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�is paper deals with a class of two-dimensional linear di�erential systems with periodic coe�cients. A su�cient condition for
the exponential dichotomy of the linear system is given by the �xed point theorem and variable substitution, and some new results
are obtained.

1. Introduction

Consider the second-order linear di�erential equation

d2x
dt2

+ p(t)
dx
dt
+ q(t)x � 0. (1)

Equation (1) is often encountered in engineering, elas-
ticity, electricity, and various oscillation problems.

Because of its importance, scholars have never stopped
studying Equation (1) [1–4], and some scholars used
transformation as follows:

dx
dt
� y. (2)

�en Equation (1) becomes

dx
dt

dy
dt




�

0 1

− q(t) − p(t)
 

x

y

 . (3)

Huang [5] used Lyapunov’s direct method to study the
stability of the ordinary solution of Equation (3) and thereby
obtained some su�cient conditions for the stability of the
ordinary solution of Equation (1).

Exponential dichotomy is an important property of
linear di�erential equation. �e theory of exponential

dichotomy is a generalization of the concept of hyperbolic
rate of linear autonomous equation in linear nonautono-
mous equation and plays an important role in the analysis of
nonautonomous equation. �e theory of exponential di-
chotomy of linear di�erential equations can be traced back
to Perron’s study of the stability of linear di�erential
equations and the existence of bounded solutions of non-
linear di�erential equations. In 1934, Li established the
theory of exponential dichotomy on the linear di�erence
equation. �e theory of exponential dichotomy has been
playing an important role in the qualitative and stability
research of di�erential and di�erence equations and has
been applied to various research �elds of mathematics with
its rich theoretical ideas and complexmathematical skills [6].

Consider the homogeneous linear di�erential system
dx
dt
� A(t)x, (4)

where A(t) is a square matrix of order n, and A(t) is
continuous on R; if there is a projection P and positive
constants K≥ 1, α> 0, then

X(t)PX− 1(s)
����

����≤K exp(− α(t − s)), (t≥ s),

X(t)(I − P)X− 1(s)
����

����≤K exp(α(t − s)), (s≥ t),
(5)

where X(t) is a fundamental solution matrix of (4), I is the
n-order unit matrix, then (4) is said to have exponential
dichotomy on R. �e exponential dichotomy of linear
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system on the whole axis is a powerful tool in the stability
theory and also a very useful tool in the study of (almost)
periodic differential systems [7].

Consider the following two-dimensional linear differ-
ential system

dx

dt

dy

dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

a(t) b(t)

c(t) d(t)

⎛⎝ ⎞⎠
x

y

⎛⎝ ⎞⎠. (6)

Remark 1. If a(t) ≡ 0, b(t) ≡ 1, then Equation (6) becomes
Equation (3). So, without losing generality, we just need to
discuss Equation (6).

Shi [8] established some conclusions on the sign of
characteristic exponents directly in terms of the coefficients.
(eorem 1 in Ref. [8] is as follows:

Theorem 1 (see [8]). Consider Equation (6), a(t), b(t), c(t),
and d(t) are ω-periodic continuous functions on R, c(t) and
d(t) have continuous derivatives on R, and assume that the
following conditions hold true:

H1(  
ω

0
(a(t) + d(t))dt≠ 0,

H2( c(t)≠ 0,

H3( 
d(t)c′(t)

c(t)
+ a(t)d(t) − b(t)c(t) − d′(t)< 0.

(7)

(en the characteristic exponents of system (6) must be
positive and negative.

In this paper, we are devoted to obtaining the sufficient
conditions for the exponential dichotomy of system (6) and
generalized (eorem 1 in [8].

2. Some Lemmas and Abbreviations

Consider the following equation

dx

dt
� A(t)x + f(t). (8)

Here, A(t) is an ω-periodic continuous n-order square
matrix function on R, f(t) is an ω-periodic continuous
n-dimensional vector function on R, and the corresponding
homogeneous linear system of Equation (8) is as follows:

dx

dt
� A(t)x. (9)

Lemma 1 (see [7]). If A(t) is an ω-periodic continuous
n-order square matrix function on R, f(t) is an ω-periodic
n-dimensional continuous vector function on R, and (9) has
exponential dichotomy (5), then the nonhomogeneous linear
periodic system (8) has a unique ω-periodic continuous so-
lution, which can be expressed as follows:

x(t) � 
t

− ∞
X(t)PX

− 1
(s)f(s)ds

− 
+∞

t
X(t)(I − P)X

− 1
(s)f(s)ds,

(10)

where mod((x(t))⊆mod(A(t), f(t)), ‖x(t)‖≤ (2K/α)

‖f(t)‖, and X(t) is a fundamental solution matrix of (9).

Lemma 2 (see [9]). Consider the following equation

dx

dt
� a(t)x + b(t), (11)

where a(t), b(t) are ω-periodic continuous functions on R; if

ω
0 a(t)dt ≠ 0, then Equation (11) has a unique ω-periodic

continuous solution η(t), then mod(η)⊆mod(a(t), b(t)),
and η(t) can be written as follows:

η(t) �


t

− ∞
e


t

s
a(θ)dθ

b(s)ds, 
ω

0
a(t)dt< 0,

− 
+∞

t
e


t

s
a(θ)dθ

b(s)ds. 
ω

0
a(t)dt> 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(12)

Lemma 3 (see [10]). Assume that ω-periodic sequence
fn(t)  is convergent uniformly on any compact set of
R,f(t)is an ω-periodic function, and mod(fn)⊆ mod (f)

(n � 1, 2, . . .), then fn(t)  is convergent uniformly onR.

