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In mathematical chemistry, the topological indices with highly correlation factor play a leading role specifically for developing
crucial information in QSPR/QSAR analysis. Recently, there exists a new graph invariant, namely, Y-index of graph proposed by
Alameri as the sum of the fourth power of each and every vertex degree of that graph. *e approximate range of the descriptors is
determined by obtaining the bounds for the topological indices of graphs. In this paper, firstly, some upper bounds for the Y-index
on trees with several types of domination number are studied. Secondly, some new bounds are also presented for this index of
graphs in terms of relevant parameters with other topological indices. Additionally, a new idea on bounds for the Y-index by
applying binary graph operations is computed.

1. Introduction

In this paper, we only consider the molecular graphs (MG)

[1], which are simple and connected. In chemical graph
theory, molecules or molecular compounds are often mod-
elled by chemical structure as MG. *e atoms of a molecular
compound are to be represented as the vertices of the MG,
whereas the edges represent the chemical bonds. Let G �

G(V, E) be a MG with V(G) � μ1, μ2, . . . , μn  as the vertex
set and E(G) � e1, e2, . . . , em  as the edge set, such that
|V(G)| � n and |E(G)| � m. *e degree of μ ∈ V(G),
denoted by ξ(μ/G), is the total number of edges, which are
associated with μ. Obviously, 0≤ δ ≤ ξ(μ/G)≤Δ≤ (n − 1),
where δ � min ξ(μ/G)|μ ∈ G  and Δ � max ξ(]/G)|] ∈ G{ }.
A set S⊆V(G) satisfying the condition ∀μ ∈ V(G)∖S, NG(μ)

∩ S≠∅} is called a dominating set of G. When R⊆V(R)

satisfies the condition ∀μ ∈ V(R)∖R, ξR(μ, ])≤ κ for some
] ∈R, where ξR(μ, ]) denotes the distance between μ and ],
is said to be a distance κ-domination (DDk) set of R. *e
(DDk) number ([2, 3]) of G, denoted by ζκ, is the minimum
cardinality among all R sets. *e notations diam(G) � max
εG(μ)|μ ∈ V(G)  and εG(μ) � max ξG(μ, ])|] ∈ V(G) 

denote the diameter of G and the eccentricity of μ,

respectively. A path P is called a diameter path (DP) of G
when the length of P is equal to diam(G). We follow the book
[4] for the graph theoretical definitions and notations.

*e graph invariant (GI) is a number that is uniquely
determined by a graph. *e subset of (GI) s is topological
indices, which are used to predict several properties such as
physical, chemical, pharmaceutical, and biological activities of
chemical species. In 1947, the great chemist holder Wiener
initiated a first-time idea about the topological index (TI). He
presented the first TI, namely, Wiener index [5] to search the
boiling points of alkanes. After long years, Gutman and
Trinajstic [6] investigated two oldest GI s. *ey are defined as
M1(G) � μ∈V(G)ξ

2
(μ/G) and M2(G) � μ]∈E(G) ξ(μ/G)ξ

(]/G), respectively. *e concept of first general ZI was
considered by Li and Zheng [7]. It is defined as

M
λ
1(G) � 

μ∈V(G)

ξλ
μ
G

  � 
μ]∈E(G)

ξλ− 1 μ
G

  + ξλ− 1 ]
G

  ,

(1)

where λ ∈ R − 0, 1{ }. For λ � 3, it becomes forgotten to-
pological index proposed by Furtula et al. [8]. It is presented
as
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F(G) � 
μ∈V(G)

ξ3
μ
G

  � 
μ]∈E(G)

ξ2
μ
G

  + ξ2
]

GG
  . (2)

Liu et al. ([9]) introduced the reformulated F-index ofG
as follows:

RF(G) � 
e∈E(G)

ξ3
e

G
  � 

e ∼ f∈E(G)

ξ2
e

G
  + ξ2

f

G
  . (3)

In [10], Milicevic et al. introduced the first reformulated
Zagreb index of a graph G. It is defined as

EM1(G) � 
e∈E(G)

ξ2(e), (4)

where ξ(e) � ξ(μ/G) + ξ(]/G) − 2. Recently, Alameri
et al. [11] introduced a GI named Y-index (YI) and defined
as

Y(G) � 
μ∈V(G)

ξ4
μ
G

  � 
μ]∈E(G)

ξ3
μ
G

  + ξ3
]
G

  . (5)

*eYI is the special case of the first general Zagreb index
for λ � 4.

In this study, we obtain some new upper bounds (UB)

for the YI in terms of different graph parameters, on ζκ(T)

for tree of vertex n and TI s. We arrange the remaining work
as follows: Section 2 contains the UB for the YI on trees with
ζκ. Section 3 contains some UB for YI in behavior of some
relevant parameters. Section 4 collects some UB for YI under
several graph operations. Finally, Section 5 presents the
conclusions of the obtained results. To know more related to
this field, readers are referred to [12–17].

2. Preliminaries

To establish the main results, the following lemmas are
required.

Lemma 1. [18]). Let T be a n(> 3) vertex tree with
e � p1p2 ∈ E(T), a nonpendant edge. Suppose the union of
T1 andT2 is equal toT − p1p2, where pi ∈ Ti for i ∈ 1, 2{ }.
Let T be a new tree obtained by taking an edge joining
transformation (EJT) of T on e. It is attained by identifying
p1 ∈ T1 with p2 ∈ T2 and also joining a pendent vertex s to
the p(� p1 � p2). In short, we denoteT

�

� ϕ(T, p1p2).>en,
we get Y(T

�

)<Y(T).

Lemma 2. [19]). IfG is an n vertex MG graph with n � κ + 1,
then ζκ(G) � ⌊n/κ + 1⌋.

Lemma 3. [20]). Let H and T be two trees with n and (κ +

1)n vertices, respectively. >en, ζκ(T) � n holds iff at least
one of following conditions is satisfied:

(1) T is any (κ + 1)-vertex tree.
(2) T is equal toH°κ obtained by takingH and n copies

of Pκ− 1 and then link with the jth vertex of H to
exactly one end vertex in the jth copy of Pκ− 1.

Lemma 4. [2]). If G contains the maximum value of the ZI s
among all MG s of n-vertices with ζκ(G) and SG � μ ∈V(G)

|ξ(μ/G) � 1,ζκ(G − μ) � ζκ(G)}. If SG≠∅, then |NG(SG)|

� 1.

Lemma 5. [2]). Suppose μ and ] be two vertices in G such
that p1, p2, . . . , pr and q1, q2, . . . , qt pendent vertices adja-
cent to p and q respectively. Define G′ � G − qq1, qq2,

. . . , qt} + pq1, pq2, . . . , pqt  and G′′ � G − pp1, pp2, . . . ,

ppr} + qp1, qp2, . . . , qpr . >en either Mi(G′) is greater
than Mi(G) or Mi(G′′) is greater than Mi(G), i � 1, 2.

Lemma 6. [2]). LetT be a tree of order n with Δ and ζκ ≥ 2.
>en κζκ(T)≤ (n − Δ(T)).

