instead we use the computational
order of convergence [14] which is computed as follows:

COC =
ln x k+1ð Þ − x kð Þ

 



∞/ x kð Þ − x k−1ð Þ

 


∞

� �
ln x kð Þ − x k−1ð Þ

 



∞/ x k−1ð Þ − x k−2ð Þ

 


∞

� � : ð30Þ

Hence for the second category, we define our criteria as
follows:

(i) Jacobian Free Criterion 1 (JFC1): The first criterion
is defined as

JFC1 =
COC

CPU + IT + LU + FE + LOE
· ð31Þ

(ii) Jacobian Free Criterion 2 (JFC2): The second crite-
rion is defined as

JFC2 =
COC

CPU + IT ∗ LU + FE + LOEð Þ · ð32Þ

3.1. Some Selected Iterative Methods. To show usefulness of
our criteria, we have chosen some different Jacobian free
methods which are presented in different years. We have
applied both criteria (31) and (32) to compare qualification
of the following iterative methods.

Jacobian Free Newton Method (JFNM): The Jacobian free
version of the classical Newton’s method (with OC = 2) has
the following form:

x k+1ð Þ = x kð Þ − w, x ; F½ �−1F x kð Þ
� �

, ð33Þ

where the Jacobian matrix J FðxðkÞÞ has replaced by the

linear operator ½w, x ; F� where x = xðkÞ and w = xðkÞ +
FðxðkÞÞ satisfy in

w, x ; F½ � w − xð Þ = F wð Þ − F xð Þ: ð34Þ

To compute the elements of (34), we can use the
classical first-order divided difference operator (cf. [15])

w, x ; F½ �i,j =
Fi w1,w2,⋯,wj−1,wj, xj+1,⋯, xm
� �

− Fi w1,w2,⋯,wj−1, xj, xj+1,⋯, xm
� �� �

wj − xj
� � ,

ð35Þ

where x = ðx1,⋯, xj−1, xj, xj+1,⋯, xmÞ, w = ðw1,⋯,wj−1,
wj,wj+1,⋯,wmÞ, and 1 ≤ i ≤ j ≤m.

Jacobian Free Method 2 (JFM2): This method is pre-
sented by Amiri et al. [16] in 2018, with OC/COC = 3 and
has the following form:

y kð Þ = x kð Þ − w, x ; F½ �−1F x kð Þ
� �

,

x k+1ð Þ = y kð Þ − 2 x, y ; F½ � − w, x ; F½ �½ �−1F y kð Þ
� �

:

ð36Þ

Jacobian Free Method 3 (JFM3): Authors: Chicharro
et al. [17]; Published year: 2020; OC/COC = 3:

y kð Þ = x kð Þ − w, x ; F½ �−1F x kð Þ
� �

,

x k+1ð Þ = y kð Þ − w, y ; F½ �−1F y kð Þ
� �

:

ð37Þ

Jacobian Free Method 4(JFM4): Authors: Sharma and
Arora [18]; Published year: 2013; OC/COC = 4:

y kð Þ = x kð Þ − w, x ; F½ �−1F x kð Þ
� �

,

x k+1ð Þ = y kð Þ − 3I − w, x ; F½ �−1 y, x ; F½ � + y,w ; F½ �ð Þ� �
× w, x ; F½ �−1F y kð Þ

� �
:

ð38Þ

Jacobian Free Method 5 (JFM5): Authors: Cordero et al.
[19]; Published year: 2019; OC/COC = 5:

y kð Þ = x kð Þ − a, b ; F½ �−1F x kð Þ
� �

,

z kð Þ = y kð Þ − α a, b ; F½ �−1F y kð Þ
� �

,

t kð Þ = z kð Þ − β a, b ; F½ �−1F y kð Þ
� �

,

x k+1ð Þ = z kð Þ − γ a, b ; F½ �−1F t kð Þ
� �

,

ð39Þ

where a = xðkÞ + FðxðkÞÞ, b = xðkÞ − FðxðkÞÞ and α = ð2 − γÞ,
β = ðγ − 1Þ2/γ, γ = 1/5.
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Jacobian Free Method 6 (JFM6): Authors: Wang and Fan
[20]; Published year: 2016; OC/COC = 6:

y kð Þ = x kð Þ − a, b ; F½ �−1F x kð Þ
� �

,

z kð Þ = y kð Þ − 3I − 2 a, b ; F½ �−1 y, x ; F½ �� �
a, b ; F½ �−1F y kð Þ

� �
,

x k+1ð Þ = z kð Þ − 3I − 2 a, b ; F½ �−1 y, x ; F½ �� �
a, b ; F½ �−1F z kð Þ

� �
,

ð40Þ

where a = xðkÞ + FðxðkÞÞ, b = xðkÞ − FðxðkÞÞ.
Jacobian Free Method 7 (JFM7): Authors: Wang and

Zhang [21]; Published year: 2013; OC/COC = 7:

y kð Þ = x kð Þ − w, x ; F½ �−1F x kð Þ
� �

,

z kð Þ = y kð Þ − y, x ; F½ �−1 y, x ; F½ � − w, y ; F½ � + w, x ; F½ �½ � × y, x ; F½ �−1F y kð Þ
� �

,

x k+1ð Þ = z kð Þ − z, x ; F½ � + z, y ; F½ � − y, x ; F½ �½ �−1 × F z kð Þ
� �

:

ð41Þ

Jacobian Free Method 8 (JFM8): Authors: Wang and
Zhang [21]; Published year: 2013; OC/COC = 7:

y kð Þ = x kð Þ − w, x ; F½ �−1F x kð Þ
� �

,

z kð Þ = y kð Þ − y, x ; F½ � + y,w ; F½ � − w, x ; F½ �½ �−1 × F y kð Þ
� �

,

x k+1ð Þ = z kð Þ − z, x ; F½ � + z, y ; F½ � − y, x ; F½ �½ �−1 × F z kð Þ
� �

:

ð42Þ

Jacobian Free Method 9 (JFM9): Authors: Wang et al.
[22]; Published year: 2015; OC/COC = 7:

y kð Þ = x kð Þ − A−1F x kð Þ
� �

,

z kð Þ = y kð Þ − 3I − 2A−1 y, x ; F½ �� �
× A−1F y kð Þ

� �
,

x k+1ð Þ = z kð Þ −
13
4
I − A−1 z, y ; F½ � 7

2
I −

5
4
A−1 z, y ; F½ �

� �� 	
× A−1F z kð Þ

� �
,

ð43Þ

where I is the identity matrix, A = ½a, b ; F� is the first order
central difference operator, a = xðkÞ + FðxðkÞÞ and b = xðkÞ −
FðxðkÞÞ.
3.2. Numerical Results. Case n = 25. Tables 5 and 6 show the
results of criteria JFC1 and JFC2 for Test Problems 1-4. As
we can see from these tables, JFM6 is better among all the
Jacobian free methods which are mentioned in this paper
only for Test Problems 1-3; this method fails in solving the
fourth test problem. Even though just for Test Problems 2
and 3, JFM5 is better, but this method fails to solve Test
Problem 4 and diverges. Thus, we can claim that for case n
= 25, JFM8 is a suitable method.

Case n = 80. Tables 7 and 8, respectively, show the results
of criteria JFC1 and JFC2 for Test Problems 1-4. From the
numerical results, JFM8 is the best method among the other
Jacobian free methods for case n = 80.