Lemma 4 (see [11]). Assume that V is a metric space, C is a
convex closed set of V , and its boundary is zC, and if
T: C⟶ C is a continuous compact mapping, such that
T(zC)⊆C, then T has at least a fixed point on C.

Consider one-dimensional periodic differential equation
as follows:

dx

dt
� f(t, x). (13)

Here, f: R × I⟶ R is a continuous function, and
f(t + ω, x) � f(t, x),ω> 0, I⊆R.

Lemma 5 (see [12]).If f(t, x) has second-order continuous
partial derivatives on x, and fxx

″(t, x)≠ 0, then Equation (13)
has at most two periodic continuous solutions.

For the sake of convenience, assume that f(t) is an
ω-periodic continuous function on R, then we denote

fM � sup
t∈[0,ω]

f(t), fL � inf
t∈[0,ω]

f(t). (14)

(e rest of the paper is arranged as follows. In section 3,
we discuss the existence of two periodic solutions of Riccati’s
equation. In section 4, we discuss the exponential dichotomy
of two-dimensional linear differential system. In section 5,
we consider the nonhomogeneous second-order linear
differential equation and get some results about the existence
of the unique periodic solution on the equation. Finally, we
draw a conclusion of this paper.
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3. Two Periodic Solutions of Riccati’s Equation

Topological degree theory and fixed point theorem are often
used by scholars to find (almost) periodic solutions of
differential equations. Stimulated by the works of [13–15], in
this section, we consider the existence of two periodic so-
lutions of the following Riccati’s equation:

dx

dt
� a(t)x

2
+ b(t)x + c(t). (15)

(e existence of two periodic solutions of Riccati
equation is obtained by using the fixed point theorem.

Theorem 2. Consider Equation (15), a(t), b(t), and c(t) are
all ω-periodic continuous functions onR, and assume that the
following condition holds true:

H1( a(t)c(t) < 0. (16)

Remark 2. Without loss of generality, assume
a(t)< 0, c(t)> 0.

(en Equation (15) has exactly one positive, one neg-
ative, and two ω-periodic continuous solutions as follows:

(1) One negative ω-periodic continuous solution is
c1(t), and then

− b +
�������
b2 − 4ac

√

2a
 

L

≤ c1(t)≤
− b +

�������
b2 − 4ac

√

2a
 

M

.

(17)

(2) Another positive ω-periodic continuous solution is
c2(t), and then

− b −
�������
b2 − 4ac

√

2a
 

L

≤ c2(t)≤
− b −

�������
b2 − 4ac

√

2a
 

M

.

(18)

Remark 3. In Ref. [16], the author got a proposition as
follows:

Proposition 1 (see [16]). Consider Equation (15), a(t), b(t),
and c(t) are all ω-periodic continuous functions on R, and
assume that the following conditions hold true:

H1( a(t)c(t) < 0, (19)

then Equation (15) has exactly one positive, one negative,
and two ω-periodic continuous solutions c1(t), c2(t), and
then

c1(t)< 0< c2(t). (20)

(e proof of(eorem 1 in this paper is different from that
of (eorem 1 in [16], and from Equation (17), (18), and (20),
the ranges of periodic solutions obtained by us is more

accurate. It can be seen that (eorem 1 in this paper is an
extension of (eorem 1 in paper [16].

Proof. By (H1), Equation (15) can be turned into

dx

dt
� a(t) x +

b(t) −

��������������

b
2
(t) − 4a(t)c(t)



2a(t)
⎛⎜⎜⎝ ⎞⎟⎟⎠

· x +
b(t) +

��������������

b
2
(t) − 4a(t)c(t)



2a(t)
⎛⎜⎜⎝ ⎞⎟⎟⎠.

(21)

Denote

λ1(t) �
− b(t) +

��������������

b
2
(t) − 4a(t)c(t)



2a(t)
,

λ2(t) �
− b(t) −

��������������

b
2
(t) − 4a(t)c(t)



2a(t)
.

(22)

It follows from (H1) that

λ1( L≤ λ1(t)≤ λ1( M< 0< λ2( L≤ λ2(t)≤ λ2( M. (23)

It follows from (22) and Equation (21) that

dx

dt
� a(t) x − λ1(t)(  x − λ2(t)( . (24)

Now, we divide the proof into three steps.

(1) We prove the existence of the periodic solution c1(t)

of Equation (15).
Assume that

S � ϕ(t) ∈ C(R,R)|ϕ(t + ω) � ϕ(t) . (25)

∀ϕ(t), φ(t) ∈ S, then the distance is defined as follows:

ρ(ϕ,φ) � sup
t∈[0,ω]

|ϕ(t) − φ(t)|. (26)

(us, (S, ρ) is a complete metric space.
Take a convex closed set of S as follows:

B1 � ϕ(t) ∈ S| λ1( L≤ ϕ(t)≤ λ1( M,

mod(ϕ)⊆mod(a, b, c).
(27)

∀ϕ(t) ∈ B1, then consider the following equation:

dx

dt
� a(t) x − λ1(t)(  ϕ(t) − λ2(t)( 

� a(t) ϕ(t) − λ2(t)( x − a(t) ϕ(t) − λ2(t)( λ1(t).

(28)

It follows from a(t)< 0 (23) and (27) that

0< aM λ1( M − λ2( L( ≤ a(t) ϕ(t) − λ2(t)( 

≤ aL λ1( L − λ2( M( .
(29)

Hence, we have
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ω

0
a(t) ϕ(t) − λ2(t)( dt> 0. (30)

Since a(t), ϕ(t), λ1(t), and λ2(t) are ω-periodic
continuous functions, it follows that

a(t) ϕ(t) − λ2(t)( , a(t) ϕ(t) − λ2(t)( λ1(t). (31)

are ω-periodic continuous functions, by (30),
according to Lemma 2, (24) has a unique ω-periodic
continuous solution as follows:

η(t) � 
+∞

t
e


t

s
a(θ) ϕ(θ)− λ2(θ)( )dθ

a(s) ϕ(s) − λ2(s)( λ1(s)ds.