Lemma 7. [21]). Suppose μ] is any edge of G with n vertices.
>en, for any integer t≥ 2

(i) |ξ(μ/G), ξ(]/G)|S(G,t) � nt− 2(n − ξ(μ/G) − ξ(]/G)

+⊳(μ, ]))

(ii) |ξ(μ/G),ξ(]/G) +1|S(G,t) � nt− 2(ξ(μ/G) − ⊳(μ,])) −

β(n)t− 2ξ(μ/G))

(iii) |ξ(μ/G) + 1, d(]/G)|S(G,t) � nt− 2(ξ(μ/G) − ⊳(μ, ]))

− β(n)t− 2ξ(]/G))

(iv) |ξ(μ/G) + 1, ξ(]/G) + 1|S(G,t) � nt− 2((⊳(μ, ]) + 1)+

β (n)t− 2(ξ(μ/G) + ξ(]/G) + 1)).

Lemma 8. [22]). (Radon’s inequality) Let x � (xi)
n
i�1 and

y � (yi)
n
i�1 be two sequences of positive real numbers. For any

α≥ 0,



n

i�1

x
α+1
i

y
α
i

≥


n
i�1 xi( 

α+1


n
i�1 yi( 

α . (6)

where the equality occurs for xi � pyi for some constant p, for
all i � 1, 2, . . . , n.

3. Main Results and Discussions

3.1. Some UB for the YI on Trees with DDκ Number. In this
section, we establish some sharp UB for the YI of graphs on
the trees as to the DDκ number, ζκ. *e set of all n vertex
trees with ζκ and the star of order (n − κζ + 1) with u1, u2,

. . . , un− κζκ pendent vertices are denoted as Tn,κ,ζκ and
Sn− κζκ+1, respectively.

Theorem 1. LetT be a tree of order n and it contains ζκ(T)

� 2; then the UB of Y(T) can be expressed as Y(T)≤ (n

− 2κ)4 + (n − 2(κ + 1)) + (16κ + 1) + 16κ − 15. >e equality
holds for T⇔Tj

n,κ,2, where j ∈ 1, 2, . . . , k{ }.

Proof. Let T ∈ Tn,κ,2 be a tree with a DP such that P: u0,

u1, . . . , ud. For d≤ 2κ, there exists a DDκ set μ⌊d/2⌋  of T, a
contradiction. In case d≥ 2κ + 2, also denoted by
T
�

� ϕ(T, uiui+1) the tree obtained fromT by EJT (Lemma
1) on the edge uiui+1 for some i ∈ 1, 2, . . . , d − 2{ }, then
ζκ(T

�

) � 2; therefore, T
�

∈ Tn,κ,2. But Y(T
�

)>Y(T), a
contradiction. *us, it is only s for d � 2κ + 1.
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In this case, we consider a tree Tα
n,κ,2 ∈ Tn,κ,2 obtained

from the path P2κ+2 � w0w1 . . . w2κ+1 by attaching n − 2(κ +

1) pendent vertices to wα, where α ∈ 1, . . . , 2κ{ }. Moreover,
Tα

n,κ,2 � Td− α
n,κ,2 for κ + 1≤ α≤d − 1 and also Y(Tα

n,κ,2) �

Y(T
β
n,κ,2) for 1≤ α≠ β≤ d − 1. Consequently,T � Tα

n,κ,2, for
some α ∈ 1, 2, . . . , κ{ }.*erefore, the YI for the treeT can be
directly computed as Y(T) � Y(Tα

n,κ,2) � (n − 2κ)4 + (n−

2(κ+ 1)) + (16κ + 1) + 16κ − 15. □

Theorem 2. Consider an n vertex tree T that belongs to
Tn,κ,3. >en, Y(T)≤ (n − 3κ)4 + (n − 3(κ + 1)) + 2(16κ+ 1)

+16κ − 15. >e equality occurs as T⇔Tn,κ,3.

Proof. Given that T ∈ Tn,κ,3. Obviously n≥ (κ + 1)ζκ, by
Lemma 2. Also, the equality n � (κ + 1)ζκ of Lemma 3 holds
the results. Now, we proceed to prove the theorem by in-
duction hypothesis (IH) on n. Assume that n> 3(κ + 1) and
the statement is true for n − 1. Our main goal is to reach
T � Tn,κ,3.

Let P � u0u1 . . . ud and D be a DP and minimum DDκ
set of T, respectively. Actually, we have to prove d≥ 2κ + 2.
Otherwise, uκ, uκ+1  is a DDκ set, a contradiction. Let us
assume that uκ, ud− κ ⊆D such that (∪ κr�0V(Tr)\ uκ )

∩D � ∅ and (∪ d
r�d− κV(Tr)\ ud− κ )∩D � ∅.

Choose u0(� α1), u2, . . . , ud(� αt) as the pendent ver-
tices of T and also ζT � αi|ζκ(T − αi) � ζκ(T)  for
1≤ i≤ t. If ζT � ∅, then ζT � αi|ζκ(T − αi) � ζκ(T) − 1 

for 1≤ i≤ t.
When ξ(ui/T)≥ 3, then α2, . . . , αt− 1 ∩V(Ti)≠∅.

Taking uκ, ud− κ  ∈ D, so ζκ(T − x) � ζκ(T) for x ∈ α2,

. . . , αt− 1}∩V(Ti), a contradiction. *erefore ξ(ui/T) � 2
for i ∈ 1, 2, . . . , κ, d − κ, . . . , d − 1{ }. Clearly ζκ(T − u0) � ζκ
(T) − 1, since ξ(u1/T) � 2.

Remark that ξT(u1, uκ+1) � κ and (∪ κr�0V(Tr)vκ)∩D
� ∅. So, uκ+1 ∈ D. Likewise, ud− κ− 1 ∈ D. For d> 2κ + 2, the
vertices uκ, uκ+1, ud− κ− 1, ud− κ are distinguished, a contra-
diction. So, d � 2κ + 2 and D � uκ, uκ+1, ud− κ .

On the other side, if ξ(uκ+1/T) � 2, thenT � P2κ+3 and
uκ, ud− κ  is a DDκ set, which is an inconsistency. *erefore,
ξ(uκ+1/T)≥ 3 and also ζκ � 3≤m. When m> 3, then
ζκ(T − αi) � ζκ(T) for some i ∈ 1, . . . , m{ }, an impropriety.
So, m � 3. *us, Tκ+1 is a path of which ended vertices are
uκ+1 and α3. *at is, ξ(uκ+1, α3) � κ. Hence, |V(T)| �

3(κ + 1), which contradicts n> 3(κ + 1).
Assume that v is a unique vertex αi which is a pendent

vertex with ζκ(T − αi) � ζκ(T). Note that ξ(v/T)≤Δ≤
(n − 3κ), by Lemma 6. So, by the IH and the definition of
Y(T), we get

Y(T) � Y T − αi(  + 4ξ3
v

T
  − 6ξ2

v

T
  + 4ξ

v

T
 

≤ (n − 1 − 3κ)
4

+(n − 1 − 3(κ + 1)) + 2(16κ + 1) + 16κ − 15 + 4(n − 3κ)
3

− 6(n − 3κ)
2

+ 4(n − 3κ)

� (n − 3κ)
4

+(n − 3(κ + 1)) + 2(16κ + 1) + 16κ − 15

(7)

*erefore, the equality arrives if and only if T − αi �

Tn− 1,κ,3 and ξ(v/T) � Δ � (n − 3κ), that is, T⇔Tn,κ,3. □

Theorem 3. LetT be a tree having n vertices and ζk(T)≥ 3.
If n � (κ + 1)ζk, we have Y(T)≤ (ζκ − 1)4 + 4(ζκ − 1)3+

(ζκ − 1)(6ζκ + 5) + 2(8κ − 3)ζκ − 8.>e equality is attained
when T⇔Tn,κ,ζκ.