3.3. Discussion on Numerical Results for Jacobian Free
Methods. As computation of Jacobian matrix in solving non-
linear systems is the most consuming part of CPU time,
hence applying Jacobian free solvers is very attractive. In this
section, we selected just ten Jacobian free methods to com-
pare them altogether. As our numerical results show, we
can claim that high order convergence for a method can
show qualification of a Jacobian free method. Therefore,
our criteria can be useful to show qualification of new Jaco-
bian free methods in the future. Meanwhile, JFM8 can be a
good method to compare any new method with it.

4. The Third Category: Frozen
Jacobian Methods

One of the attractive schemes in multistep iterative methods
for solving nonlinear systems is the frozen Jacobian method.
In any iteration of multistep frozen Jacobian method, the
Jacobian matrix is same in all steps. Hence, one computes
the inverse of the Jacobian matrix only once. For example,
this inversion is performed in LU decomposition only once
in any iteration. In this paper, we compare the frozen Jaco-
bian iterative methods which are used to solve nonlinear sys-
tems by introducing two qualification criteria. The

Table 5: Values of JFC1 for case n = 25.

Method Problem 1 Problem 2 Problem 3 Problem 4

JFNM 0.1228 0.0938 0.0478 0.0842

JFM2 0.1800 0.1798 0.0918 0.1208

JFM3 0.1769 0.1479 0.0815 0.1334

JFM4 0.1995 0.1701 0.0900 0.1474

JFM5 0.4654 0.4003 0.2757 div.

JFM6 0.5118 0.3499 0.2317 div.

JFM7 0.2640 0.2210 0.1218 0.2161

JFM8 0.2851 0.2205 0.1246 0.2188

JFM9 0.3851 0.3330 0.2486 div.

Table 6: Values of JFC2 for case n = 25.

Method Problem 1 Problem 2 Problem 3 Problem 4

JFNM 0.0733 0.0522 0.0254 0.0468

JFM2 0.0978 0.0978 0.0391 0.0557

JFM3 0.0969 0.0764 0.0330 0.0645

JFM4 0.1175 0.0941 0.0428 0.0782

JFM5 0.2818 0.2128 0.1215 div.

JFM6 0.3816 0.1926 0.1093 div.

JFM7 0.1538 0.1154 0.0553 0.1140

JFM8 0.1607 0.1152 0.0559 0.1148

JFM9 0.2399 0.1841 0.1225 div.
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parameters for this category are: order of convergence (OC),
number of iterations (IT), number of function evaluations
(FE), total numbers of Jacobian matrix evaluations (JME),
CPU time (CPU), total numbers of steps of the iterative
method (NOS), and number of LU-factors (LU:F). Hence
we define our criteria as follows:

(i) Frozen Jacobian Criterion 1(FJC1): The first crite-
rion is

FJC1 =
OC

CPU + IT + LU:F + FE + JME +NOS
·

ð44Þ

(ii) Frozen Jacobian Criterion 2(FJC2): The second crite-
rion is defined as

FJC2 =
OC

CPU + IT ∗ LU:F + FE + JME +NOSð Þ · ð45Þ

4.1. Some Selected Frozen Jacobian Methods. To show good-
ness of our criteria, we have chosen some different frozen
Jacobian methods which are presented in the last two
decades. We have applied our proposed criteria (44) and
(45) to compare qualification of these iterative methods.

Newton Method (NM): As our goal is the comparing iter-
ative methods with the classical Newton’s algorithm, for this
category we consider the Newton’s method as a one-step fro-

zen Jacobian method. Therefore, the Newton’s method is the
first frozen Jacobian method with the following information:

NOS = 1

OC = 1

JME = 1

FE = 1

LU:F = 1

8>>>>>>>><
>>>>>>>>:

NM : x k+1ð Þ = x kð Þ − J F x kð Þ
� �−1

F x kð Þ
� �

,

ð46Þ

where J Fð·Þ−1 is the inverse of Jacobian matrix.
Frozen Jacobian Method 2 (FJM2): A two-step, second

order frozen Jacobian method is presented by Darvishi and
Barati [6] in 2007 with the following information:

NOS = 2

OC = 3

JME = 1

FE = 2

LU:F = 1

8>>>>>>>><
>>>>>>>>:

FJM2 :
y kð Þ = x kð Þ − J F x kð Þ

� �−1
F x kð Þ
� �

,

x k+1ð Þ = x kð Þ − J F x kð Þ
� �−1

F x kð Þ
� �

+ F y kð Þ
� �� �

:

8>><
>>:

ð47Þ

Frozen Jacobian Method 3 (FJM3): The third order fro-
zen Jacobian method is presented by Qasim et al. [23] in
2016 with the following information:

NOS = 2

OC = 4

JME = 2

FE = 2

LU:F = 1

8>>>>>>>><
>>>>>>>>:

FJM3 :

ϕ1 = J F x kð Þ
� �−1

F x kð Þ
� �

,

y kð Þ = x kð Þ − ϕ1,

ϕ2 = J F x kð Þ
� �−1

F y kð Þ
� �

,

ϕ3 = J F x kð Þ
� �−1

J F y kð Þ
� �

ϕ2

� �
,

x k+1ð Þ = y kð Þ − 2ϕ2 + ϕ3:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð48Þ

Frozen Jacobian Method 4 (FJM4): The fourth order fro-
zen Jacobian method is presented by Ahmad et al. [24] in
2016 which has the following information:

NOS = 3

OC = 4

JME = 1

FE = 3

LU:F = 1

8>>>>>>>><
>>>>>>>>:

FJM4 :

ϕ1 = J F x kð Þ
� �−1

F x kð Þ
� �

,

y kð Þ = x kð Þ − ϕ1,

ϕ2 = J F x kð Þ
� �−1

F x kð Þ − ϕ1

� �
,

z kð Þ = y kð Þ − ϕ2,

ϕ3 = J F x kð Þ
� �−1

F z kð Þ
� �

,

x k+1ð Þ = z kð Þ − ϕ3:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð49Þ

Frozen Jacobian Method 5 (FJM5): The fifth order fro-
zen Jacobian method is presented by Qasim et al. [23] in
2016 as follows:

Table 7: Values of JFC1 for case n = 80.

Method Problem 1 Problem 2 Problem 3 Problem 4

JFNM 0.0111 0.0077 0.0038 0.0065

JFM2 0.0137 0.0117 0.0046 0.0082

JFM3 0.0136 0.0072 0.0037 0.0080

JFM4 0.0133 0.0105 0.0036 0.0062

JFM5 0.0588 0.0449 0.0225 div.

JFM6 0.0363 0.0272 0.0158 div.

JFM7 0.0176 0.0122 0.0050 0.0133

JFM8 0.0184 0.0127 0.0052 0.0137

JFM9 0.0305 0.0227 0.0114 div.

Table 8: Values of JFC2 for case n = 80.

Method Problem 1 Problem 2 Problem 3 Problem 4

JFNM 0.0105 0.0072 0.0035 0.0062

JFM2 0.0129 0.0109 0.0042 0.0076

JFM3 0.0128 0.0068 0.0035 0.0074

JFM4 0.0127 0.0100 0.0034 0.0060

JFM5 0.0544 0.0408 0.0201 div.

JFM6 0.0345 0.0256 0.0147 div.