(32)

and

mod(η)⊆mod a(t) ϕ(t) − λ2(t)( ,(

a(t) ϕ(t) − λ2(t)( λ1(t).
(33)

It follows from (22) and (27) that

mod a(t) ϕ(t) − λ2(t)( ( ⊆mod(a, b, c),

mod a(t) ϕ(t) − λ2(t)( λ1(t)( ⊆mod(a, b, c).
(34)

Hence, we have

mod(η)⊆mod(a, b, c). (35)

It follows from (27), (29), and (32) that

η(t)≥ λ1( L 
+∞

t
e


t

s
a(θ) ϕ(θ)− λ2(θ)( )dθ

a(s) ϕ(s) − λ2(s)( ds

� − λ1( L 
+∞

t
e


t

s
a(θ) ϕ(θ) − λ2(θ)( dθ

d 
t

s
a(θ) ϕ(θ) − λ2(θ)( dθ 

� − λ1( L e


t

s
a(θ) ϕ(θ) − λ2(θ)( dθ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+∞

t

� − λ1( L e


t

+∞
a(θ) ϕ(θ) − λ2(θ)( dθ

− 1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ − λ1( L e


t

+∞
aL λ1( L − λ2( M( dθ

− 1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� λ1( L,

η(t)≤ λ1( M 
+∞

t
e


t

s
a(θ) ϕ(θ) − λ2(θ)( dθ

a(s) ϕ(s) − λ2(s)( ds

� − λ1( M 
+∞

t
e


t

s
a(θ) ϕ(θ) − λ2(θ)( dθ

d 
t

s
a(θ) ϕ(θ) − λ2(θ)( dθ 

� − λ1( M e


t

s
a(θ) ϕ(θ) − λ2(θ)( dθ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+∞

t

� − λ1( M e


t

+∞
a(θ) ϕ(θ) − λ2(θ)( dθ

− 1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ − λ1( M e


t

+∞
aM λ1( M − λ2( L( dθ

− 1
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� λ1( M.

(36)
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Hence, η(t) ∈ B1.
We define a mapping as follows:

(Tϕ)(t) � 
+∞

t
e


t

s
a(θ) ϕ(θ)− λ2(θ)( )dθ

· a(s) ϕ(s) − λ2(s)( λ1(s)ds.

(37)

(us, if ∀ϕ(t) ∈ B1, then (Tϕ)(t) ∈ B1; hence,
T: B1⟶ B1.
Now, we prove that the mapping T is a compact
mapping.
Consider any sequence ϕn(t) ⊆B1(n � 1, 2, . . .),
then it is given as

λ1( L≤ϕn(t)≤ λ1( M,mod ϕn( 

⊆mod(a, b, c).(n � 1, 2, . . .).
(38)

On the other hand, (Tϕn)(t) � xϕn
(t) satisfies

dxϕn
(t)

dt
� a(t) ϕn(t) − λ2(t)( xϕn

(t)

− a(t) ϕn(t) − λ2(t)( λ1(t).

(39)

(us, we have

dxϕn
(t)

dt




≤ 2aL λ2( M − λ1( L(  λ1( L,mod xϕn

(t) 

⊆mod(a, b, c).

(40)

Hence, dxϕn
(t)/dt  is uniformly bounded; there-

fore, xϕn
(t)  is uniformly bounded and equi-

continuous on R. By the theorem of Ascoli–Arzela,
for any sequence xϕn

(t) ⊆B1, there exists a subse-
quence (also denoted by xϕn

(t) ) such that xϕn
(t) 

which is convergent uniformly on any compact set of
R. From (40), combined with Lemma 3, xϕn

(t)  is
convergent uniformly on R; that is, T is relatively
compact on B1.
Next, we prove that T is a continuous mapping.
Assume ϕn(t) ⊆B1, ϕ(t) ∈ B1, and then

ϕn(t)⟶ ϕ(t).(n⟶∞). (41)

It follows from (37) that

Tϕn( (t) − (Tϕ)(t)




� 
+∞

t
e


t

s
a(θ) ϕn(θ) − λ2(θ)( dθ

a(s) ϕn(s) − λ2(s)( λ1(s)ds



− 
+∞

t
e


t

s
a(θ) ϕ(θ) − λ2(θ)( dθ

a(s) ϕ(s) − λ2(s)( λ1(s)ds



� 
+∞

t
e


t

s
a(θ) ϕn(θ) − λ2(θ)( dθ

a(s) ϕn(s) − ϕ(s)( λ1(s)ds



+ 
+∞

t
e


t

s
a(θ) ϕn(θ) − λ2(θ)( dθ

− e


t

s
a(θ) ϕ(θ) − λ2(θ)( dθ⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠a(s) ϕ(s) − λ2(s)( λ1(s)ds



� 
+∞

t
e


t

s
a(θ) ϕn(θ) − λ2(θ)( dθ

a(s) ϕn(s) − ϕ(s)( λ1(s)ds



+ 
+∞

t
e
ξ


t

s
a(θ) ϕn(θ) − ϕ(θ)( dθ a(s) ϕ(s) − λ2(s)( λ1(s)ds


.

