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Dendrimers are highly branched macromolecules. �e structural chemistry of dendrimers could be shaped by their topological
invariants to target the particular design with appropriate properties to bring the drugs to mark a carrier vehicle. �is study is
about some new topological indices of dendrimer generations. Here, we calculate K Banhatti indices for �ve generations of
dendrimers. Precisely speaking, we computed the 1st K Banhatti rede�ned Zagreb index, 2nd K Banhatti rede�ned Zagreb indices,
and 3rd K Banhatti rede�ned Zagreb index for the dendrimers Di(p) for i � 1, 2, 3, 4, 5.

1. Introduction

Dendrimers are highly structured, polymeric branching
molecules. Similar dendrimer names include arborol and
cascade molecules. In general, dendrimers are about the
same in context and generally take on a three-dimensional
circular morphology. �e word dendron is also used
interchangeably.

�e term dendrimers mean an arti�cially generated
nanomolecular structure which is highly useful in drug
delivery [1, 2]. Commonly, there are three types of den-
drimers: (a) central core dendrimer, (b) interior surface
dendrimer, and (c) outer surface dendrimers [3]. Due to
their di�erent molecular nanoshapes, organic science and
dendrimes act as a solubilizing agent in di�erent reactions
[4]. For detailed applications of dendrimers, we recommend
the readers [5, 6]. �e structure of the dendrimer is well
known and there are three main components of the den-
drimer architecture;

(i) Initiator core
(ii) Interior layer

(iii) Terminal functionalities

Due to their molecular architecture, dendrimers display
some undoubtedly enhanced physical and chemical prop-
erties when correlated with a conventional liner polymer
[2, 7]. �e rare architectural layout of dendrimer, branching
intensity, multivalency, globular, and well-de�ned molec-
ular weight implies that dendrimers are rare and excellent
nanocarriers in medical utilization such as drug delivery,
gene transfection, tumor therapy, etc. �e dendrimer ar-
chitecture is shown in Figure 1.

Consider a graph G with vertex set V and the edge set E.
For a vertex v, the degree is denoted by dv which is the
number of vertices at distance one from v. �e distance
between two vertices is the length of the shortest path be-
tween them.

By a topological index, we mean a number associated
with the graph that is unique up to graph isomorphism and
that helps us to determine the hidden properties based on
the symmetric structure of the graph [8–10]. Numerous
methods are present in history to check the quality of a
topological index. �ere are two main clashes of topological
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indices; first one is the degree-based topological indices and
the second class is known as distance-based topological
indices [11–13]. )e study of topological index begun with
the work ofWiener [14] in the year 1947 when he introduced
the very first topological index while computing the boiling
points of alkane which is today known as the Wiener index.
)e Wiener index is a distance-based topological index. In
1975, the very first degree-based topological index was in-
troduced by Randić in [15] which is today known as the
Randić index. After Randić index, many degree-based in-
dices are introduced and studied by the researchers [16, 17].
All the introduced topological indices give some information
about the concerned chemical structure [13]. For example,
the redefined Zagreb indices are helpful to compute
π-electronic energy of chemical structures [18].

Continuing the work on topological indices, two variants
of K Banhatti indices were put forward by Kulli in [19].

B1(G) � 􏽘
ue

dG(u) + dG(e)􏼂 􏼃,

B2(G) � 􏽘
ue

dG(u) × dG(e)􏼂 􏼃.
(1)

For other variants of K Banhatti indices, we recommend
[20].

Motivated by the work of Kulli [19], in this paper, we
introduced the K Banhatti redefined Zagreb indices as
follows:

KBR1(G) � 􏽘
ue

du + de

du × de

,

KBR2(G) � 􏽘
ue

du × de

du + de

,

KBR3(G) � 􏽘
ue

du + de( 􏼁 du × de( 􏼁.

(2)

In this report, we introduced a new class of topological
indices for dendrimer generations. We calculated K Banhatti
indices for five generations of dendrimers. Precisely speaking,

we computed 1st K Banhatti redefined Zagreb index, 2nd K
Banhatti redefined Zagreb indices, and 3rd K Banhatti
redefined Zagreb index for D1i(p), where i � 1, 2, 3, 4, 5.