JFM7 0.0168 0.0116 0.0048 0.0126

JFM8 0.0175 0.0121 0.0049 0.0129

JFM9 0.0291 0.0215 0.0108 div.
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NOS = 2

OC = 5

JME = 2

FE = 2

LU:F = 1

8>>>>>>>><
>>>>>>>>:

FJM5 :

ϕ1 = J F x kð Þ
� �−1

F x kð Þ
� �

,

y kð Þ = x kð Þ − ϕ1,

ϕ2 = J F x kð Þ
� �−1

F y kð Þ
� �

,

ϕ3 = J F x kð Þ
� �−1

J F y kð Þ
� �

ϕ2

� �
,

ϕ4 = J F x kð Þ
� �−1

J F y kð Þ
� �

ϕ3

� �
,

x k+1ð Þ = y kð Þ −
13
4
ϕ2 +

7
2
ϕ3 −

5
4
ϕ4:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð50Þ

Frozen Jacobian Method 6 (FJM6): The sixth order fro-
zen Jacobian method is presented by Cordero et al. [25] in
2016 as:

NOS = 3

OC = 5

JME = 1

FE = 3

LU:F = 1

8>>>>>>>><
>>>>>>>>:

FJM6 :

y kð Þ = x kð Þ − J F x kð Þ
� �−1

F x kð Þ
� �

,

z kð Þ = y kð Þ − 5J F x kð Þ
� �−1

F y kð Þ
� �

,

x k+1ð Þ = z kð Þ − J F x kð Þ
� �−1 −16

5
F y kð Þ
� �

+
1
5
F z kð Þ
� �� �

:

8>>>>>>><
>>>>>>>:

ð51Þ

Frozen Jacobian Method 7 (FJM7): The following sev-
enth order frozen Jacobian method is presented by Monta-
zeri et al. [4] in 2012:

NOS = 3

OC = 6

JME = 2

FE = 2

LU:F = 1

8>>>>>>>><
>>>>>>>>:

FJM7 :

ϕ1 = J F x kð Þ
� �−1

F x kð Þ
� �

,

y kð Þ = x kð Þ −
2
3
ϕ1,

ϕ2 = J F x kð Þ
� �−1

J F y kð Þ
� �

ϕ1

� �
,

ϕ3 = J F x kð Þ
� �−1

J F y kð Þ
� �

ϕ2

� �
,

z kð Þ = x kð Þ −
23
8
ϕ1 + 3ϕ2 −

9
8
ϕ3,

ϕ4 = J F x kð Þ
� �−1

F z kð Þ
� �

,

ϕ5 = J F x kð Þ
� �−1

J F y kð Þ
� �

ϕ4

� �
,

x k+1ð Þ = z kð Þ −
5
2
ϕ4 +

3
2
ϕ5:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð52Þ

Frozen Jacobian Method 8 (FJM8): The following
eighth order frozen Jacobian method is presented by Kou-
ser et al. [26] in 2018:

NOS = 5

OC = 7

JME = 1

FE = 5

LU:F = 1

8>>>>>>>><
>>>>>>>>:

FJM8 :

ϕ1 = J F x kð Þ
� �−1

F x kð Þ
� �

,

y kð Þ = x kð Þ − ϕ1,

ϕ2 = J F x kð Þ
� �−1

F y kð Þ
� �

,

z kð Þ = x kð Þ − ϕ1 − 5ϕ2,

ϕ3 = J F x kð Þ
� �−1

F z kð Þ
� �

,

w kð Þ = x kð Þ − ϕ1 −
9
5
ϕ2 −

1
5
ϕ3,

ϕ4 = J F x kð Þ
� �−1

F w kð Þ
� �

,

t kð Þ =w kð Þ − ϕ4,

ϕ5 = J F x kð Þ
� �−1

F t kð Þ
� �

,

x k+1ð Þ = t kð Þ − ϕ5:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð53Þ

Frozen Jacobian Method 9 (FJM9): The following ninth
order frozen Jacobian method is presented by Alzahrani
et al. [27] in 2016:

NOS = 4

OC = 9

JME = 2

FE = 3

LU:F = 1

8>>>>>>>><
>>>>>>>>:

FJM9 :

ϕ1 = J F x kð Þ
� �−1

F x kð Þ
� �

,

y kð Þ = x kð Þ − ϕ1,

ϕ2 = J F x kð Þ
� �−1

F y kð Þ
� �

,

z kð Þ = y kð Þ −
1
2
ϕ2,

ϕ3 = J F x kð Þ
� �−1

J F z kð Þ
� �

ϕ2

� �
,

ϕ4 = J F x kð Þ
� �−1

J F z kð Þ
� �

ϕ3

� �
,

ϕ5 = J F x kð Þ
� �−1

J F z kð Þ
� �

ϕ4

� �
,

w kð Þ = y kð Þ −
17
4
ϕ2 +

27
4
ϕ3 −

19
4
ϕ4 +

5
4
ϕ5,

ϕ6 = J F x kð Þ
� �−1

F w kð Þ
� �

,

ϕ7 = J F x kð Þ
� �−1

J F z kð Þ
� �

ϕ6

� �
,

ϕ8 = J F x kð Þ
� �−1

J F z kð Þ
� �

ϕ7

� �
,

x k+1ð Þ =w kð Þ −
13
4
ϕ6 +

7
2
ϕ7 −

5
4
ϕ8:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð54Þ

Frozen Jacobian Method 10 (FJM10): The following
tenth order frozen Jacobian method is presented by
Ahmad et al. [28] in 2016 with the following information:
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NOS = 4

OC = 9

JME = 2

FE = 4

LU:F = 1

8>>>>>>>><
>>>>>>>>:

FJM10 :

ϕ1 = J F x kð Þ
� �−1

F x kð Þ
� �

,

y kð Þ = x kð Þ − ϕ1,

ϕ2 = J F x kð Þ
� �−1

F y kð Þ
� �

,

z kð Þ = y kð Þ − ϕ2,

ϕ3 = J F x kð Þ
� �−1

F z kð Þ
� �

,

w kð Þ = z kð Þ − ϕ3,

ϕ4 = J F x kð Þ
� �−1

F w kð Þ
� �

,

ϕ5 = J F x kð Þ
� �−1

J F w kð Þ
� �

ϕ4

� �
,

ϕ6 = J F x kð Þ
� �−1

J F w kð Þ
� �

ϕ5

� �
,

ϕ7 = J F x kð Þ
� �−1

J F w kð Þ
� �

ϕ6

� �
,

ϕ8 = J F x kð Þ
� �−1

J F w kð Þ
� �

ϕ7

� �
,

x k+1ð Þ =w kð Þ −
21
4
ϕ4 + 11ϕ5 −

23
2
ϕ6 + 6ϕ7 −

5
4
ϕ8:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð55Þ

Frozen Jacobian Method 11 (FJM11): The following
eleventh order frozen Jacobian method is presented by
Qasim et al. [29] in 2016:

NOS = 4

OC = 10

JME = 2

FE = 4

LU:F = 1

8>>>>>>>><
>>>>>>>>:

FJM11 :

ϕ1 = J F x kð Þ
� �−1

F x kð Þ
� �

,

y kð Þ = x kð Þ − ϕ1,

ϕ2 = J F x kð Þ
� �−1

F y kð Þ
� �

,

z kð Þ = x kð Þ − ϕ1 − 5ϕ2,

ϕ3 = J F x kð Þ
� �−1

F z kð Þ
� �

,

w kð Þ = x kð Þ − ϕ1 −
9
5
ϕ2 −

1
5
ϕ3,

ϕ4 = J F x kð Þ
� �−1

F w kð Þ
� �

,

ϕ5 = J F x kð Þ
� �−1

J F w kð Þ
� �

ϕ4

� �
,

ϕ6 = J F x kð Þ
� �−1

J F w kð Þ
� �

ϕ5

� �
,

ϕ7 = J F x kð Þ
� �−1

J F w kð Þ
� �

ϕ6

� �
,

ϕ8 = J F x kð Þ
� �−1

J F w kð Þ
� �

ϕ7

� �
,

x k+1ð Þ =w kð Þ − 5ϕ4 + 10ϕ5 − 10ϕ6 + 5ϕ7 − ϕ8:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð56Þ

4.2. Numerical Results. Case n = 100. Tables 9 and 10 show
the results of criteria FJC1 and FJC2 for Test Problems 1-
4. As these tables show, for case n = 100, FJM9-FJM11
have better results with respect to the other methods of
this category.