(42)

Here,ξ is between 
t

s
a(θ)(ϕn(θ) − λ2(θ))dθ and


t

s
a(θ)(ϕ(θ) − λ2(θ))dθ; thus, ξ is between

aL((λ1)L − (λ2)M)(t − s) and aM((λ1)M − (λ2)L)

(t − s); hence, we have&ecmath;
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Tϕn( (t) − (Tϕ)(t)




≤ 
+∞

t
e

aM λ1( )M
− λ2( )L( )(t− s)

|a|M λ1


Mds + 
+∞

t
e

aM λ1( )M
− λ2( )L( )(t− s)

(s − t)|a|
2
M λ2( M − λ1( L(  λ1


Mdsρ ϕn, ϕ( 

�
|a|M λ1


M

aM λ1( M − λ2( L( 
+

|a|
2
M λ2( M − λ1( L(  λ1


M

aM λ1( M − λ2( L( ( 
2

⎛⎝ ⎞⎠ρ ϕn, ϕ( 

�
aL λ1( L

aM λ1( M − λ2( L( 
−

a
2
L λ2( M − λ1( L(  λ1( L

aM λ1( M − λ2( L( ( 
2

⎛⎝ ⎞⎠ρ ϕn, ϕ( .

(43)

By (41) and the above inequality, we get

Tϕn( (t)⟶ (Tϕ)(t), (n⟶∞). (44)

(erefore, T is continuous. From equation (37),
T(zB1)⊆B1. According to Lemma 4, T has at least a
fixed point on B1, and the fixed point is the ω-pe-
riodic continuous solution c1(t) of Equation (15),
and then we get

λ1( L≤ c1(t)≤ λ1( M< 0. (45)

(2) We prove the existence of the periodic solution c2(t)

of Equation (15).
Assume that

S � ϕ(t) ∈ C(R,R) |ϕ(t + ω) � ϕ(t) . (46)

When ∀ϕ(t),φ(t) ∈ S, the distance is defined as
follows:

ρ(ϕ,φ) � sup
t∈[0,ω]

|ϕ(t) − φ(t)| (47)

(us, (S, ρ) is a complete metric space.
Take a convex closed set of S as follows:

B2 � ϕ(t) ∈ S| λ2( L≤ϕ(t)≤ λ2( M,mod(ϕ)

⊆mod(a, b, c)}.
(48)

∀ϕ(t) ∈ B2, then consider the following equation:

dx

dt
� a(t) ϕ(t) − λ1(t)(  x − λ2(t)( 

� a(t) ϕ(t) − λ1(t)( x − a(t) ϕ(t) − λ1(t)( λ2(t).

(49)

It follows from a(t)< 0 and (23) and (51) that

aL λ2( M − λ1( L( ≤ a(t) ϕ(t) − λ1(t)( 

&9; ≤ aM λ2( L − λ1( M( < 0.

(50)

Hence, we have


ω

0
a(t) ϕ(t) − λ1(t)( dt< 0. (51)

Since a(t), ϕ(t), λ1(t), and λ2(t) are ω-periodic
continuous functions, we get

a(t) ϕ(t) − λ1(t)( , a(t) ϕ(t) − λ1(t)( λ2(t). (52)

From (54), according to Lemma 2, we get unique
ω-periodic continuous solution as follows:

η(t) � − 
t

− ∞
e


t

s
a(θ) ϕ(θ)− λ1(θ)( )dθ

· a(s) ϕ(s) − λ1(s)( λ2(s)ds.

(53)

and

mod(η)⊆mod a(t) ϕ(t) − λ1(t)( ,(

a(t) ϕ(t) − λ1(t)( λ2(t).
(54)

It follows from (22) and (51) that

mod a(t) ϕ(t) − λ1(t)( ( ⊆mod(a, b, c),

mod a(t) ϕ(t) − λ1(t)( λ2(t)( ⊆mod(a, b, c).
(55)

Hence, we have

mod(η)⊆mod(a, b, c). (56)

It follows from (51), (53), and (56) that&ecmath;
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η(t)≥ − λ2( L 
t

− ∞
e


t

s
a(θ) ϕ(θ)− λ1(θ)( )dθ

a(s) ϕ(s) − λ1(s)( ds

� λ2( L 
t

− ∞
e


t

s
a(θ) ϕ(θ) − λ1(θ)( dθ

d 
t

s
a(θ)t ϕ(θ) − λ1(θ)( ndqθ)

� λ2( L e


t

s
a(θ) ϕ(θ) − λ1(θ)( dθ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

t

− ∞

� λ2( L 1 − e


t

− ∞
a(θ) ϕ(θ) − λ1(θ)( dθ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≥ λ2( L 1 − e


t

− ∞
aM λ2( L − λ1( M( dθ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� λ2( L,

η(t)≤ − λ2( M 
t

− ∞
e


t

s
a(θ) ϕ(θ) − λ1(θ)( dθ

a(s) ϕ(s) − λ1(s)( ds,

� λ2( M 
t

− ∞
e


t

s
a(θ) ϕ(θ) − λ1(θ)( dθ

d
t

s
a(θ)t ϕ(θ) − λ1(θ)( ndqθ)

� λ2( M e


t

s
a(θ) ϕ(θ) − λ1(θ)( dθ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

t

− ∞

� λ2( M 1 − e


t

− ∞
a(θ) ϕ(θ) − λ1(θ)( dθ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ λ2( M 1 − e


t

− ∞
aL λ2( M − λ1( L( dθ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� λ2( M.

(57)

Hence, η(t) ∈ B2.
We define a mapping as follows:

(Tϕ)(t) � − 
t

− ∞
e


t

s
a(θ) ϕ(θ)− λ1(θ)( )dθ

· a(s) ϕ(s) − λ1(s)( λ2(s)ds.