Proof. Given that n � (κ + 1)ζκ for the tree T of n vertices
with DDκ number, ζκ(≥ 3). By Lemma 3, we get T � G°κ
for some tree G on ζκ vertices. Let us consider V(G) �

u1, u2, . . . , uκ . *en, ξ(ui/G) � ξ(vi/T) − 1. *erefore,


ζκ
i�1 ξ(ui/G) � 2(ζκ − 1) since for every tree (assume T′)

containing n-vertices with vertex set x1, x2, . . . , xn  occurs


ζκ
i�1 ξ(xi/T′) � 2(n − 1). By the definition of the YI, we can

express

Y(T) � 

ζκ

i�1
ξ4

ui

G
  + 

vi∈V(T)∖V(G)

ξ4
vi

T
 

� 

ζκ

i�1
ξ

ui

T
  − 1 

4
+ 4

ζκ

i�1
ξ

ui

T
  − 1 

3
+ 6

ζκ

i�1
ξ

ui

T
  − 1 

2
+ 4

ζκ

i�1
ξ

ui

T
  − 1  + ζκ + 16(κ − 1)ζκ + ζκ

� Y(G) + 4F(G) + 6M1(G) + 8 ζκ − 1(  + 2ζκ + 16(κ − 1)ζκ

≤Y Sζκ  + 4F Sζκ  + 6M1 ζκ(  + 16κζκ − 6ζκ − 8

� ζκ − 1( 
4

+ 4 ζκ − 1( 
3

+ ζκ − 1(  6ζκ + 5(  + 2(8κ − 3)ζκ − 8

(8)
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for equalities G⇔Sζκ that imply T⇔Tn,κ,ζκ. □

Theorem 4. Consider T as an n-vertex tree whose DDκ
number is ζκ ≥ 3. >en, Y(T)≤ (n − κζκ)

4 + (n − (κ+ 1)ζκ)+
(16κ + 1)(ζκ − 1) + 16κ − 15.

>e equality occurs for T⇔Tn,κ,ζκ.

Proof. Let T⇔Tn,κ,ζκ be a tree containing a DP such that
P � u0u1 . . . ud that maximized the YI of graphs. *e main
goal is to establish the maximization of Y(T) with respect to
T � Tn,κ,ζκ. Let us consider D to be a minimum DDκ set of
T and also define ζT � x ∈ V(T)|ξ(x/T) � 1 and ζκ(T

− x) � ζκ(T)}. If ΓT � ∅, then ζκ(T − ui) � ζκ(T) − 1 for
i � 0, d. Also, for ΓT ≠∅, by Lemma 4, |NT(ΓT)| � 1. In
case, u0, ud ∈ ΓT, as d − 1> 1, we get u1, ud− 1 ⊆|NT(ΓT)|

that implies |NT(ΓT)|> 1, a contradiction. *erefore, we
consider that ζκ(T − u0) � ζκ(T) − 1, and thus uκ, uκ+1,

ud− κ}⊆D, from *eorem 2.
By Lemma 1, applying EJT ofT on any nonpendent edge

of Tα repeatedly for α � 1, . . . , κ, it is to be constructed a

tree T
�

from T such that T
�

α � S
|V(T

�

α)|
, where T

�

α is the

component of T
�

− uα− 1uα, uαuα+1  having uα, for α � 1,

. . . , κ. *en, we have T
�

∈ Tn,κ,ζκ and also Y(T)≤Y(T
�

),

where the equality holds T⇔T
�

.
Now let T∗ �T

�

− ∪α∈ 1,...,κ{ }∖(αr) uαw|w ∈N
T
� (uα)∖

uα− 1, uα+1}} + ∪αr∈ 1,...,κ{ }∖(αr) uαw||w ∈N
T
� (uα)∖ uα− 1,

uα+1}} for some αr ∈ 1, . . . ,κ{ }.
*en, by Lemma 5, we get Y(T

�

)≤T∗ with equality if
and only if T

�

� Y(T∗).
Again, define by T⋆ � T∗ − uαr

w|w ∈ NT∗(uαr
)∖

uαr − 1, uαr+1 } + uκ+1w|w ∈ NT∗(uαr
)∖ uαr − 1, uαr+1  . In

fact, let |NT∗(uαr
)∖ uαr− 1, uαr+1 | � p, p≥ 0.

*en, ξ(uα/T
⋆) � 2 for α � 1, . . . , κ and also D will be

the minimumDDκ set ofT
⋆. It implies that all the vertices in

∪ k
α�0NTα

⋆
(uκ)∖ u0, . . . , uκ  can be determined by uκ+1 ∈ D.

*erefore, D∖ uκ  will be a DDκ set of T⋆ − u0, . . . , uκ.
Suppose that PNκ,D(y) is the set of all private κ-neighbors of
y upon D in T⋆. *en, PNκ,D(uκ+1)⊆V(T⋆)∖u0, . . . , uκ.
*us, D∖ uκ  will be a minimum DDκ set of the tree
T⋆ − u0, . . . , uκ . *erefore, ζκ(T

⋆ − u0, . . . , uκ ) � ζκ−
1 � ζκ(T

⋆ − u0, . . . , uκ− 1 ).
So, from the definition of YI, we have

Y T
⋆

(  − Y T
⋆

(  � d
uκ+1

T∗
  + p 

4
+ 24 − ξ4

uκ+1

T
∗  − (p + 2)

4

� 2p 2ξ3
uκ+1

T
∗  + 3pξ2

uκ+1

T
∗  + 2p

2ξ
uκ+1

T
∗  − 4p

2
− 12p − 16 ≥ 0

(9)

It means that Y(T⋆)≥Y(T⋆), where the equality holds
iff either p � 0 i.e. T∗ � T⋆ or ξ(uκ+1/T

∗) � 2.
So far, we have proved Y(T⋆)≤ (n − κζκ)

4 + (n − (κ +

1)ζκ) + (16κ + 1)(ζκ − 1) + 16κ − 15 with equality iff T⋆ �

Tn,κ,ζκ by induction on ζk. We have from*eorem 2 that the
assertion is mathematics for n≥ (κ + 1)ζκ as well as ζk � 3.

Now let us consider the affirmation contains for ζk − 1
and all the vertices n≥ (κ + 1)(ζκ − 1).