Case n = 500. Tables 11 and 12 show the results of
criteria FJC1 and FJC2 for Test Problems 1-4. As
Table 11 for FJC1 shows, FJM8 acts better than the other
methods for Test Problems 1, 3, and 4 while for the
other problem, FJM10 acts better. For FJC2 as Table 12
shows, six methods FJM6-FJM11 are better than the
others.

Table 9: Values of FJC1 for case n = 100.

Method Problem 1 Problem 2 Problem 3 Problem 4

NM 0.2108 0.1566 0.0978 0.1715

FJM2 0.3122 0.2281 0.1555 0.2512

FJM3 0.3591 0.2855 0.2066 0.3212

JFM4 0.3361 0.2770 0.2040 0.3049

FJM5 0.4280 0.3772 0.2541 0.3798

FJM6 0.4213 0.3791 0.2699 0.3812

FJM7 0.5210 0.3971 0.2724 0.4020

FJM8 0.4651 0.3865 0.3125 0.4271

FJM9 0.6220 0.4828 0.3731 0.5431

FJM10 0.5858 0.5952 0.3660 0.5173

FJM11 0.6466 0.5826 0.4063 0.5750

Table 10: Values of FJC2 for case n = 100.

Method Problem 1 Problem 2 Problem 3 Problem 4

NM 0.0976 0.0610 0.0325 0.0698

FJM2 0.1612 0.0807 0.0439 0.0970

FJM3 0.1807 0.1081 0.0603 0.1358

JFM4 0.1606 0.0965 0.0536 0.1208

FJM5 0.2204 0.1653 0.0824 0.1658

FJM6 0.2011 0.1507 0.0752 0.1510

FJM7 0.3425 0.1709 0.0857 0.1718

FJM8 0.2794 0.1397 0.0801 0.1872

FJM9 0.4005 0.2016 0.1321 0.2681

FJM10 0.3694 0.3731 0.1223 0.2473

FJM11 0.4087 0.2765 0.1358 0.2748

Table 11: Values of FJC1 for case n = 500.

Method Problem 1 Problem 2 Problem 3 Problem 4

NM 0.0347 0.0197 0.0105 0.0252

FJM2 0.0367 0.0138 0.0081 0.0249

FJM3 0.0288 0.0135 0.0085 0.0172

FJM4 0.0375 0.0232 0.0085 0.0293

FJM5 0.0183 0.0139 0.0128 0.0197

FJM6 0.0295 0.0301 0.0084 0.0324

FJM7 0.0334 0.0149 0.0069 0.0133

FJM8 0.0588 0.0252 0.0159 0.0408

FJM9 0.0319 0.0159 0.0082 0.0209

FJM10 0.0194 0.0281 0.0090 0.0236

FJM11 0.0326 0.0153 0.0108 0.0193
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4.3. Discussion on Numerical Results for the Frozen Jacobian
Methods. Among ten frozen Jacobian methods FJM2-FJM11,
four methods namely, FJM8-FJM11 have better values.
Hence, we considered these methods separately and solved
Test Problem 1 by them for some different values of n.
Figure 2 shows that, FJM8 demonstrates brilliant results by
increasing n. It must be noted that to obtain these results,
the CPU time is computed in minutes. From these figures,
we can conclude that order of convergence, solely, cannot
show an advantage for an algorithm in this category. It must
be noted that, order of convergence for FJM8 is 7 while for
FJM9, FJM10, and FJM11 are 9, 9, and 10, respectively.

5. A Real Test Problem

In this part, we consider a real problem as our last test prob-
lem. This is the well-known Van der Pol nonlinear differen-
tial equation.

Test Problem 5. The Van der Pol equation governs the
flow of current in a vacuum tube, and it has the following
form [30].

u′′ − β u2 − 1
� �

u′ + u = 0, β > 0, ð57Þ

with boundary conditions

u 0ð Þ = 0, u 2ð Þ = 1: ð58Þ

To solve the boundary value problem (57), numerically,
first we use the following second-order finite difference
approximations:

ui ′ ≈
ui+1 − ui−1

2h
, i = 1, 2, 3,⋯, n − 1,

ui ′′ ≈
ui−1 − 2ui + ui+1

h2
, i = 1, 2, 3,⋯, n − 1:

 

ð59Þ

This leads to the following system of nonlinear equa-
tions:

2 h2 − 1
� �

ui − hβ u2i − 1
� �

ui+1 − ui−1ð Þ + 2 ui−1 + ui+1ð Þ = 0, i = 1, 2, 3,⋯, n − 1:

ð60Þ

In system (60), h = 2/n is the step size and u1, u2, u3,⋯
are the approximations of the unknown uðxiÞ, i = 1, 2, 3,⋯.
To solve (60), we set the initial guess as ð1, 1,⋯, 1Þt . The
stopping criterion is selected as k f ðxðkÞÞk ≤ 10−6, and β is
considered as β = 1/2.

Results for the first category. Tables 13 and 14 show the
values of parameters of the algorithms in the first category
for cases n = 100 and n = 250, respectively. Table 15 shows
the values of CR1 and CR2 for the algorithms of this cate-
gory for n = 100. As this table shows, algorithm M9 is the
best algorithm among the others. By increasing the number
of equations in (60) to n = 250, M3 has the best values for
criteria CR1 and CR2 as Table 16 shows. These confirm
our previous discussion on Test Problems 1-4.

Results for the second category. As one may see from
Table 17, in this category and for n = 10, JFM5 works better
than the other algorithms. Because our criteria JFC1 and
JFC2 have better values for this method. By increasing n to
n = 25, again JFM5 is the best algorithm among the others.
We can see this superiority from the reported results in
Table 18.

Results for the third category. For the algorithms of the
third category and for n = 100, FJM11 is the best algorithm
for this case, see Table 19, while for n = 250 as Table 20
shows, FJM6 is the best algorithm among the others.

6. The Classical Efficiency Indices and
their Corrections

As we mentioned in the first section, there are some qualifi-
cation criteria for nonlinear solvers which we call them the
classical efficiency indices. To have a comparison between
our qualification criteria and the classical ones, in this sec-
tion we present numerical results for the classical efficiency
indices for all mentioned methods in each category to solve
Test Problem 1.

6.1. The First Category. The classical efficiency index (EI ).
Table 21 shows values of the classical efficiency index for
the methods of the first category. As this table shows,
methods M9 and M10 work better than the other methods.

The operational index (Iop ). Table 22 shows the values of
Iop for the methods in the first category. Therefore, by this
criterion, M2 is the best method among the others which
conflicts with EI.

The computational efficiency index (CEI). Table 23 shows
the values of CEI for the methods in the first category. From
the results of this table, we conclude that using this criterion,
M2 is the best method among the others for n ≥ 10.

The flops-like efficiency index (FLEI ). Table 24 shows the
values of FLEI for the methods in the first category. Here
also, M2 is the distinguished method.

Table 12: Values of FJC2 for case n = 500.