(58)

(us, if ∀ϕ(t) ∈ B2, then (Tϕ)(t) ∈ B2; hence,
T: B2⟶ B2.
Now, we prove that the mapping T is a compact
mapping.
Consider any sequence ϕn(t) ⊆B2(n � 1, 2, . . .),
then it follows that

λ2( L≤ϕn(t)≤ λ2( M,mod ϕn( 

⊆mod(a, b, c).(n � 1, 2, . . .).
(59)

On the other hand, (Tϕn)(t) � xϕn
(t) satisfies

dxϕn
(t)

dt
� a(t) ϕn(t) − λ1(t)( xϕn

(t)

− a(t) ϕn(t) − λ1(t)( λ2(t).

(60)

(us, we have
dxϕn

(t)

dt




≤ − 2aL λ2( M − λ1( L(  λ2( M,mod xϕn

(t) 

⊆mod(a, b, c).

(61)

Hence, R e dxϕn
(t)/dt  is uniformly bounded;

therefore, xϕn
(t)  is uniformly bounded and

equicontinuous on R. By the theorem of Ascoli-
–Arzela, for any sequence, xϕn

(t) ⊆B2, then there
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exists a subsequence (also denoted by xϕn
(t) ) such

that xϕn
(t)  is convergent uniformly on any com-

pact set . From (40), combined with Lemma 3,
xϕn

(t)  is convergent uniformly on R; that is, T is
relatively compact on B2.
Next, we prove that T is a continuous mapping.

Assume that ϕn(t) ⊆B2,ϕ(t) ∈ B2, and then

ϕn(t)⟶ ϕ(t).(n⟶∞). (62)

It follows from (61) that

Tϕn( (t) − (Tϕ)(t)




� 
t

− ∞
e


t

s
a(θ) ϕn(θ) − λ1(θ)( dθ

a(s) ϕn(s) − λ1(s)( λ2(s)ds



− 
t

− ∞
e


t

s
a(θ) ϕ(θ) − λ1(θ)( dθ

a(s) ϕ(s) − λ1(s)( λ2(s)ds



� 
t

− ∞
e


t

s
a(θ) ϕn(θ) − λ1(θ)( dθ

a(s) ϕn(s) − ϕ(s)( λ2(s)ds



+ 
t

− ∞
e


t

s
a(θ) ϕn(θ) − λ1(θ)( dθ

− e


t

s
a(θ) ϕ(θ) − λ1(θ)( dθ⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠a(s) ϕ(s) − λ1(s)( λ2(s)ds



� 
t

− ∞
e


t

s
a(θ) ϕn(θ) − λ1(θ)( dθ

a(s) ϕn(s) − ϕ(s)( λ2(s)ds



+ 
t

− ∞
e
ξ


t

s
a(θ) ϕn(θ) − ϕ(θ)( dθ a(s) ϕ(s) − λ1(s)( λ2(s)ds


,

(63)

Here,ξ is between 
t

s
a(θ)(ϕn(θ) − λ1(θ))dθ and


t

s
a(θ)(ϕ(θ) − λ1(θ))dθ; thus, ξ is between

aL((λ2)M − (λ1)L)(t − s) and aM((λ2)L − (λ1)M)

(t − s); hence, we have

Tϕn( (t) − Tϕn( (t)




≤ 
t

− ∞
e

aM λ2( )L
− λ1( )M( )(t− s)

|a|M|λ2|Mds+ 
t

− ∞
e

aM λ2( )L
− λ1( )M( )(t− s)

(t − s)|a|
2
M λ2( M − λ1( L( |λ2|Mdsρ ϕn, ϕ( 

�
|a|M|λ2|M

− aM λ2( L − λ1( M( 
+

|a|
2
M λ2( M − λ1( L( |λ2|M
aM λ2( L − λ1( M( ( 

2
⎛⎝ ⎞⎠ρ ϕn,ϕ( 

�
aL λ2( M

aM λ2( L − λ1( M( 
+

a
2
L λ2( M − λ1( L(  λ2( M

aM λ2( L − λ1( M( ( 
2

⎛⎝ ⎞⎠ρ ϕn, ϕ( .

(64)

From (65) and the above inequality, we get

Tϕn( (t)⟶ (Tϕ)(t), (n⟶∞). (65)

(erefore, T is continuous. From Equation (61),
T(zB2)⊆B2. According to Lemma 4, T has at least a
fixed point on B2, then the fixed point is the
ω-periodic continuous solution c2(t) of Equation
(15), and then

0< λ2( L≤ c2(t)≤ λ2( M. (66)

(3) We prove Equation (15) has exactly two periodic
solutions c1(t) and c2(t).
Let

f(t, x) � a(t)x
2

+ b(t)x + c(t), (67)

then
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fxx
″(t, x) � 2a(t)< 0. (68)

From Equation (68), according to Lemma 5, Equation
(15) has at most two periodic continuous solutions, and
we have known that Equation (15) has two periodic
continuous solutions: c1(t), c2(t); thus, it follows that
Equation (15) has exactly two periodic solutions
c1(t), c2(t), and then

λ1( L≤ c1(t)≤ λ1( M< 0,

0< λ2( L≤ c2(t)≤ λ2( M.
(69)

(is is the end of the proof of (eorem 2. □

4. Exponential Dichotomy

In this section, we consider Equation (6) and get the
sufficient condition for the exponential dichotomy of
Equation (6).

Theorem 3. Consider Equation (6),a(t), b(t), c(t), and d(t)

are ω-periodic continuous functions onR, a(t) and b(t) have
continuous derivatives on R, then assume that the following
conditions hold true:

H1( b(t)≠ 0,

H2( 
a(t)b′(t)

b(t)
+ a(t)d(t) − b(t)c(t) − a′(t)< 0.

(70)

Then, Equation (6) has exponential dichotomy.