2. Main Results

In this section, we will discuss molecular graphs of five
generations of dendrimers and calculate K Banhatti indices
for abovementioned dendrimers; molecular graphs of these
five generations can be found in Figures 2–6.

Architectural Components

[Core] {Interior} (Terminal Groups)Z::

Figure 1: Dendrimer architecture.

Figure 2: D1(p) for m� p.

Figure 3: D2(p) for p� 1.
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2.1. Phosphorus-Containing Dendrimers. )e first genera-
tion of dendrimers we studied in this paper is phosphorus-
containing dendrimers [2]. )e graph of this generation is
denoted by D1(p) where the number of stages is represented
by p, see Figure 2.

By observing Figure 2, we can give the following
remarks.

Remark 1. )e graph D1(p) of phosphorus-containing
dendrimers has 9(11 × 2p+1 − 8) vertices and 6(9 × 2p+2 −

13) edges.

Remark 2. )e set of vertex of the graph D1(p) can be
divided in to four different classes with respect to the de-
grees. )e number of vertices of degree one are 42 × 2p − 12,
the number of vertices of degree two are 96 × 2p − 39, the
number of vertices of degree three 42 × 2p − 18, and the
number of vertices of degree four are 18 × 2p − 3.

Remark 3. )e edge set of the graph D1(p) can also be
divided into different classes with respect to the degrees of
the end vertices of edges and this division is given in Table 1.

Now, we are ready to present the first main result of this
paper.

Theorem 1. *e KBR1, KBR2, and KBR3 indices for D1(p)

are as follows:

(i) KBR1(D1(p)) � (293/5).2p − (366/5) + 18.2p+1+

5.2p+4 + (9/4).2p+3,
(ii) KBR2(D1(p)) � (241/4).2p − (1763/20) +18.2p+1+

(36/5).2p+4 +4.2p+3,
(iii) KBR3(D1(p)) � 2556.2p − 2376 + 288.2p+1 +

180.2p+4+ 144.2p+3.

Figure 4: D2(p) for p� 1.

Figure 5: D4(p) for p� 2.

Figure 6: D5(p) for m� p.

Table 1: Partition of the edges of D1(p).

(du, dv) de Frequency

(1, 3) 2 6(2p − 1)

(1, 4) 3 6(5 × 2p − 1)

(2, 2) 2 18(2p+1 − 1)

(2, 3) 3 6(2p+4 − 7)

(2, 4) 4 (3 × 2p+3)

(3, 4) 5 6(3 × 2p − 1)
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Proof