Method Problem 1 Problem 2 Problem 3 Problem 4

NM 0.0292 0.0161 0.0084 0.0207

FJM2 0.0331 0.0125 0.0070 0.0215

FJM3 0.0267 0.0125 0.0077 0.0160

FJM4 0.0334 0.0201 0.0075 0.0255

FJM5 0.0176 0.0131 0.0113 0.0185

FJM6 0.0274 0.0259 0.0077 0.0287

FJM7 0.0323 0.0142 0.0065 0.0127

FJM8 0.0543 0.0226 0.0135 0.0364

FJM9 0.0311 0.0152 0.0078 0.0201

FJM10 0.0191 0.0273 0.0085 0.0225

FJM11 0.0317 0.0146 0.0102 0.0187
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The computational index. Lotfi et al. [13] defined the
computational index as

CI = p1/ d+opð Þ, ð61Þ

where p is the order of convergence, d is the number of func-
tional evaluations per step, and op shows the number of
products/quotients per step. Table 25 shows the values of
CI for the methods in the first category which shows M2 is
the best method among the other methods.

Therefore, by EI, CEI, FLEI, and CI, M2 is the best
method among all methods of the first category.

6.2. The Second Category. The classical efficiency index.
Table 26 shows the values of EI for the methods in the sec-
ond category. This criterion selects JFM5 as the best method.

The operational index. Table 27 shows values of Iop
for the methods in the second category. This criterion fails
to introduce the best method. For small values of n,

namely n = 3, JFNM shows a better result, for 5 ≤ n ≤ 80,
JFM5 is the better method while for n = 80, JFM6 is the
best method.
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Figure 2: Values of FJC1 (a) and FJC2 (b) to solve Test Problem 1 for FJM8-FJM11 as a function of n.

Table 13: Parameters of methods 1-10 to solve Test Problem 5, by
the algorithms of the first category for n = 100.

Method OC CPU (m) IT FE JE

NM 2 0.4240 4 1 1

M2 3 1.4948 3 2 1

M3 4 0.4115 2 2 2

M4 4 1.5466 2 2 3

M5 4 1.6396 2 1 2

M6 3 0.5266 2 1 2

M7 5 0.8044 2 2 2

M8 5 1.2547 2 2 2

M9 6 1.2576 2 2 2

M10 6 1.6706 2 2 2

Table 14: Parameters of methods 1-10 to solve Test Problem 5, by
the algorithms of the first category for n = 250.

Method OC CPU (m) IT FE JE

NM 2 5.5477 4 1 1

M2 3 8.3057 3 2 1

M3 4 5.5638 2 2 2

M4 4 13.8172 2 2 3

M5 4 16.4128 2 1 2

M6 3 5.5128 2 1 2

M7 5 12.9727 2 2 2

M8 5 13.2445 2 2 2

M9 6 23.7789 2 2 2

M10 6 31.7586 2 2 2

Table 15: Values of CR1 and CR2 for methods 1-10 to solve Test
Problem 5, by the algorithms of the first category for n = 100.

Method CR1 CR2

NM 0.2374 0.3113

M2 0.2859 0.4003

M3 0.4755 0.6239

M4 0.3464 0.4680

M5 0.5236 0.6024

M6 0.4597 0.5428

M7 0.5679 0.7348

M8 0.5403 0.6892

M9 0.6481 0.8267

M10 0.6204 0.7822
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The computational efficiency index. Table 28 shows the
results of CEI for the methods in the second category. By
this index, JFM6 is the best method among all methods.

The flops-like efficiency index. The values of FLEI are pre-
sented in Table 29 for the methods in the second category.
By this criterion, JFM5 is the best method.

The computational index. Table 30 shows results of CI
for the methods in the second category. From the reported
results in this table, we conclude that by this criterion
JFM5 is the best method.

Therefore for the solvers in the second category, three
criteria EI, FLEI, and CI introduce JFM5 as the best method
while JFM6 is selected as the best method by Iop, and CEI.

6.3. The Third Category. The classical efficiency index.
Table 31 shows the values of EI for the methods in the third
category. For large values of n, FJM8 is better than the other
methods by criterion EI.

The operational index. Table 32 shows the values of Iop
for the methods in the third category. By this index, FJM11
works better than the other methods for large values of n
while for small values of the problem size, FJM6 is the best
method.

The computational efficiency index. The values of CEI for
the methods in the third category are presented in Table 33.
By CEI, there is a similar situation to Iop.

The flops-like efficiency index. Table 34 shows the values
of FLEI for the methods in the third category. By this crite-
rion, one cannot select a distinguished method which works
better than the other methods for all values of n.

The computational index. Table 35 shows the values of
CI for the methods in the third category. As this table shows,
for n ≤ 10, the value of CI for FJM6 is better with respect to

Table 16: Values of CR1 and CR2 for methods 1-10 to solve Test
Problem 5, by the algorithms of the first category for n = 250.

Method CR1 CR2

NM 0.1476 0.1732

M2 0.1734 0.2097

M3 0.2949 0.3459

M4 0.1679 0.1921

M5 0.1785 0.1868

M6 0.2606 0.2854

M7 0.2384 0.2635

M8 0.2354 0.2598

M9 0.1888 0.2015

M10 0.1509 0.1589

Table 17: Values of JFC1 and JFC2 for methods 1-9 to solve Test
Problem 5, by the algorithms of the second category for n = 10.

Method JFC1 JFC2

JFNM 0.2401 0.1305

JFM2 0.3192 0.1630

JFM3 0.3144 0.1618

JFM4 0.4213 0.2163

JFM5 0.7026 0.4942

JFM6 0.6393 0.3263

JFM7 0.4661 0.2058

JFM8 0.4716 0.2068

JFM9 0.5945 0.2433

Table 18: Values of JFC1 and JFC2 for methods 1-9 to solve Test
Problem 5, by the algorithms of the second category for n = 25.

Method JFC1 JFC2

JFNM 0.2624 0.4328

JFM2 0.2080 0.1281

JFM3 0.2091 0.1285

JFM4 0.2411 0.1563

JFM5 0.5806 0.4306

JFM6 0.5212 0.3868

JFM7 0.3272 0.2303

JFM8 0.2670 0.1548

JFM9 0.2358 0.1721

Table 19: Values of FJC1 and FJC2 for methods 1-11 to solve Test
Problem 5, by the algorithms of the third category for n = 100.

Method FJC1 FJC2

NM 0.2374 0.1218

FJM2 0.3112 0.1609

FJM3 0.4098 0.2710

FJM4 0.3721 0.2388

FJM5 0.4930 0.3302

FJM6 0.4711 0.3009

FJM7 0.5210 0.3425

FJM8 0.4576 0.2767

FJM9 0.6198 0.3996

FJM10 0.5715 0.3637

FJM11 0.6436 0.4075

Table 20: Values of FJC1 and FJC2 for Methods 1-11 to solve Test
Problem 5, by the algorithms of the third category for n = 250.

Method FJC1 FJC2

NM 0.1476 0.0928

FJM2 0.1665 0.1110

FJM3 0.1870 0.1516

FJM4 0.1924 0.1493

FJM5 0.1683 0.1440

FJM6 0.2723 0.2052

FJM7 0.1322 0.1167

FJM8 0.2297 0.1730

FJM9 0.1890 0.1618

FJM10 0.1950 0.1632

FJM11 0.2195 0.1833
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the other methods while for n ≥ 100, FJM11 is the best
method.

Hence for this category, one cannot select the best
method by all indices.