Proof. From Equation (6), the following equation can be
obtained:

d2x
dt

2 − a(t) + d(t) +
b′(t)

b(t)
 

dx

dt

+
a(t)b′(t)

b(t)
+ a(t)d(t) − b(t)c(t) − a′(t) (t)x � 0,

(71)

where (dx/dt) � a(t)x + b(t)y.
Let

x � e
u
, (72)

then Equation (72) becomes

d2u
dt

2 +
du

dt
 

2

− a(t) + d(t) +
b′(t)

b(t)
 

du
dt

+
a(t)b′(t)

b(t)
+ a(t)d(t) − b(t)c(t) − a′(t)  � 0.

(73)

Let

z �
du

dt
, (74)

then Equation (73) becomes

dz

dt
� − z

2
+ a(t) + d(t) +

b′(t)

b(t)
 z

−
a(t)b(t)

b(t)
+ a(t)d(t) − b(t)c(t) − a′(t) .

(75)

(is is Riccati’s equation. From (H1), (H2), Equation
(75) satisfies all the conditions of (eorem 2. According to
(eorem 2, Equation (75) has exactly one negative, one
positive, and two ω-periodic continuous solutions c1(t)< 0
and c2(t)> 0.

It follows from Equation (74) that Equation (73) has two
continuous solutions:

u1(t) � u1(0) + 
t

0
c1(s)ds,

u2(t) � u2(0) + 
t

0
c2(s)ds.

(76)

Here, u1(0)≠ u2(0).
It follows from Equation (72) that Equation (71) has two

continuous solutions:

Φ1(t) � e
u1(t)

� e
u1(0)+

t

0
c1(s)ds

� e
u1(0)

e


t

0
c1(s)ds1

� k1e


t

0
c1(s)ds

,

Φ2(t) � e
u2(t)

� e
u2(0)+ 

t

0
c2(s)ds

� e
u2(0)

e


t

0
c2(s)ds

� k2e


t

0
c2(s)ds

.

(77)

Here, k1 � eu1(0), k2 � eu2(0).
Morveover, we get

Φ2(t)

Φ1(t)
�

e
u2(0)

e


t

0 c2(s)ds

e
u1(0)

e


t

0 c1(s)ds

� e
(u2(0)− u1(0)

e


t

0
c2(s)− c1(s)( )ds ≠C.

(78)

(us, Φ1(t),Φ2(t) are linearly independent.
Since

dx

dt
� a(t)x + b(t)y, (79)

then Equation (6) has two sets of linearly independent
solutions as follows:

x

y

⎛⎝ ⎞⎠ �

k1e


t

0
c1(θ)dθ

k1 c1(t) − a(t)( e


t

0 c1(θ)dθ

b(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

k2e


t

0
c2(θ)dθ

k2 c2(t) − a(t)( e


t

0 c2(θ)dθ

b(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(80)

Taking the fundamental solution matrix X(t) of Equa-
tion (6), we get as follows:
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X(t) �

k1e


t

0
c1(θ)dθ

k2e


t

0
c2(θ)dθ

k1 c1(t) − a(t)( e


t

0 c1(θ)dθ

b(t)

k2 c2(t) − a(t)( e


t

0 c2(θ)dθ

b(t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (81)

(us, we have

X
− 1

(s) �

c2(s) − a(s)( e
− 

s

0 c1(θ)dθ/k1 − b(s)e
− 

s

0 c1(θ)dθ/k1

a(s) − c1(s)( e
− 

s

0 c2(θ)dθ/k2 b(s)e
− 

s

0 c2(θ)dθ/k2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

c2(s) − c1(s)
.

(82)

Take projection P, we get as follows:

P �
1 0

0 0
 , (83)

and then it follows

X(t)PX
− 1

(s) �

c2(s) − a(s) − b(s)

c1(t) − a(t)(  c2(s) − a(s)( /b(t) a(t) − c1(t)( b(s)/b(t)

⎛⎝ ⎞⎠e


t

s
c1(θ)dθ

c2(s) − c1(s)
,

X(t)(I − P)X
− 1

(s) �

a(s) − c1(s) b(s)

c2(t) − a(t)(  a(s) − c1(s)( /b(t) c2(t) − a(t)( b(s)/b(t)

⎛⎝ ⎞⎠e


t

s
c2(θ)dθ

c2(s) − c1(s)
.

(84)

Since a(t), b(t), c1(t), c2(t) are ω-periodic continuous
functions on R, it follows that there exist K≥ 1, α> 0 such
that the following inequalities hold true:

X(t)PX
− 1

(s)
����

����≤Ke
− α(t− s)

, (t≥ s),

X(t)(I − P)X
− 1

(s)
����

����≤Ke
α(t− s)

, (s≥ t).
(85)

(us, Equation (6) has exponential dichotomy, and the
dichotomy constants are (K, α).

(is is the end of the proof of (eorem 3.
If we turn Equation (6) into a second-order linear dif-

ferential equation about y, we can get the following: □

Theorem 4. Consider Equation (6), and a(t), b(t), c(t), and
d(t) are ω-periodic continuous functions on R, and c(t) and
d(t) have continuous derivatives on R, then assume that the
following conditions hold true:

H1( c(t)≠ 0,

H2( 
d(t)c′(t)

c(t)
+ a(t)d(t) − b(t)c(t) − d′(t)< 0,

(86)

then Equation (6) has exponential dichotomy.

Proof. From Equation (6), the following equation can be
obtained:

d2y
dt

2 − a(t) + d(t) +
c′(t)

c(t)
 

dy

dt

+
d(t)c′(t)

c(t)
+ a(t)d(t) − b(t)c(t) − d′(t) y � 0,

(87)

where
dy

dt
� c(t)x + d(t)y, (88)

Let
y � e

u
, (89)

then Equation (89) becomes

d2u
dt

2 +
du

dt
 

2

− a(t) + d(t) +
c′(t)

c(t)
 

du

dt

+
d(t)c′(t)

c(t)
+ a(t)d(t) − b(t)c(t) − d′(t)  � 0.