Because of ζk(T⋆ − u0, . . . , uκ ) and |V(T⋆) − u0, . . . ,

uκ}| � (n − κ − 1)≥ (κ + 1)(ζκ − 1), we get by the IH

Y T
⋆

(  � Y T
∗

− u0, . . . , uκ (  + 4ξ3 uκ+1(  − 6ξ2 uκ+1(  + 4ξ uκ+1(  − 1 + 

κ

α�0
ξ4T∗ uα( 

� Y Tn− κ− 1,κ,ζκ− 1  + 4 n − κζκ( 
3

− 6 n − κζκ( 
2

+ 4 n − κζκ(  + 16κ

� n − κζκ( 
4

+ n − (κ + 1)ζκ(  +(16κ + 1) ζκ − 1(  + 16κ − 15,

(10)

where the equality holds iffT⋆ − u0, . . . , uκ  � Tn− κ− 1,κ,ζκ− 1
and also ξT⋆(uκ+1) � Δ � n − κζκ and otherwise T⋆ �

Tn,κ,ζκ with ξT⋆(uα) � 2 for α � 1, . . . , κ. *erefore, we can
conclude thatY(T)≤Y(T

�

)≤Y(T∗)≤Y(T∗)≤ (n−

κζκ)
4 + (n − (κ + 1)ζκ) + (16κ + 1)(ζκ − 1) + 16κ − 15 with

either equality iff T � T
�

� T∗ � T⋆ � Tn,κ,ζκ or T � T
�

�

T∗ with ξT∗(uκ+1) � 2. Besides, T⋆ � Tn,κ,ζκ. □

Here, we determine some UB on the YI of trees con-
taining n-vertices with domination number ζ ([23]). *e
DDκ number of a graph is said to be the domination number
of that graph if κ � 1. IfT is an n-vertex tree containing a DP

such that P: u0u1 . . . ud, then denote by Ti the component
of T − ui− 1ui, uiui+1  containing ui, i � 1, 2, . . . , d − 1. To
compute our main outcome, at first, we will focus on the
following definition.

ConsiderTn,ζ to be a tree constructed from a star K1,n− 1
with involvement of a pendant edge to its ζ − 1 pendant
vertices. Note that Tn,ζ ∈ Tn,ζ , a class of n vertex trees and
domination number ζ. Also, ζ � 1 occurs iff T � T1,n− 1.

Corollary 1. If T ∈ Tn,ζ , then Y(T)≤ (n − ζ)4 + (n − 2ζ +

1) + 17(ζ − 1) with equality holding for T⇔Tn,ζ .
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Proof. For Δ � 2, it occurs that T � Pn(n≥ 2). *e equality
holds for T � T2,1( ≡ P2), T � T3,1( ≡ P3) and T � T4,2
( ≡ P4). But for n≥ 5, the above inequality is strict. Now, we
consider a diameter path P � u0, u1, . . . , ud and a minimum
dominating setD ofT with Δ≥ 3. To prove the theorem, we
will take the way of IH on n. Let us consider that *eorem 1
is true for n − 1 and also the statement is to be proved as well
as truth by replacing n + 1 from n.When ζ(T − u0 ) �

ζ(T), then by the IH we have

Y(T) � Y T − u0 (  + 4ξ3
u1

T
  − 6ξ2

u1

T
  + 4ξ

u1

T
 ,

(11)

≤(n − 1 − ζ)4 + (n − 2ζ) + 17(ζ − 1) + 4(n − ζ)3 − 6(n − ζ)2

+4ξ(n − ζ) (since ξ(u/T)≤ n − ζ, by Lemma 6) � (n−

ζ)4 + (n − 2ζ + 1) + 17(ζ − 1). *e equality holds iff the
pendant vertex u0 is adjacent to the vertex u1 of degree
Δ � n − ζ, that is, T � Tn,ζ .

Otherwise, assume that ζ(T − u0 ) � ζ(T) − 1. So, it
will be ξ(u1/T) � 2 which also implies that u1 belongs to
every minimum dominating set, i.e., ζ(T − u0 ) � ζ(T).
*erefore, we can obtain by the IH

Y(T) � Y T − u0 (  + 4ξ3 u1/T(  − 6ξ2 u1/T(  + 4ξ u1/T( 

≤ (n − ζ + 1)
4

+(n − 2ζ + 3) + 17(ζ − 2) + 16

� (n − ζ)
4

+(n − 2ζ + 1) + 17(ζ − 1),

(12)

where the equality holds iff T − u0  � Tn− 1,ζ− 1 and pen-
dant vertex u0 is adjacent to the vertex u1 of degree 2, that is,
T � Tn,ζ . □

3.2. Some UB for the YI of Graphs with respect to Some
Standard Parameters and Others TI. In this section, we
establish the some sharp UB for the YI of G · w · r to some
graph parameters such as n, m, δ,Δ and others TI such as
M1(G), M2(G), F(G),EF(G), EM1(G). Let D(G) � ξ{
(u1/G), ξ(u1/G), . . . , ξ(un/G)}. If D(G) � r{ }, then G is
said to be r-regular. If D(G) � r, s{ }, then G is (r, s)

biregular and so on. Motivating the proof technique as in
[24], we obtain an UB for YI in the following theorem.

Theorem 5. ConsiderG to be a (n, m) graph, i.e.,G contains
n vertices and m edges. >en Y(G)≤ 2m(δ + Δ)(δ2 + Δ2)−
nδΔ(δ2+ δΔ + Δ2) + (δ − t)(Δ3 + δΔ2 + δΔ) − t(δ2 + tδ+

t2), where t is the integer defined by relation 2m − nδ ≡ t −

δ(mod(Δ − δ)), δ ≤ t≤Δ − 1 and the equality holds iff at
most one vertex of G has different degree from δ and Δ.

Proof. Consider xi as the number of vertices of degree i inG.
From the definition of YI, we can write

Y(G) � 
Δ

i�δ
i
4
xi. (13)

Obviously,



Δ

i�δ
ixi � 2m,



Δ

i�δ
xi � n.

(14)

After calculation, we get

xδ �
1
Δ − δ

nΔ − 2m + 
Δ+1

i�δ+1
(i − Δ)xi],⎡⎣ (15)

xΔ �
1
Δ − δ

2m − nδ + 
Δ+1

i�δ+1
(δ − i)xi].⎡⎣ (16)

Using (15) and (16), we have

Y(G) � δ4xδ + Δ4xΔ + 
Δ− 1

i�δ+1
i
4
xi

�
δ4

Δ − δ
nΔ − 2m + 

Δ+1

i�δ+1
(i − Δ)xi

⎡⎣ ⎤⎦ +
Δ4

Δ − δ
2m − nδ + 

Δ+1

i�δ+1
(δ − i)xi

⎡⎣ ⎤⎦ + 
Δ− 1

i�δ+1
i
4
xi.

�
1
Δ − δ

δ4(nΔ − 2m) + Δ4(2m − nδ)  +
1
Δ − δ



Δ− 1

i�δ+1
δ4(i − Δ) + Δ4(δ − i) + i

4
(Δ − δ) xi.