6.4. Corrections on the Classical Efficiency Indices. As we
know, CPU time is a very important parameter to show
quality of an algorithm, but this has not considered in the
classical efficiency indices. In this part, we enter this param-
eter to the classical efficiency indices and compute the values

of corrected indices to solve Test Problem 1. Since for all
nonlinear solvers CPU time has a negative role, hence we
introduce the corrected efficiency indices as follows:

COREI =
EI

CPUtime
, CORIOP =

Iop
CPUtime

, CORCEI =
CEI

CPUtime
,

CORFLEI =
FLEI

CPUtime
, CORCI =

CI
CPUtime

:

ð62Þ

Table 21: Values of EI for methods in the first category to solve Test Problem 1, and n = 3, 5, 10,100,250,500.

Method n = 3 n = 5 n = 10 n = 100 n = 250 n = 500
NM 1.059463094 1.023373892 1.006321233 1.000068631 1.000011046 1.000002767

M2 1.075989625 1.031886750 1.009197139 1.000107713 1.000017438 1.000004377

M3 1.059463094 1.023373892 1.006321233 1.000068631 1.000011046 1.000002767

M4 1.042903781 1.016443069 1.004341567 1.000045905 1.000007374 1.000001846

M5 1.068241691 1.025525693 1.006623239 1.000068972 1.000011068 1.000002770

M6 1.053707472 1.020175600 1.005245195 1.000054659 1.000008771 1.000002195

M7 1.069359545 1.027186966 1.007342451 1.000079678 1.000012824 1.000003212

M8 1.069359545 1.027186966 1.007342451 1.000079678 1.000012824 1.000003212

M9 1.077514117 1.030313019 1.008177617 1.000088705 1.000014277 1.000003576

M10 1.077514117 1.030313019 1.008177617 1.000088705 1.000014277 1.000003576

Table 22: The values of Iop for the methods in the first category to solve Test Problem 1, and n = 3, 5, 10,100,250,500.

Method n = 3 n = 5 n = 10 n = 100 n = 250 n = 500
NM 1.041616011 1.010720864 1.001613270 1.000002019 1.000000132 1.000000017

M2 1.043159740 1.012281610 1.002075003 1.000003110 1.000000206 1.000000026

M3 1.032764723 1.008983950 1.001445100 1.000001990 1.000000131 1.000000016

M4 1.032764723 1.008983950 1.001445100 1.000001990 1.000000131 1.000000016

M5 1.027018051 1.007731369 1.001308680 1.000001962 1.000000130 1.000000016

M6 1.032839831 1.008486673 1.001278272 1.000001600 1.000000104 1.000000013

M7 1.032060827 1.008287682 1.001248405 1.000001563 1.000000102 1.000000013

M8 1.026735373 1.007881816 1.001388409 1.000002246 1.000000150 1.000000019

M9 1.020569600 1.006419659 1.001227986 1.000002400 1.000000164 1.000000021

M10 1.022939658 1.007051252 1.001318338 1.000002432 1.000000165 1.000000021

Table 23: The values of CEI for the methods in the first category to solve Test Problem 1, with n = 5,10,100,250,500.

Method n = 5 n = 10 n = 100 n = 250 n = 500
NM 1.005792941 1.001035083 1.000001906 1.000000128 1.000000016

M2 1.007605412 1.001593460 1.000003019 1.000000204 1.000000026

M3 1.007731369 1.001238529 1.000001960 1.000000130 1.000000016

M4 1.005245007 1.001083629 1.000001931 1.000000129 1.000000016

M5 1.007322969 1.001346823 1.000001988 1.000000130 1.000000016

M6 1.005245195 1.000981385 1.000001553 1.000000103 1.000000013

M7 1.006091831 1.001069966 1.000001539 1.000000101 1.000000013

M8 1.006590758 1.001298776 1.000002212 1.000000149 1.000000019

M9 1.007995167 1.001559266 1.000002533 1.000000168 1.000000021

M10 1.006915183 1.001411830 1.000002497 1.000000167 1.000000021
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The results of these corrected indices for solving Test
Problem 1 are reported in Tables 36–38 for our three catego-
ries and some selected values of n. As we can see from
Tables 26–28 and 31–35, by using the classical efficiency
indices, we cannot crucially talk about the best method in
some categories. But as Tables 36–38 show, for the corrected
efficiency indices and for any case, there is a unique method
which acts better than the other methods. For the first cate-
gory, M2 is the best method (Cf. Table 36). For the second
category, JFM5 is the best method (the results may be found
in Table 37). Finally, for the third category, FJM2 is the best
method (Cf. Table 38).

7. Concluding Remarks

Solving systems of nonlinear equations is a very applicable
field in different areas of mathematics, physics, etc. Each
year many different algorithms are presented to solve non-
linear systems. As there are different types for these solvers,
hence comparing them must be done in a right category. In
this paper, some new qualification criteria for nonlinear
solvers were introduced. They use all parameters in each rel-
evant algorithm, such as order of convergence, CPU time,
number of function, and Jacobian evaluations. Hence, they
are suitable to compare different algorithms which solve

Table 24: The values of FLEI for the methods in the first category to solve Test Problem 1, and n = 3, 5, 10,100,250,500.

Method n = 3 n = 5 n = 10 n = 100 n = 250 n = 500
NM 1.014545335 1.004252776 1.000709959 1.000000995 1.000000065 1.000000008

M2 1.016049346 1.005044493 1.000926226 1.000001533 1.000000102 1.000000013

M3 1.014545335 1.004252776 1.000709959 1.000000995 1.000000065 1.000000008

M4 1.011334439 1.003457318 1.000615409 1.000000974 1.000000065 1.000000008

M5 1.013683900 1.003500974 1.000505460 1.000000584 1.000000038 1.000000005

M6 1.011883085 1.003421214 1.000565483 1.000000788 1.000000052 1.000000007

M7 1.012267346 1.003504906 1.000570886 1.000000774 1.000000051 1.000000006

M8 1.014218004 1.004281986 1.000747696 1.000001139 1.000000075 1.000000010

M9 1.014673768 1.003974874 1.000606875 1.000000749 1.000000049 1.000000006

M10 1.012788598 1.003577999 1.000568373 1.000000742 1.000000048 1.000000006

Table 25: The values of CI for the methods in the first category to solve Test Problem 1, and n = 3, 5, 10,100,250,500.

Method n = 3 n = 5 n = 10 n = 100 n = 250 n = 500
NM 1.024189560 1.007322969 1.001284430 1.000001961 1.000000130 1.000000016

M2 1.027157647 1.008827634 1.001691602 1.000003022 1.000000204 1.000000026

M3 1.020906503 1.006468713 1.001175516 1.000001934 1.000000129 1.000000016

M4 1.018408093 1.005792941 1.001083629 1.000001907 1.000000128 1.000000016

M5 1.019171797 1.005916559 1.001092166 1.000001908 1.000000128 1.000000016

M6 1.020175600 1.005956112 1.001027268 1.000001555 1.000000103 1.000000013

M7 1.021691076 1.006331481 1.001066421 1.000001533 1.000000101 1.000000013

M8 1.019114959 1.006091831 1.001166940 1.000002184 1.000000148 1.000000019

M9 1.016126503 1.005283791 1.001067092 1.000002337 1.000000162 1.000000021

M10 1.017547910 1.005704333 1.001134668 1.000002368 1.000000163 1.000000021

Table 26: Values of EI for the methods in the second category to solve Test Problem 1, and n = 3, 5, 10,25,50,80.