KBR1 D1( 􏼁 � 􏽘
ue

du + de

du × de

�
1 + 2
1 × 2

􏼒 􏼓 6 × 2p
− 6( 􏼁 +

1 + 3
1 × 3

􏼒 􏼓 30 × 2p
− 6( 􏼁

+
2 + 2
2 × 2

􏼒 􏼓 18 × 2p+1
− 18􏼐 􏼑

+
2 + 3
2 × 3

􏼒 􏼓 6 × 2p+4
− 42􏼐 􏼑

+
2 + 4
2 × 4

􏼒 􏼓 3 × 2p+3
􏼐 􏼑 +

3 + 4
3 × 4

􏼒 􏼓 18 × 2p
− 6( 􏼁

�
293
5

.2p
−
366
5

+ 18.2p+1
+ 5.2p+4

+
9
4
.2p+3

,

KBR2 D1( 􏼁 � 􏽘
ue

du × de

du + de

�
1 × 2
1 + 2

􏼒 􏼓 6 × 2p
− 6( 􏼁 +

1 × 3
1 + 3

􏼒 􏼓 30 × 2p
− 6( 􏼁

+
2 × 2
2 + 2

􏼒 􏼓 18 × 2p+1
− 18􏼐 􏼑

+
2 × 3
2 + 3

􏼒 􏼓 6 × 2p+4
− 42􏼐 􏼑

+
2 × 4
2 + 4

􏼒 􏼓 3 × 2p+3
􏼐 􏼑 +

3 × 4
3 + 4

􏼒 􏼓 18 × 2p
− 6( 􏼁

�
241
4

.2p
−
1763
20

+ 18.2p+1
+
36
5

.2p+4
+ 4.2p+3

,

KBR3 D1( 􏼁 � 􏽘
ue

du × de( 􏼁 du + de( 􏼁

� (1 × 2)(1 + 2) 6 × 2p
− 6( 􏼁

+(1 × 3)(1 + 3) 30 × 2p
− 6( 􏼁

+(2 × 2)(2 + 2) 18 × 2p+1
− 18􏼐 􏼑

+(2 × 3)(2 + 3) 6 × 2p+4
− 42􏼐 􏼑

+(2 × 4)(2 + 4) 3 × 2p+3
􏼐 􏼑

+(3 × 4)(3 + 4) 18 × 2p
− 6( 􏼁

� 2556.2p
− 2376 + 288.2p+1

+ 180.2p+4
+ 144.2p+3

.

(3)

□

2.2. Porphyrin-Cored Dendrimer. Now, we study the por-
phyrin-cored dendrimer. )e graph of porphyrin-cored
dendrimer is denoted by D2(p) [2], see Figure 3.

By observing Figure 3, we can give the following
remarks:

Remark 4. )e graph of porphyrin-cored dendrimer D2(p)

has 4(2p+3 + 9) vertices and 4(2p+3 + 11) edges.

Remark 5. )e vertex set of porphyrin-cored dendrimer
D2(p) can be divided into the four classes with respect to the
degrees. )e number of vertices of degree one is 12 × 2p − 8,
the number of vertices of degree two is 12 × 2p + 32, the
number of vertices of degree three are 4 × 2p + 16, and the
number of vertices of degree is 4 × 2p − 4.

Remark 6. )e edge set of porphyrin-cored dendrimer
D2(p) can also be divided into different classes based on the
degree of end vertices and this division is presented in
Table 2.

Theorem 2. For the porphyrin-cored dendrimer D2(p), we
have the following:

(i) KBR1(D2(p)) � (487/15).2p + (548/15)

(ii) KBR2(D2(p)) � (1109/30).2p + (11089/210)

(iii) KBR3(D2(p)) � 1128.2p + 1352

Proof

Table 2: Partition of the edges of D2(p).

(du, dv) de Frequency

(1, 2) 1 4 × 2p

(1, 3) 2 4 × 2p − 4
(1, 4) 3 4 × 2p − 4
(2, 2) 2 4 × 2p + 20
(2, 3) 3 4 × 2p + 32
(2, 4) 4 8 × 2p − 8
(3, 3) 4 12
(3, 4) 5 4 × 2p − 4

Table 3: Partition of the edges of D3(p).

(du, dv) de Frequency

(1, 2) 1 2p+1

(1, 3) 2 4(2p− 1 + 1)

(2, 2) 2 3 × 2p+1 + 1
(2, 3) 3 20 × 2p− 1

(3, 3) 4 22
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KBR1 D2( 􏼁 � 􏽘
ue