(17)
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Actually, the term δ4(i − Δ) + Δ4(δ − i) + i4(Δ − δ) will
be negative for δ + 1≤ i≤Δ − 1. So, the Y(G) will be
maximum if xi � 0 for i � δ + 1, . . . ,Δ − 1. *erefore, (15)
and (16) become to xδ � nΔ − 2m/Δ − δ and xΔ � 2m−

nδ/Δ − δ. *ese two equations require that

2m − nδ ≡ 0(mod(Δ − δ)). (18)

If the requirement is not true, we choose xi such that
nt � 1 and xi � 0 for all i � δ + 1, . . . ,Δ − 1, except for i � t.
*en, (15) and (16) become xδ � nΔ − 2m + k − Δ/Δ − δ and
xΔ � 2m − (n − 1)δ/Δ − δ which satisfy conditions 3 and 4.
In [25], there survives a n vertex graphG of which one vertex

with degree 0 when n and δ are both odd. If we add the edges
to this graph, the vertex degrees increase one at a time up to
Δ. *ere occurs 2m − nδ ≡ t − δ(mod(Δ − δ)) that implies
that the degree of one more vertex may be increased up to t.
*erefore, there exists a graph of order n and size m along
with a unique vertex of degree t that different from δ and Δ.

Suppose now that the graph G contains two vertices of
degrees i and k for δ + 1≤ i≤ k≤Δ − 1. If the sum of vertex
degrees remains the same by reducing the first vertex degree
by 1 and increasing the second vertex degree by 1, the value
of the YI is replaced by

(δ − (i − 1)) Δ3 + δΔ2 + δ2Δ − (i − 1) δ2 +(i − 1)δ +(i − 1)
2

    − (δ − i) Δ3 + δΔ2 + δ2Δ − i δ2 + iδ + i
2

  

+(δ − (k + 1)) Δ3 + δΔ2 + δ2Δ − (k + 1) δ2 +(k + 1)δ +(k + 1)
2

   − (δ − k) Δ3 + δΔ2 + δ2Δ − k δ2 + kδ + k
2

  

� (k + 1)
3

− (i − 1)
3

+ 3 k
3

− i
3

  + 3 k
2

+ i
2

  +(k − i)> 0.

(19)

It means that condition 8 is not true, and it will be the
optimal choice of the quantities xi � 0 for δ + 1≤ i≤Δ − 1

such that xt � 1 (except for i � t). *erefore, we can con-
clude from (17) that

Y(G)≤ 2m(δ + Δ) δ2 + Δ2  − nδΔ δ2 + δΔ + Δ2  +(δ − t) Δ3 + δΔ2 + δΔ  − t δ2 + tδ + t
2

 . (20)

□
Theorem 6. If G is a (n, m) graph, then

Y(G)≤EF(G) + 6EM1(G) + 12M1(G) −
3M

2
1(G)

n
− 16m,

(21)

where the equality holds iff either G is regular or semiregular
bipartite graph.

Proof. Using Lemma 8, for α � 1, setting xi � ξ(j/G)

+ξ(k/G) and yi � 1/ξ(j/G) + 1/ξ(k/G) for the graph G in
(1), we have


jk∈E(G)

(ξ(j/G) + ξ(k/G))
2

1/ξ(j/G) + 1/ξ(k/G)
≥

jk∈E(G)ξ(j/G) + ξ(k/G) 
2

jk∈E(G)(1/ξ(j/G) + 1/ξ(k/G))
, (22)

i.e. 
jk∈E(G)

ξ
j

G
 ξ

k

G
  ξ

j

G
  +

k

G
  ≥

M
2
1(G)

n
. (23)

Also,


jk∈E(G)

ξ
j

G
 ξ

k

G
  ξ

j

G
  + ξ

k

G
 

�
1
3


jk∈E(G)

ξ
j

G
  + ξ

k

G
  

3

− 
jk∈E(G)

ξ3
j

G
  + ξ3

k

G
  ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦
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�
1
3


e∈E(G)

ξ
e

G
  + 2 

3
− Y(G)⎡⎢⎢⎣ ⎤⎥⎥⎦; where ξ e �

ij

G
  � ξ

i

G
  + ξ

j

G
  − 2.

�
1
3


e∈E(G)

ξ3
e

G
  + 2 

e∈E(G)

ξ2
e

G
  + 4 

e∈E(G)

ξ
e

G
  +

8
3

m −
1
3


jk∈E(G)

ξ3
j

G
  + ξ3

k

G
  

�
1
3

EF(G) + 2EM1(G) + 4 M1(G) − 2m(  +
8
3

m −
1
3

Y(G).

(24)

since e∈E(G)ξ(e/G) � i∈V(L(G))ξ(i/L(G)) � M1(G) − 2m.
From (23) and (24), M2

1(G)/n≤ 1/3EF(G) + 2EM1
(G) + 4(M1(G)− 2m) + 8/3m − 1/3Y(G). □

Theorem 7. Suppose a graph G that contains n vertices and
m edges. >en,Y(G)≤M1(G)(F(G) − M2(G)), with
equalities G⇔P2.

Proof. If (a), (b), . . ., (l) are positive numbers sets with m

elements in each set and p, q, . . . , t are positive numbers
such that p + q + · · · + t> 1, then by Jensen’s theorem


m
i�1(a

p

i b
q

i . . . lti)≤ (
m
i�1 ai)

p(
m
i�1 bi)

q . . . (
m
i�1 li)

t. We
know

Y(G) � 
uv∈E(G)

ξ3
u

G
  + ξ3

v

G
   � 

uv∈E(G)

ξ
u

G
  + ξ

v

G
   ξ2

u

G
  + ξ2

v

G
  − ξ

u

G
 ξ

v

G
  

≤ 
uv∈E(G)

ξ
u

G
  + ξ

v

G
   

uv∈E(G)

ξ2
u

G
  + ξ2

v

G
  − ξ

u

G
 ξ

v

G
  .

(25)

Setting ai � ξ(u/G) + ξ(v/G) and bi � ξ2(u/G) + ξ2(v/
G) − ξ(u/G)ξ(v/G) and p � q � 1, then by Jensen’s theorem
� M1(G)(F(G) − M2(G)). □

Theorem 8. Let G be a graph of n order and m size. >en,
Y(G)≤ 16m4/

���
n163

√
1/4(Δ/δ)16/3 + 4/3δ/Δ 

4
. >e equality

occurred when G is regular graph.

Proof. We prove the theorem using the following
inequalities.

If 1<x, y<∞, pi, qi ≥ 0 and ϕq
y
i ≤px

i ≤φq
y
i for 1≤ i≤ n,

then



n

i�1
p

x
i

⎛⎝ ⎞⎠

1/x



n

i�1
q

y
i

⎛⎝ ⎞⎠

1/y

≤ cx(ϕ,φ) 
n

i�1
piqi, (26)

where cx(ϕ,φ) � max 1/x(ϕ/φ)1/y + 1/y(φ/ϕ)1/x, 1/x(φ/

ϕ)1/y + 1/y(ϕ/φ)1/x} is a constant with some positive con-
stants ϕ,φ. If pi > 0 for some 1≤ i≤ n, then the equality holds
if and only if ϕ � φ and px

i � ϕq
y

i for every 1≤ i≤ n. Setting
pi � ξ(ui/G), qi � 1 and x � 4, y � 4/3 and also ϕ � δ4,
φ � Δ4, we have



n

i�1
ξ4

ui

G
 ⎛⎝ ⎞⎠

1/4



n

i�1
1⎛⎝ ⎞⎠

4/3

≤max
1
4

δ4

Δ4
 

4/3

+
4
3
Δ4

δ4
 

1/4

,
1
4
Δ4

δ4
 

4/3

+
4
3

δ4

Δ4
 

1/4
⎧⎨

⎩

⎫⎬

⎭ 

n

i�1

ξ
ui

G
(27)

so (Y(G))1/4n4/3 ≤ 2m 1/4(Δ/δ)16/3 + 4/3δ/Δ , i.e., Y(G)≤
16m4/

���
n163

√
1/4(Δ/δ)16/3 + 4/3δ/Δ 

4
. *is completes the

proof. □

Theorem 9. For an n vertex graph G, we have Y(G)

≤ (F(G))4/3. >e equality is satisfied when G is regular.