(90)

Let
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z �
du

dt
, (91)

then Equation (87) becomes

dz

dt
� − z

2
+ a(t) + d(t) +

c′(t)

c(t)
 z

−
d(t)c(t)

c(t)
+ a(t)d(t) − b(t)c(t) − d′(t) ,

(92)

and this is Riccati’s equation. From (H1), (H2), Equa-
tion (92) satisfies all the conditions of(eorem 2. According
to (eorem 2, Equation (92) has exactly one negative, one
positive, and two ω-periodic continuous solutions c1(t)< 0
and c2(t)> 0.

It follows from Equation (92) two continuous solutions
as follows:

u1(t) � u1(0) + 
t

0
c1(s)ds, (93)

and

u2(t) � u2(0) + 
t

0
c2(s)ds. (94)

Here, u1(0)≠ u2(0).

It follows from Equation (89) that Equation (87) has two
continuous solutions as follows:

Φ1(t) � e
u1(t)

� e
u1(0)

e


t

0
c1(s)ds

� k1e


t

0
c1(s)ds

, (95)

and

Φ2(t) � e
μ2(t)

� e
u2(0)

e


t

0
c2(s)ds

� k2e


t

0
c2(s)ds

. (96)

Here, k1 � eu1(0), k2 � eu2(0).
Moreover,

Φ2(t)

Φ1(t)
�

k2e


t

0 c2(s)ds

k1e


t

0 c1(s)ds
�

k2

k1
e


t

0
c2(s)− c1(s)( )ds ≠C. (97)

(us, Φ1(t),Φ2(t) are linearly independent.
Since

dy

dt
� c(t)x + d(t)y, (98)

(en Equation (6) has two sets of linearly independent
solutions given as follows:

x

y

⎛⎝ ⎞⎠ �

k1 c1(t) − d(t)( e


t

0 c1(θ)dθ

c(t)

k1e


t

0
c1(θ)dθ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

k2 c2(t) − d(t)( e


t

0 c2(θ)dθ

c(t)

k2e


t

0
c2(θ)dθ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(99)

Take the fundamental solution matrix Y(t) of Equation
(6) as follows:

Y(t) �

k1 c1(t) − d(t)( e


t

0 c1(θ)dθ

c(t)

k2 c2(t) − d(t)( e


t

0 c2(θ)dθ

c(t)

k1e


t

0
c1(θ)dθ

k2e


t

0
c2(θ)dθ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (100)

(us, we have

Y
− 1

(s) �

c(s)e
− 

s

0 c1(θ)dθ/k1 d(s) − c2(s)( e
− 

s

0 c1(θ)dθ/k1

− c(s)e
− 

s

0 c2(θ)dθ/k2 c1(s) − d(s)( e
− 

s

0 c2(θ)dθ/k2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

c1(s) − c2(s)
.

(101)
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Take projection P as

P �
1 0

0 0
 , (102)

(en it follows

Y(t)PY
− 1

(s) �

c1(t) − d(t)( c(s)/c(t) c1(t) − d(t)(  d(s) − c2(s)( /c(t)

c(s) d(s) − c2(s)

⎛⎝ ⎞⎠e


t

s
c1(θ)dθ

c1(s) − c2(s)
,

Y(t)(I − P)Y
− 1

(s) �

d(t) − c2(t)( c(s)/c(t) c2(t) − d(t)(  c1(s) − d(s)( /c(t)

− c(s) c1(s) − d(s)

⎛⎝ ⎞⎠e


t

s
c2(θ)dθ

c1(s) − c2(s)
.

(103)

Since a(t), b(t), c1(t), c2(t) are ω-periodic continuous
functions on R, it follows that there exist L≥ 1, β> 0 such
that the following inequalities hold true:

Y(t)PY
− 1

(s)
����

����≤Le
− β(t− s)

, (t≥ s),

Y(t)(I − P)Y
− 1

(s)
����

����≤Le
β(t− s)

, (s≥ t).
(104)

(us, Equation (6) has exponential dichotomy, and the
dichotomy constants are (L, β).

(is is the end of the proof of (eorem 4.
Next, we will calculate the characteristic exponents of

system (6). We first give the definition of the characteristic
exponent of the linear system. □

Definition 1 (see[17]). Consider the following linear differ-
ential system:

dx

dt
� A(t)x, (105)

where A(t) is a square matrix of order n, and A(t) con-
tinuous on [t0, +∞), x � x(t) is a nonzero solution of (105).
Define

χ(x(t)) � lim
t⟶+∞

1
t
ln‖x(t)‖, (106)

where χ(x(t)) is called the characteristic exponent of
x � x(t).

According the proof of (eorem 4, we get as follows.

Theorem 5. Consider Equation (6), and a(t), b(t), c(t) and
d(t) are ω-periodic continuous functions on R, and c(t) and
d(t) have continuous derivatives on R, assume that the
following conditions hold true:

H1( c(t)≠ 0,

H2( 
d(t)c′(t)

c(t)
+ a(t)d(t) − b(t)c(t) − d′(t)< 0.

(107)

(en the characteristic exponents of system Equation (6)
must be positive and negative.