du + de

du × de

�
1 + 1
1 × 1

􏼒 􏼓 4 × 2p
( 􏼁 +

1 + 2
1 × 2

􏼒 􏼓 4 × 2p
− 4( 􏼁

+
1 + 3
1 × 3

􏼒 􏼓 4 × 2p
− 4( 􏼁 +

2 + 2
2 × 2

􏼒 􏼓 4 × 2p
+ 20( 􏼁

+
2 + 3
2 × 3

􏼒 􏼓 4 × 2p
+ 32( 􏼁 +

2 + 4
2 × 4

􏼒 􏼓 8 × 2p
− 8( 􏼁

+
3 + 4
3 × 4

􏼒 􏼓(12) +
3 + 5
3 × 5

􏼒 􏼓 4 × 2p
− 4( 􏼁

�
487
15

.2p
+
548
15

,

KBR2 D2( 􏼁 � 􏽘
ue

du × de

du + de

�
1 × 1
1 + 1

􏼒 􏼓 4 × 2p
( 􏼁 +

1 × 2
1 + 2

􏼒 􏼓 4 × 2p
− 4( 􏼁

+
1 × 3
1 + 3

􏼒 􏼓 4 × 2p
− 4( 􏼁 +

2 × 2
2 + 2

􏼒 􏼓 4 × 2p
+ 20( 􏼁

+
2 × 3
2 + 3

􏼒 􏼓 4 × 2p
+ 32( 􏼁 +

2 × 4
2 + 4

􏼒 􏼓 8 × 2p
− 8( 􏼁

+
3 × 4
3 + 4

􏼒 􏼓(12) +
3 × 5
3 + 5

􏼒 􏼓 4 × 2p
− 4( 􏼁

�
1109
30

.2p
+
11089
210

,

KBR3 D2( 􏼁 � 􏽘
ue

du × de( 􏼁 du + de( 􏼁

� (1 × 1)(1 + 1) 4 × 2p
( 􏼁 +(1 × 2)(1 + 2) 4 × 2p

− 4( 􏼁

+(1 × 3)(1 + 3) 4 × 2p
− 4( 􏼁

+(2 × 2)(2 + 2) 4 × 2p
+ 20( 􏼁

+(2 × 3)(2 + 3) 4 × 2p
+ 32( 􏼁

+(2 × 4)(2 + 4) 8 × 2p
− 8( 􏼁

+(3 × 4)(3 + 4)(12) +(3 × 5)(3 + 5) 4 × 2p
− 4( 􏼁

� 1128.2p
+ 1352.

(4)

□

2.3. PDI-Cored Dendrimers. )e graph of PDI-cored den-
drimers is denoted by D3(p) [2], see Figure 4.

By observing Figure 4, we can give the following
remarks:

Remark 7. )e graph of PDI-cored dendrimers D3(p) has
20 × 2p + 20 vertices and 20 × 22p + 20 edges.

Remark 8. )e vertex set of the graph of PDI-cored den-
drimers D3(p) can be divided into different classes with
respect to the degree of vertices. )e number of vertices of
degree one is 2 × 2p+1 + 4, the number of vertices of degree
two is 6 × 2p+1, and the number of vertices of degree three is
2 × 2p+1 + 16.

Remark 9. )e edge set of the graph of PDI-cored den-
drimers D3(p) can also be divided into different classes with
respect to the degree of the end vertices and this division is
presented in Table 3.

Theorem 3. *e KBR1, KBR2, and KBR3 indices for D3(p)

are as follows:

(i) KBR1(D3(p)) � 5.2p+1 + (68/3).2p− 1 + (119/6)

(ii) KBR2(D3(p)) � 5.2p+1 + (80/3).2p− 1 + (869/21)

(iii) KBR3(D3(p)) � 50.2p+1 + 624.2p− 1 + 1888

Proof

KBR1 D3( 􏼁 � 􏽘
ue

du + de

du × de

�
1 + 1
1 × 1

􏼒 􏼓 2p+1
􏼐 􏼑 +

1 + 2
1 × 2

􏼒 􏼓 4 × 2p− 1
+ 4􏼐 􏼑 +

3 + 3
3 × 3

􏼒 􏼓(22)

+
2 + 2
2 × 2

􏼒 􏼓 3 × 2p+1
+ 1􏼐 􏼑 +

2 + 3
2 × 3

􏼒 􏼓 20 × 2p− 1
􏼐 􏼑

� 5.2p+1
+
68
3

.2p− 1
+
119
6

,

KBR2 D3( 􏼁 � 􏽘
ue

du × de

du + de

�
1 × 1
1 + 1

􏼒 􏼓 2p+1
􏼐 􏼑 +

1 × 2
1 + 2

􏼒 􏼓 4 × 2p− 1
+ 4􏼐 􏼑 +

3 × 3
3 + 3

􏼒 􏼓(22)