Proof. Let x1, x2, . . . , xn be n positive real numbers, and let
s, t be positive rational numbers.*en, by Jensen’s inequality
([26]) (

n
i�1 xt

i)
1/t ≤ (

n
i�1 xs

i )
1/s if t> s> 0.*e equality holds

iff x1 � x2 � · · · � xn. Considering xi � ξ(ui/G) for t � 4,

s � 3, then we have (
n
i�1 ξ

4
(ui/G))1/4 ≤ (

n
i�1 ξ

3
(ui/G))1/3,

that is, Y(G)≤ (F(G))4/3. □

Theorem 10. Let G be a (n, m) graph. >en, Y(G)≤ (δ2+
Δ2)M1(G) − nδ2Δ2. >e equality is attained when G is
regular.

Proof. Suppose xi, yi, h and H are the positive real numbers
such that hxi ≤yi ≤Hxi for i � 1, 2, . . . , n. *en, by Diaz-
Metacalf inequality [27], 

n
i�1 y2

i + hH 
n
i�1 ≤ (h + H)


n
i�1 xiyi ant the equality is attained if and only if yi � hxi

Journal of Mathematics 7



and yi � Hai. Now taking xi � 1 and yi � ξ2(ui/G) and
h � δ2, H � Δ, we get



n

i�1
ξ4

ui

G
  + δ2Δ2 

n

i�1
1≤ δ2 + Δ2  

n

i�1
ξ2

ui

G
 . (28)

*us, Y(G)≤ (δ2 + Δ2)M1(G) − nδ2Δ2. □

Theorem 11. Let G be a graph whose number of vertices is n

and edges m. >en,

Y(G)≤
β(n)(Δ − δ)

2 Δ2 + Δδ + δ2  + 2mF(G)

n
. (29)

>e equality is attained iff x1 � x2 � · · · � xn and z1 �

z2 � · · · � zn and also β(n) � n⌈n/2⌉(1 − 1/n⌈n/2⌉), where
⌈x⌉ is the largest integer greater than or equal to x.

Proof. Let xi and zi be positive real numbers for which there
exist real constants x, z, X and Z such that x≤xi ≤X and
z≤ zi ≤Z for 1≤ i≤ n, respectively. *en, we have (discrete)

Gruss inequality ([27]) |n 
n
i�1 xizi − 

n
i�1 xi 

n
i�1 zi|≤ β(n)

(X − x)(Y − y).
*e equality controls iff x1 � x2 � · · · � xn and

z1 � z2 � · · · � zn.
By setting xi � ξ3(u/G) and zi � ξ(u/G) for every

i � 1, 2, . . . , n, we have X � Δ3 and x � δ3.
*en, the inequality becomes

n 
n

i�1
ξ4

ui

G
  − 

n

i�1
ξ3

ui

G
  

n

i�1
ξ

ui

G
 ≤ β(n) Δ3 − δ3 (Δ − δ).

(30)

So, Y(G)≤ β(n)(Δ − δ)2(Δ2 + Δδ + δ2) + 2mF(G)/n. *is
completes our claim. □

Corollary 2. Since β(n)≤ n2/4, therefore Y(G)≤ n2(Δ
− δ)2(Δ2 + Δδ + δ2) + 8mF(G)/4n.

Theorem 12. Let G be a (n, m) graph. >en,

Y(G)≤ (3Δ + δ)F(G) − (n − 1)(Δ − δ) + 3δ2 − 3δΔ M1(G) − (n − 1)(2m − nΔ)δ2 − 4(n − 2)mδΔ

+ 2mΔ3 + 6mδΔ2 − δΔ3n
(31)

with equality holds if and only if G is (Δ, δ) biregular.

Proof. We have from [28] that Y(G) � (n− 1)F(G) − Y(G),
where Y(G) be the Y-coindex of G. From [29],
F(G)≤M1(G)(Δ + 2δ) − δ2(2m − nΔ) − 4mδΔ. Define by
X(G) � (n − 1)u∈V(G)(ξ(u/G) − Δ)2 (ξ(u/G) − δ)−

u∈V(G)(ξ(u/G) − Δ)3(ξ(u/G) − δ). Since X(G)≥ 0, we
have Y(G)≥ (n − 1)(δ + 2Δ) + 3Δ2 + 3δΔ M1 (G)− (3Δ +

δ)F(G) − 2mΔ2 + δΔ2 − 4mδΔ − 2mΔ3 − 6mδ Δ2 + δΔ3n.
After simplification, we get the required result. □ □

Theorem 13. Let G be a (n, m) graph, we have

Y(G)≤ (2x + Δ + δ)F(G) − x
2

+ δΔ M1(G) + 2mx 2δΔ + x(δ + Δ){ } − x
2δΔ. (32)

>e equality holds whenG be a (Δ, δ) biregular graph and
also δ ≤x≤Δ, where x be a positive real number.

Proof. Define by F1(G) � u∈V(G)[ξ(u/G) − x]2[ξ(u/G)−

y][ξ(u/G) − z].Setting δ ≤x≤Δ, y � Δ and z � δ, then
F1(G)≤ 0. *us,

F1(G) � Y(G) − (2x + Δ + δ)F(G) + x
2

+ δΔ M1(G) − 2mx 2δΔ + x(δ + Δ){ } + x
2δΔ ≤ 0. (33)

□
Theorem 14. Let G be a (n, m) graph. >en,

Y(G)≤ (4Δ − 6)F(G) − Δ(Δ − 1) +(2Δ − 1)(2Δ − 5) +(Δ − 2)(Δ − 3){ }M1(G)

+ 2m (Δ − 2)(Δ − 3)(2Δ − 1) + Δ(Δ − 1)(2Δ − 5){ } − nwxyz.
(34)

8 Journal of Mathematics



>e equality occurs when G is a tetra-regular graph. Proof. Suppose that

F2(G) � 
u∈V(G)

ξ
u

G
  − w  ξ

u

G
  − x  ξ

u

G
  − y  ξ

u

G
  − z 

� Y(G) − (w + x + y + z)F(G) + xw +(w + x)(y + z) + yz M1(G)

− 2m (w + x)yz +(y + z)xw  + wxyz,

(35)

where w, x, y, z are the positive real numbers.Setting w �

Δ, x � Δ − 1, y � Δ − 2 and z � Δ − 3, then F2(G)≤ 0.
*erefore, we get the required result. *e equality is satisfied
when G is a tetra-regular graph. □

Corollary 3. Let G be a graph with n vertices and m edges.
>en,Y(G)≤ (3Δ + δ)F(G) − 3Δ(Δ + δ)M1(G) + 2m Δ2(Δ

+3δ) − Δ3δn and also Y(G)≤ (3δ + Δ)F(G) − 3δ(δ + Δ)M1
(G) + 2mδ2(δ + 3Δ) − δ3Δn with equality holding whenG is
a (Δ, δ) biregular graph.