Method n = 3 n = 5 n = 10 n = 25 n = 50 n = 80
JFNM 1.059463094 1.023373892 1.006321233 1.001066949 1.000271859 1.000106973

JFM2 1.053707472 1.020175600 1.005245195 1.000862028 1.000217571 1.000085300

JFM3 1.053707472 1.020175600 1.005245195 1.000862028 1.000217571 1.000085300

JFM4 1.052685203 1.018655810 1.004631674 1.000739630 1.000184856 1.000072205

JFM5 1.079653224 1.036412558 1.011562318 1.002222380 1.000596266 1.000239528

JFM6 1.068612910 1.027948975 1.007820682 1.001353186 1.000347975 1.000137414

JFM7 1.047421253 1.016348109 1.003979141 1.000627910 1.000156310 1.000060964

JFM8 1.047421253 1.016348109 1.003979141 1.000627910 1.000156310 1.000060964

JFM9 1.060740208 1.023157118 1.006099496 1.001011374 1.000256074 1.000100517
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Table 28: Results of CEI for the methods in the second category to solve Test Problem 1, and n = 5,10,25,50,80.

Method n = 5 n = 10 n = 25 n = 50 n = 80
JFNM 1.004109885 1.000878900 1.000088314 1.000013343 1.000003524

JFM2 1.004439715 1.000880686 1.000079914 1.000011414 1.000002937

JFM3 1.004531274 1.000887803 1.000080059 1.000011420 1.000002938

JFM4 1.006264107 1.001504704 1.000165601 1.000025853 1.000006911

JFM5 1.007730386 1.001853774 1.000199975 1.000030745 1.000008155

JFM6 1.008447497 1.001986200 1.000215301 1.000032609 1.000008787

JFM7 1.005419941 1.001066821 1.000095768 1.000013594 1.000003488

JFM8 1.006005376 1.001141948 1.000099059 1.000013846 1.000003530

JFM9 1.006573397 1.001697961 1.000204918 1.000033698 1.000009231

Table 29: Values of FLEI for the methods in the second category to solve Test Problem 1, and n = 3, 5, 10,25,50,80.

Method n = 3 n = 5 n = 10 n = 25 n = 50 n = 80
JFNM 1.014545335 1.004252776 1.000709959 1.000056279 1.000007627 1.000001922

JFM2 1.011883085 1.003421214 1.000565483 1.000044645 1.000006046 1.000001523

JFM3 1.011883085 1.003421214 1.000565483 1.000044645 1.000006046 1.000001523

JFM4 1.012918795 1.003622967 1.000585930 1.000045578 1.000006139 1.000001544

JFM5 1.017456397 1.005799162 1.001144805 1.000108082 1.000015930 1.000004165

JFM6 1.014321903 1.004241472 1.000717918 1.000057584 1.000007842 1.000001980

JFM7 1.011054497 1.003021470 1.000475886 1.000036220 1.000004835 1.000001211

JFM8 1.013057245 1.003749145 1.000629943 1.000051075 1.000007014 1.000001778

JFM9 1.012313625 1.003429757 1.000542687 1.000041104 1.000005467 1.000001367

Table 30: Values of CI for the methods in the second category to solve Test Problem 1, and n = 3, 5, 10,25,50,80.

Method n = 3 n = 5 n = 10 n = 25 n = 50 n = 80
JFNM 1.024189560 1.007322969 1.001284430 1.000107055 1.000014843 1.000003777

JFM2 1.020175600 1.005956112 1.001027268 1.000085003 1.000011769 1.000002994

JFM3 1.020175600 1.005956112 1.001027268 1.000085003 1.000011769 1.000002994

JFM4 1.019717138 1.006468713 1.001346823 1.000144793 1.000023437 1.000006435

JFM5 1.025069672 1.008737616 1.001851641 1.000191049 1.000029613 1.000007930

JFM6 1.018451422 1.006419659 1.001423043 1.000164395 1.000027866 1.000007842

JFM7 1.017685287 1.005345497 1.000983266 1.000089164 1.000012981 1.000003379

JFM8 1.021144202 1.006196613 1.001093806 1.000094581 1.000013429 1.000003456

JFM9 1.016077965 1.005575227 1.001256214 1.000152632 1.000027121 1.000007859

Table 27: Values of Iop for the methods in the second category to solve Test Problem 1, and n = 3, 5, 10,25,50,80.

Method n = 3 n = 5 n = 10 n = 25 n = 50 n = 80
JFNM 1.041616011 1.010720864 1.001613270 1.000119002 1.000015700 1.000003915

JFM2 1.032839831 1.008486673 1.001278272 1.000094306 1.000012442 1.000003103

JFM3 1.032839831 1.008486673 1.001278272 1.000094306 1.000012442 1.000003103

JFM4 1.032008280 1.009951291 1.001900838 1.000180054 1.000026841 1.000007064

JFM5 1.037255346 1.011562318 1.002207142 1.000209040 1.000031161 1.000008201

JFM6 1.025557174 1.008368587 1.001741086 1.000187146 1.000030292 1.000008317

JFM7 1.028603026 1.007974116 1.001306833 1.000103926 1.000014157 1.000003578

JFM8 1.038892354 1.010028983 1.001509596 1.000111360 1.000014692 1.000003664

JFM9 1.022104931 1.007370084 1.001583293 1.000179777 1.000030334 1.000008526
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systems of nonlinear equations. In this paper, just to show
usefulness of these criteria, we only compared some nonlin-
ear solvers from different categories. As a matter of fact, we
must categorise different algorithms, e.g., for their order of
convergence, after this categorization, we can compare any
algorithm with same convergence order. In fact, we cannot
compare a fourth order method with a second or a third
order one. Therefore, we can use some of the presented cri-

teria in this paper to nonlinear solvers from a similar cate-
gory. Thus, to compare different algorithms, first we
categorised nearly all solvers to three different categories,
namely, solvers which use Jacobian matrix, the Jacobian free
methods, and the frozen Jacobian ones. After that, for any
category two qualification criteria were presented which
use all parameters of the algorithm. Next, in each category
we presented numerical results of our criteria and between

Table 31: Values of EI for the methods in the third category to solve Test Problem 1, and n = 3, 5, 10,100,250,500.

Method n = 3 n = 5 n = 10 n = 100 n = 250 n = 500
NM 1.059463094 1.023373892 1.006321233 1.000068631 1.000011046 1.000002767

FJM2 1.075989625 1.031886750 1.009197139 1.000107713 1.000017438 1.000004377

FJM3 1.059463094 1.023373892 1.006321233 1.000068631 1.000011046 1.000002767

FJM4 1.080059739 1.035264924 1.010720864 1.000134601 1.000021918 1.000005512

FJM5 1.069359545 1.027186966 1.007342451 1.000079678 1.000012824 1.000003212

FJM6 1.093532430 1.041056380 1.012457245 1.000156268 1.000025446 1.000006399

FJM7 1.077514117 1.030313019 1.008177617 1.000088705 1.000014277 1.000003576

FJM8 1.084457205 1.039685437 1.013057245 1.000185342 1.000030525 1.000007707

FJM9 1.084781613 1.034381284 1.009598927 1.000108244 1.000017473 1.000004381

FJM10 1.075989625 1.031886750 1.009197139 1.000107713 1.000017438 1.000004377

FJM11 1.079775162 1.033441064 1.009640276 1.000112878 1.000018275 1.000004587

Table 32: Values of Iop for the methods in the third category to solve Test Problem 1, and n = 3, 5, 10,100,250,500.