+
2 × 2
2 + 2

􏼒 􏼓 3 × 2p+1
+ 1􏼐 􏼑 +

2 × 3
2 + 3

􏼒 􏼓 20 × 2p− 1
􏼐 􏼑

� 5.2p+1
+
80
3

.2p− 1
+
869
21

,

KBR3 D3( 􏼁 � 􏽘
ue

du × de( 􏼁 du + de( 􏼁

� (1 × 1)(1 + 1) 2p+1
􏼐 􏼑

+(1 × 2)(1 + 2) 4 × 2p− 1
+ 4􏼐 􏼑

+(3 × 3)(3 + 3)(22)

+(2 × 2)(2 + 2) 3 × 2p+1
+ 1􏼐 􏼑

+(2 × 3)(2 + 3) 20 × 2p− 1
􏼐 􏼑

� 50.2p+1
+ 624.2p− 1

+ 1888.

(5)

□

2.4. Triazine-Based Dendrimer. )e graph of triazine-based
dendrimers is denoted by D4(p) [2], see Figure 5.

By observing Figure 5, we can give the following remarks:

Remark 10. )e graph of the triazine-based dendrimer
D4(p) has (2(5 × 22p+2 + 1)/3) vertices and 7 × 22p+1 + 1
edges.
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Remark 11. )e vertices of the graph of triazine-based
dendrimer D4(p) is divided into three classes. )e number
of vertices of degree one is 22p+1, the number of vertices of
degree two is 22p+1 + (7 × 4p+1/6) + (4p+1/3), and the
number of vertices of degree three is
4 + (5 × 4p+1/6) − (10/3).

Remark 12. )e edges of the graph of triazine-based den-
drimer D4(p) can also be divided into different classes and
this division is presented in Table 4.

Theorem 4. *e KBR1, KBR2, and KBR3 indices for D4(p)

are as follows:

(i) KBR1(D4(p)) � 2.2p+1 + (85/9).22p + (25/36) +

(7/18).22p+1

(ii) KBR2(D4(p)) � 2.2p+1 + (182/15).22p +

(136/105) + (8/7).22p+1

(iii) KBR3(D4(p)) � 2.2p+1 + (820/3).22p + (92/3) +

56.22p+1

Proof

KBR1 D4( 􏼁 � 􏽘
ue

du + de

du × de

�
1 + 2
1 × 2

􏼒 􏼓 2p+1
􏼐 􏼑 +

2 + 2
2 × 2

􏼒 􏼓
2 5 × 22p

− 2􏼐 􏼑

3
⎛⎝ ⎞⎠

� +
2 + 3
2 × 3

􏼒 􏼓
2 11 × 22p

+ 4􏼐 􏼑

3
⎛⎝ ⎞⎠ +

3 + 4
3 × 4

􏼒 􏼓
2 × 22p+1

− 1
3

􏼠 􏼡

� 2.2p+1
+
85
9

.22p
+
25
36

+
7
18

.22p+1
,

KBR2 D4( 􏼁 � 􏽘
ue

du × de

du + de

�
1 × 2
1 + 2

􏼒 􏼓 2p+1
􏼐 􏼑 +

2 × 2
2 + 2

􏼒 􏼓
2 5 × 22p

− 2􏼐 􏼑

3
⎛⎝ ⎞⎠

+
2 × 3
2 + 3

􏼒 􏼓
2 11 × 22p

+ 4􏼐 􏼑

3
⎛⎝ ⎞⎠ +

3 × 4
3 + 4

􏼒 􏼓
2 × 22p+1

− 1
3

􏼠 􏼡

� 2.2p+1
+
182
15

.22p
+
136
105

+
8
7
.22p+1

,

KBR3 D4( 􏼁 � 􏽘
ue

du × de( 􏼁 du + de( 􏼁

� (1 × 2)(1 + 2) 2p+1
􏼐 􏼑 +(2 × 2)(2 + 2)

2 5 × 22p
− 2􏼐 􏼑

3
⎛⎝ ⎞⎠

+(2 × 3)(2 + 3)
2 11 × 22p

+ 4􏼐 􏼑

3
⎛⎝ ⎞⎠

+(3 × 4)(3 + 4)
2 × 22p+1

− 1
3

􏼠 􏼡

� 2.2p+1
+
820
3

.22p
+
92
3

+ 56.22p+1
.