Proof. Consider an auxiliary function F3(G) � u∈V(G)

[ξ(u/G) − x]3[ξ(u/G) − y], where x and y are the real
numbers. *us,

F3(G) � 
u∈V(G)

ξ4
u

G
  − (3x + y)ξ3

u

G
  + 3x(x + y)ξ2

u

G
  − x

2
(x + 3y)ξ

u

G
  + x

3
y  � Y(G) − (3x + y)

· F(G) + 3x(x + 3y)M1(G) − 2mx
2
(x + 3y) + x

3
yn.

(36)

Taking x � Δ, y � δ then F3(G)≤ 0 and Y(G)≤ (3Δ+
δ)F(G) − 3Δ(Δ + δ)M1(G) + 2mΔ2(Δ + 3δ) − Δ3δn. Also
for x � δ and y � Δ, we have F3(G)≤ 0. *us, Y(G)≤ (3δ+

Δ)F(G) − 3δ(δ + Δ)M1(G) + 2mδ2(δ+ 3Δ) − δ3Δn. □

Corollary 4. Let G be a graph of order n and size m. >en,

Y(G)≤ (n − 1)(3Δ − 1) + 3Δ(2Δ − 1){ }M1(G) − (4Δ − 1)F(G) − 2m(n − 1)Δ(3Δ − 2) − 2mΔ2(4Δ − 3)

+ Δ2(Δ − 1)(n + Δ − 1)n
(37)

where the equality is satisfied iff G is a (Δ,Δ − 1) biregular
graph.

Proof. Define by F4(G) � (n − 1)u∈V(G)[ξ(u/G) − Δ]2[ξ
(u/G) − (Δ − 1)] − u∈V(G)[ξ(u/G) − Δ]3[ξ(u/G) − (Δ − 1)]

F4(G) � (n − 1) 
u∈V(G)

ξ
u

G
  − Δ 

2
ξ

u

G
  − (Δ − 1)  − 

u∈V(G)

ξ
u

G
  − Δ 

3
ξ

u

G
  − (Δ − 1) 

≤ (n − 1) F(G) − (3Δ − 1)M1(G) + 2mΔ(3Δ − 2) − Δ2(Δ − 1)n  − Y(G) +(4Δ − 1)F(G) − 3Δ(2Δ − 1)

· M1(G) + 2mΔ2(4Δ − 3) − Δ3(Δ − 1)n.

(38)

Since F4(G)≤ 0

Y(G)≤ (n − 1)(3Δ − 1) + 3Δ(2Δ − 1){ }M1(G) − (4Δ − 1)F(G) − 2m(n − 1)Δ(3Δ − 2) − 2mΔ2(4Δ − 3)

+ Δ2(Δ − 1)(n + Δ − 1)n
(39)

□
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Corollary 5. If G is a graph with n vertices and m edges, the
upper bounds of the Y(G) are given by 3Δ(n + 2Δ − 1)

M1(G) − 4ΔF(G) + nΔ2(n + Δ − 1) − 2mΔ2(3n + 4Δ − 3).
>e equality holds if G is a regular graph.

Proof. Similarly, it is to be proved by defining F5(G) �

(n − 1)u∈V(G)[ξ(u/G) − Δ]3 − u∈V(G)[ξ(u/G) − Δ]4. Ob-
viously, F5(G)≤ 0. □

In 2005, Klavzar et al. [30] introduced the generalized
Sierpinski graph gS(G, t). It is obtained from S(G, t) by
adding a new vertex u, called the special vertex of gS(G, t),
and edges joining u with all extreme vertices of S(G, t).

Theorem 15. Let G be a graph of order n and size m and let
gS(G, t) be its generalized Sierpinski graph with dimension
t≥ 2. >en, the YI of gS(G, t) is given by

Y(gS(G, t))≤ 2mΔ3 n
t− 1

+ 4n
t− 2

+ 4β(n)t− 2 

+ 2m n
t− 2

+ β(n)t− 2  6Δ2 + 4Δ + 1 .
(40)

>e upper bound is achieved iff G is a Δ-regular graph.

Proof. *e YI of gS(G, t) can be defined as

Y(gS(G, t)) � 
uv∈E(G)



1

i,j�0
ξ

u

G
  + i, ξ

v

G
  + j



S(G,t)
ξ

u

G
  + i 

3
+ ξ

u

G
  + j 

3
 . (41)

By applying Lemma 7, we have

� 
uv∈E(G)

n
t− 2

n − ξ
u

G
  − ξ

v

G
  + ⊳(u, v)  ξ3

u

G
  + ξ3

v

G
  

+ n
t− 2 ξ

v

G
  − ⊳(u, v)  − β(n)t− 2ξ

u

G
   ξ3

u

G
  + ξ

v

G
  + 1 

3
 

+ n
t− 2 ξ

u

G
  − ⊳(u, v)  − β(n)t− 2ξ

v

G
   ξ

u

G
  + 1 

3
+ ξ3

v

G
  

+ n
t− 2

(⊳(u, v) + 1) + β(n)t− 2 ξ
u

G
  + ξ

v

G
  + 1   ξ

u

G
  + 1 

3
+ ξ

v

G
  + 1 

3
 

≤ 
uv∈E(G)

n
t− 2

(n − 2Δ + ⊳(u, v)) 2Δ3  + 2 n
t− 2

(Δ − ⊳(u, v)) − β(n)t− 2Δ  Δ3 +(Δ + 1)
3

 

+ n
t− 2

(⊳(u, v) + 1) + β(n)t− 2(2Δ + 1)  2(Δ + 1)
3

 

� 2mΔ3 n
t− 1

+ 4n
t− 2

+ 4β(n)t− 2  + 2m n
t− 2

+ β(n)t− 2  6Δ2 + 4Δ + 1 .

(42)

□
4. Some UB for YI under Some
Graph Operations

In this section, we derive some UB for YI under several
graph operations. Let Gi be a graph with the vertex set
|V(Gi)| � ni and the edge set |E(Gi)| � mi for i � 1, 2. For
each u ∈ V(G1) and v ∈ V(G2), we get ξ(u/G1)≤Δ(G1)

and ξ(v/G2)≤Δ(G2).

4.1. Cartesian Product. *e Cartesian product ([31]) of G1
and G2, denoted by G1 ⊗G2, is the graph with vertex set

V(G1 ⊗G2) � V(G1) × V(G2) and its degree distribution is
ξ((u, v)/G1 ⊗G2) � ξ(u/G1) + ξ(v/G2).

Theorem 16. >e YI of G1 ⊗G2 satisfies the following in-
equality:
Y(G1 ⊗G2)≤ n1n2[Δ4(G1) + Δ4(G2) + 4Δ3(G1)Δ(G2) +

4Δ(G1)Δ3(G2) + 6Δ2(G1)Δ2(G2)] with equality occurring
when G1 and G2 are regular graphs.