Method n = 3 n = 5 n = 10 n = 100 n = 250 n = 500
NM 1.041616011 1.010720864 1.001613270 1.000002019 1.000000132 1.000000017

FJM2 1.043159740 1.012281610 1.002075003 1.000003110 1.000000206 1.000000026

FJM3 1.026501581 1.008437178 1.001671630 1.000003617 1.000000251 1.000000032

FJM4 1.040403283 1.012127685 1.002202890 1.000003816 1.000000257 1.000000033

FJM5 1.020321704 1.006728527 1.001425296 1.000003894 1.000000282 1.000000037

FJM6 1.047057595 1.014093502 1.002557929 1.000004430 1.000000298 1.000000038

FJM7 1.016886406 1.005704333 1.001253764 1.000004042 1.000000304 1.000000040

FJM8 1.037397617 1.011863211 1.002347220 1.000005077 1.000000352 1.000000045

FJM9 1.013008737 1.004494201 1.001032093 1.000004281 1.000000347 1.000000048

FJM10 1.014560410 1.005006181 1.001139107 1.000004454 1.000000354 1.000000048

FJM11 1.015263908 1.005246865 1.001193761 1.000004668 1.000000371 1.000000050

Table 33: Values of CEI for the methods in the third category to solve Test Problem 1, and n = 5,10,100,250,500.

Method n = 5 n = 10 n = 100 n = 250 n = 500
NM 1.005792941 1.001035083 1.000001906 1.000000128 1.000000016

FJM2 1.007605412 1.001593460 1.000003019 1.000000204 1.000000026

FJM3 1.007322969 1.001671630 1.000003704 1.000000254 1.000000032

FJM4 1.007521629 1.001692033 1.000003705 1.000000254 1.000000032

FJM5 1.007881816 1.001820229 1.000004184 1.000000291 1.000000037

FJM6 1.008079655 1.001895250 1.000004298 1.000000295 1.000000038

FJM7 1.007192783 1.001749587 1.000004597 1.000000323 1.000000042

FJM8 1.007974116 1.001918992 1.000004994 1.000000350 1.000000045

FJM9 1.006208559 1.000000050 1.000005227 1.000000382 1.000000050

FJM10 1.006389091 1.001972548 1.000005230 1.000000383 1.000000050

FJM11 1.006507236 1.001663899 1.000005478 1.000000401 1.000000053
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our selected algorithms we distinguished the better algo-
rithm. About the numerical results, it must point that CPU
time can be computed in seconds, minutes, or hours. Each
of these units conduces to different values for the criterion.
As a suggestion, we can compute the CPU time in seconds
or minutes for small sizes of the problems. But for large
values of n, it is better that computes in hours.

The presented criteria will be useful for researchers which
work on nonlinear systems. They can use a relevant criterion

from the category of their method and present its value to
show qualification of their algorithm. A new solver must be
able to solve any problem with any size as well. Finally from
our presented results, we suggest the followings to solve non-
linear systems and/or presenting any qualification criterion:

(i) To investigate validity of an algorithm, using one
criterion is not enough. Hence, applying two or
more criteria can show a better validity

Table 34: Values of FLEI for the methods in the third category to solve Test Problem 1, and n = 3, 5, 10,100,250,500.

Method n = 3 n = 5 n = 10 n = 100 n = 250 n = 500
NM 1.014545335 1.004252776 1.000709959 1.000000995 1.000000065 1.000000008

FJM2 1.016049346 1.005044493 1.000926226 1.000001533 1.000000102 1.000000013

FJM3 1.012234716 1.004045913 1.000822252 1.000001808 1.000000126 1.000000016

FJM4 1.015522513 1.005084692 1.000993066 1.000001881 1.000000128 1.000000016

FJM5 1.010787355 1.003636909 1.000771594 1.000001995 1.000000143 1.000000019

FJM6 1.018043495 1.005905557 1.001153006 1.000002184 1.000000148 1.000000019

FJM7 1.009679663 1.003303160 1.000720806 1.000002116 1.000000155 1.000000020

FJM8 1.014850939 1.005089194 1.001071717 1.000002504 1.000000175 1.000000023

FJM9 1.007906449 1.002756056 1.000628574 1.000002320 1.000000181 1.000000024

FJM10 1.008357551 1.002920927 1.000664704 1.000002370 1.000000182 1.000000024

FJM11 1.008760060 1.003061205 1.000696589 1.000002484 1.000000191 1.000000026

Table 35: Values of CI for the methods in the third category to solve Test Problem 1, and n = 3, 5, 10,100,250,500.

Method n = 3 n = 5 n = 10 n = 100 n = 250 n = 500
NM 1.024189560 1.007322969 1.001284430 1.000001961 1.000000130 1.000000016

FJM2 1.027157647 1.008827634 1.001691602 1.000003022 1.000000204 1.000000026

FJM3 1.018166869 1.006180328 1.001321152 1.000003436 1.000000246 1.000000032

FJM4 1.026501581 1.008983950 1.001825736 1.000003711 1.000000254 1.000000032

FJM5 1.015595728 1.005379209 1.001192887 1.000003713 1.000000276 1.000000036

FJM6 1.030832526 1.010437566 1.002119925 1.000004308 1.000000295 1.000000038

FJM7 1.013771519 1.004789458 1.001086505 1.000003866 1.000000298 1.000000040

FJM8 1.025593593 1.009091827 1.001987595 1.000004941 1.000000348 1.000000045

FJM9 1.011215856 1.003966810 1.000931461 1.000004118 1.000000340 1.000000047

FJM10 1.012145831 1.004317577 1.001013059 1.000004277 1.000000347 1.000000048

FJM11 1.012731936 1.004525080 1.001061662 1.000004482 1.000000364 1.000000050

Table 36: Values of corrected efficiency indices for the methods in the first category to solve Test Problem 1, and n = 500.

Method COREI CORIOP CORCEI CORFLEI CORCI

M2 0.01717822115 0.01717814641 0.01717814641 0.01717814619 0.01717814641

M3 0.01702987487 0.01702982802 0.01702982802 0.01702982788 0.01702982802

M4 0.00693383982 0.00693382714 0.00693382714 0.00693382708 0.00693382714

M5 0.00570318522 0.00570316952 0.00570316952 0.00570316945 0.00570316952

M6 0.01716096772 0.01716093028 0.01716093028 0.01716093017 0.01716093028

M7 0.00975377848 0.00975374727 0.00975374727 0.00975374721 0.00975374727

M8 0.00859218537 0.00859215793 0.00859215793 0.00859215785 0.00859215793

M9 0.00862912645 0.00862909577 0.00862909577 0.00862909564 0.00862909577

M10 0.00639700555 0.00639698281 0.00639698281 0.00639698271 0.00639698281
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(ii) A qualification criterion depends on the algorithm
and type of the nonlinear system. Hence, a suitable
criterion must be selected for the problem. This will
need more works in the future

(iii) The suitable criterion directly depends on the cate-
gory of the used algorithm

(iv) The numerical results of this paper have obtained
by four, ten, or eleven digits depending on how
the results are near together. But it must be noted
that, the choice of data type influences the perfor-
mance of the solvers. For example, using single,
double, and quad precision floating-point data. In
fact, the performance usually suggests precision
evaluation

(v) The practical implementations of methods heavily
depend on computer type. For example, special-
ized computational platforms such as FPGA
(Field Programmable Gate Array) or vector com-
puters can speed up the calculations for specific
algorithms

(vi) Here, we only considered explicit algorithms. Intro-
ducing qualification criteria for using implicit-
explicit solvers will be a new research and an attrac-
tive work for the future

(vii) The CPU time is a very important index to be in
any criterion. Therefore, the corrected classical effi-
ciency indices will be very useful to show the qual-
ity of any new nonlinear solver

In summary, for the first time we have presented some
new robust qualification criteria which remove the gaps of
the previous ones. These criteria consider all parameters of
the nonlinear solvers. Further, we have proposed some sug-
gestions for each old criterion by entering the CPU time in
its formula. Also, some outlines for the continuation of this
work are presented for the future researches.
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