Proof. According to the proof of (eorem 4, by (95)–(97),
and (99), Equation (6) has two linearly independent solu-
tions as follows:

x1

y1

⎛⎝ ⎞⎠ �

k1 c1(t) − d(t)( e


t

0 c1(θ)dθ

c(t)

k1e


t

0
c1(θ)dθ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

x2

y2

⎛⎝ ⎞⎠ �

k2 c2(t) − d(t)( e


t

0 c2(θ)dθ

c(t)

k2e


t

0
c2(θ)dθ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(108)
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where c1(t)< 0, c2(t)> 0. (us, we have

χ
x1

y1

⎛⎝ ⎞⎠ � lim
t⟶+∞

1
t
ln

k1 c1(t) − d(t)( e


t

0 c1(θ)dθ

c(t)

k1e


t

0
c1(θ)dθ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�����������������������

�����������������������

� lim
t⟶+∞

1
t
ln

k1 c1(t) − d(t)( e


t

0 c1(θ)dθ

c(t)

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

2

+ k1e


t

0
c1(θ)dθ⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1
2

�
1
2

lim
t⟶+∞

1
t
ln

k
2
1 c1(t) − d(t)

2
+ c

2
(t) 

c
2
(t)

e
2 

t

0
c1(θ)dθ⎛⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎠

�
1
2

lim
t⟶+∞

1
t

ln
k
2
1 c1(t) − d(t)

2
+ c

2
(t) 

c
2
(t)

+ 2
t

0
c1(θ)dθ⎛⎝ ⎞⎠ � c1( M< 0.

(109)

Similarly, we have

χ
x2

y2

⎛⎝ ⎞⎠ � lim
t⟶+∞

1
t
ln

k2 c2(t) − d(t)( e


t

0 c2(θ)dθ

c(t)

k2e


t

0
c2(θ)dθ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�����������������������

�����������������������

� c2( M> 0. (110)

(us, the characteristic exponents of system (6) must be
positive and negative.

(is is the end of the proof of (eorem 5.
Similar as (eorem 5, we get as follows. □

Theorem 6. Consider Equation (6), and a(t), b(t), c(t), and
d(t) are ω-periodic continuous functions on R, and c(t) and
d(t) have continuous derivatives on R, assume that the
following conditions hold true:

H1( b(t)≠ 0,

H2( 
a(t)b′(t)

b(t)
+ a(t)d(t) − b(t)c(t) − a′(t)< 0,

(111)

then the characteristic exponents of system (1.5) must be
positive and negative.

Remark 4. Comparing (eorem 5 of this paper with (e-
orem 1 of (88), it can be found that the conditions of
(eorem 5 of this paper is weaker than those of(eorem 1 of

(88). It can be seen that (eorem 5 of this paper is the
generalization of (eorem 1 of (88).

5. Existence of a Unique Periodic Solution

Consider the following equation
x

y
 
′

�
a(t) b(t)

c(t) d(t)
 

x

y
  +

e(t)

f(t)
 . (112)

By(eorem 3 and(eorem 4, according to Lemma 1, we
can easily get as follows.

Theorem 7. Consider Equation (114), and a(t), b(t),

c(t), d(t), e(t) and f(t) are ω-periodic continuous functions
on R, and a(t) and b(t) have continuous derivatives on R,
assume that the following conditions hold true:

H1( b(t)≠ 0,

H2( 
a(t)b′(t)

b(t)
+ a(t)d(t) − b(t)c(t) − a′(t)< 0,

(113)
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then Equation (114) has a unique ω-periodic continuous
solution.

Theorem 8. Consider Equation (114), and a(t), b(t),

c(t), d(t), e(t) and f(t) are ω-periodic continuous functions
on R, and c(t) and d(t) have continuous derivatives on R,
assume that the following conditions hold true:

H1( c(t)≠ 0,

H2( 
d(t)c′(t)

c(t)
+ a(t)d(t) − b(t)c(t) − d′(t)< 0,

(114)

Een Equation (114) has a unique ω-periodic continuous
solution.

In Equation (114), if a(t) ≡ 0, b(t) ≡ 1, e(t) ≡ 0,

c(t) � − q(t), d(t) � − p(t), then (112) becomes the follow-
ing equation:

x

y
 
′

�
0 1

− q(t) − p(t)
 

x

y
  +

0

f(t)
 . (115)

Set x′ � y, then (115) is equivalent to the following
equation:

x″ + p(t)x′ + q(t)x � f(t). (116)

So we can easily get what as follows.

Theorem 9. Consider Equation (116), and p(t), q(t), and
f(t) are ω-periodic continuous functions on R, and assume
that the following condition holds true:

H1( q(t)< 0, (117)

Een Equation (116) has a unique ω-periodic continuous
solution.

Further, if p(t) ≡ 0, then we can obtain what as follows.

Theorem 10. Consider the following Hill’s equation

d2x
dt

2 + q(t)x � r(t). (118)

q(t), r(t) are both ω-periodic continuous functions on
R, and assume that the following condition holds true:

H1( q(t)< 0, (119)

(en equation (117) has a unique ω-periodic continuous
solution.

6. Conclusions

In this paper, the exponential dichotomy of two-dimen-
sional linear system is studied. To verify whether the system
has exponential dichotomy, the key is to find out the fun-
damental solution matrix of the system, but it is not easy to
find the fundamental solution matrix of the system. In this
paper, a new method for judging the exponential dichotomy

of two-dimensional linear system is provided; that is, the
two-dimensional linear system is transformed into a second-
order linear system by using variable substitution; (en, the
second-order linear system is transformed into Riccati’s
equation, and the existence of two linearly independent
periodic solutions of Riccati’s equation is obtained by using
the fixed point theorem; thus, the fundamental solution
matrix of the two-dimensional linear system is obtained.
Under certain conditions, the two-dimensional linear sys-
tem has exponential dichotomy.

(is method to verify the exponential dichotomy of two-
dimensional linear system in this paper is new and feasible. It
will have certain application value.
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