Proof. By the definition of Y-index, we have
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Y G1 ⊗G2(  � 

(u,v)∈V G1×G2( )

ξ
(u, v)

G1 × G2
  

4

� 

u∈V G1( )



v∈V G2( )

ξ
u

G1
  + ξ

v

G2
  

4

≤ n1n2 Δ
4
G1(  + Δ4 G2(  + 4Δ3 G1( Δ G2(  + 4Δ G1( Δ3 G2(  + 6Δ2 G1( Δ2 G2(  .

(43)

*e inequality must be equality if ξ(u1/G1) + ξ(v1/G2) �

ξ(u2/G1) + ξ(v2/G2) for any u1, u2 ∈ V(G1) and v1, v2 ∈ V

(G2). □

4.2. Join. *e degree of a vertex u for the join [32] ofG1 and
G2, denoted by G1 + G2, is given by

ξ
u

G1
+ G2  �

ξ
u

G1
  + n2 if u ∈ V G1( 

ξ
u

G2
  + n1 if u ∈ V G2( 

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(44)

Theorem 17. >e UB on the Y-index of two graphs G1 and
G2 for join is given by

Y G1 + G2( ≤ 2m1 Δ G1(  + n2( 
3

+ 2m2 Δ G2(  + n1( 
3

+ n1n2 Δ G1(  + n2( 
3

+ Δ G2(  + n1( 
3

 .

(45)

>e equality holds when G1 and G2 are regular graphs.

Proof. By the definition of the YI, we get

Y G1 + G2(  � 

uv∈E G1( )

ξ
u

G1
  + n2 

3

+ ξ
v

G1
  + n2 

3
⎡⎣ ⎤⎦

+ 

uv∈E G2( )

ξ
u

G2
  + n1 

3

+ ξ
v

G2
  + n1 

3
⎡⎣ ⎤⎦

+ 

u∈V G1( )



v∈V G2( )

ξ
u

G1
  + n2 

3

+ ξ
v

G2
  + n1 

3
⎡⎣ ⎤⎦

≤ 2m1 Δ G1(  + n2( 
3

+ 2m2 Δ G2(  + n1( 
3

+ n1n2 Δ G1(  + n2( 
3

+ Δ G2(  + n1( 
3

 .

(46)

□
4.3. Composition. For the composition G1[G2] of two
graphs G1 and G2 [11], the degree of a vertex (u, v) ∈ V

(G1[G2]) is given by d((u, v)/G1[G2]) � n2ξ(u/ G1) + ξ
(v/G2).

Theorem 18. >e UB of YI for G1[G2] is given by Y(G1
[G2])≤ n5

2Δ
4(G1) + n1n2Δ4 (G2) + 6n1n

3
2Δ

2(G1)Δ2
(G2) + 4n1n

4
2Δ

3(G1)Δ(G2) + 4n1n
2
2Δ(G1)Δ3. >e equality

carries for G1 and G2 regular graphs.

Proof. From the definition of Y-index, we have

Y G1 G2 (  � 

u∈V G1( )



v∈V G2( )

n2ξ
u

G1
  + ξ

v

G2
  

4

≤ n
5
2Δ

4
G1(  + n1n2Δ

4
G2(  + 6n1n

3
2Δ

2
G1( Δ2 G2(  + 4n1n

4
2Δ

3
G1( Δ G2(  + 4n1n

2
2Δ G1( Δ3.

(47)

□
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4.4.CoronaProduct. For Corona product [33] ofG1 andG2,
denoted by G1◇G2, the degree of a vertex u ∈ G1◇G2 is
given by

ξ
u

G1◇G2
  �

ξ
u

G1
  + n2 if u ∈ V G1( 

ξ
u

G2
  + 1 if u ∈ V G2,i , i � 1, 2, . . . , n1,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

, (48)

where G2,i is the i-th copy of the graph G2.

Theorem 19. Let G � G1◇G2 be the corona product of G1
and G2. Y(G) satisfies the following inequalities Y(G)≤ n1

[Δ(G1) + n2]
4 + n1n2[Δ(G2) + 1]4. >e equality holds when

G1 and G2 are regular.

Proof. From definition of YI, we have

Y G1◇G2(  � 

u∈V G1( )

ξ
u

G1
  + n2 

4

+ n1 

u∈V G2( )

ξ
u

G2
  + 1 

4

≤ n1 Δ
4
G1(  + 4n2Δ

3
G1(  + 6n

2
2Δ

2
G1(  + 4n

3
2Δ G1(  + n

4
2 

+ n1n2 Δ
4
G2(  + 4Δ3 G2(  + 6Δ G2(  + 4Δ G2(  + 1 .

(49)

□
4.5. Strong Product. Consider ξ((u, v)/G1 ∗G2) � ξ(u/
G1) + ξ(v/G2) + ξ(u/G1)(v/G2) as a degree distribution of a
vertex (u, v) in the strong product [11] G1 ∗G2.

Theorem 20. >e sharp UB of YI for G1 ∗G2 is given by

Y G1 ∗G2( ≤ n1n2 Δ
4
G1(  + Δ4 G2(  + Δ4 G1( Δ4 G2( 

+6Δ2 G1( Δ2 G2(  Δ2 G1(  + Δ2 G2(  + 1 

+ 4Δ G1( Δ G2(  Δ3 G1(  + Δ3 G2(  + Δ3 G1( Δ2 G2( 

+Δ2 G1( Δ3 G2(  + Δ2 G1(  + Δ2 G2( 

+12Δ2 G1( Δ2 G2(  Δ G1(  + Δ G2(  + Δ G1( Δ G2( ( .

(50)

>e equality occurs when G1 and G2 are regular.

5. Application

As an application, we compute the YI of C80 Fullerene, by
using*eorem 11. Fullerenes are themolecules such as cage-
like polyhedra, containing solely carbon atoms. Fullerenes
contain the networks of pentagons and hexagons. Here, we
consider the fullerene C80 such that molecules made up
entirely of n (natural number) carbon atoms contain twelve
pentagonal sides and (n/2 − 10) hexagonal faces, where
n(≠ 22)≥ 20. For the graph representing fullerene C80 which
is given in [34], we have F(C80) � 2160. *e number of
edges(m) in fullerene C80 is m � nr/2 � 80 × 3/2 � 120.

*us, by *eorem 11, Y(G)≤ β(n)(Δ − δ)2(Δ2+ Δδ + δ2)+
2mF(G)/n � 2 × 120 × 2160/80 � 6480.

6. Conclusion

*e YI is one of the new chemical descriptors, which passes
the test of having a highly correlation with the physi-
ochemical properties it claims to describe in [11]. It comes as
no surprise. *en, we determine some new UBs for the YI
using various parameters such as order, size, maximum
degree, minimum degree, distance κ-domination number,
and some other topological indices. Furthermore, some
sharp UB for the YI based on graph binary operations are
obtained. At last, we consider an application for YI index of
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C80 Fullerene. *e appeal of computing the UB is of course
their generality and simple proofs. Along in this line, de-
termining new lower bounds for YI is considered to be
studied in the future.
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