(6)

□

2.5. Aliphatic Polyamide Dendrimers. )e graph of aliphatic
polyamide dendrimers is denoted by D5(p) [2], see Figure 6.

By observing Figure 6, we can give the following
remarks:

Remark 13. )e vertices of the graph of aliphatic polyamide
dendrimers D5(p) can be divided into classes. )e number
of vertices of degree one is 4(3 × 2p− 1 − 1), the number of
vertices of degree two is 4(3 × 2p− 1 − 1), and the number of
vertices of degree three is 2p+12(2p − 1).

Table 4: Partition of the edges of D4(p).

(du, dv) de Frequency

(1, 2) 1 2p+1

(2, 2) 2 (2(5 × 22p − 2)/3)

(2, 3) 3 (2(11 × 22p + 4)/3)

(3, 3) 4 (2 × 22p+1 − 1/3)

Table 5: Partition of the edges of D5(p).

(du, dv) de Frequency

(1, 2) 1 2p+1

(2, 3) 3 2p+1

(1, 3) 2 2(2p − 1)

(1, 4) 3 2(2p − 1)

(2, 2) 2 2(2p − 1)

(3, 4) 5 2(2p − 1)

(3, 3) 4 2
(2, 4) 4 2p+2 − 4

300

250
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100

50

0 0.2 0.4 0.6

P

0.8 1

D1 (p)

D2 (p)

D3 (p)

D5 (p)

D4 (p)

Figure 7: Comparison of KBR1 for Di(p), where i � 1, 2, 3, 4, 5.
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Remark 14. )e edges of the graph of aliphatic polyamide
dendrimers D5(p) can also be divided into classes and this
division is given in Table 5.

Theorem 5. *e KBR1, KBR2, and KBR3 indices for D5(p)

are as follows:

(i) KBR1(D5(p)) � (4/3).2p+1 + (106/15).2p −

(89/10) + (3/4).22p+2

(ii) KBR2(D5(p)) � (16/5).2p+1 + (82/8).2p −

(1021/84) + (4/3).22p+2

(iii) KBR3(D5(p)) � 32.2p+1 + 308.2p − 332 + 48.22p+2

Proof

KBR1 D5( 􏼁 � 􏽘
ue

du + de

du × de

+
1 + 3
1 × 3

􏼒 􏼓 2 × 2p
− 2( 􏼁

+
1 + 4
1 × 4

􏼒 􏼓 2 × 2p
− 2( 􏼁 +

3 + 3
3 × 3

􏼒 􏼓d2

+
3 + 5
3 × 5

􏼒 􏼓 2 × 2p
− 2( 􏼁 +

2 + 4
2 × 4

􏼒 􏼓 2p+2
− 4􏼐 􏼑

�
4
3
.2p+1

+
106
15

.2p
−
89
10

+
3
4
.22p+2

,

KBR2 D5( 􏼁 � 􏽘
ue

du × de

du + de

+
1 × 3
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4
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Figure 8: Comparison of KBR1 for Di(p), where i � 1, 2, 3, 4, 5.
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Figure 9: Comparison of KBR1 for Di(p), where i � 1, 2, 3, 4, 5.
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3. Graphical Representation

4. Concluding Remarks

)e topological index is very helpful in biology, material
science, informatics, arithmetic, etc. )e most valuable use
of a topological index is in QSPR and QSAR. By mean of the
topological index, we can assign a number to the graph of a
dendrimer and this number help us to determine the hidden
information in the symmetric structure of dendrimer. )is
paper introduced and computed K Banhatti redefined
Zagreb indices, i.e., 1st K Banhatti redefined Zagreb index,
2nd K Banhatti redefined Zagreb indices, and 3rd K Banhatti
redefined Zagreb index for the dendrimers Di(p), where
i � 1, 2, 3, 4, 5. Figures 7, 8, and 9 show the graphical be-
havior of computed results of Di(p), where i � 1, 2, 3, 4, 5.

5. Future Directions

It will be interesting to compute the different versions of
graph energies of understudied dendrimers. It will also be
interesting to define the corresponding energies for the
presented topological indices.
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