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In this paper, it is proved that the Beurling-type theorem holds for the shift operator on a class of reproducing analytic
Hilbert spaces.

1. Introduction

Let T be a bounded linear operator on a Hilbert space H. A
closed subspace M of H is said to be invariant for T if
TM ⊂M. In the present paper, we denote by Lat(T) the
lattice of invariant subspaces of T on H. A basic problem in
functional analysis is to describe the invariant subspaces of
T. We say that T is analytic (pure) on H if
H∞ � ∩ n≥1T

nH � 0{ }. If T is an isometric
(‖Tx‖ � ‖x‖, x ∈ H) and pure operator on H, the
Wold–Kolmogorov decomposition theorem implies that

M � [M⊖TM], ∀M ∈ Lat(T), (1)

where M⊖TM is the orthogonal complement of TM in M (it
is also called the wandering subspace of T on M), and

[M⊖TM] � (M⊖TM)⊕ TM⊖T2
M􏼐 􏼑⊕ · ··, (2)

is the smallest invariant subspace of T containing M⊖TM.
.e most famous example for the isometric and pure op-
erator on a Hilbert space is the following:

Let ℓ2 be the space which consists of the collection of
square-summable sequences of complex numbers. .at is,

ℓ2 � an􏼈 􏼉
∞
n�0: 􏽘
∞

n�0
an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 <∞

⎧⎨

⎩

⎫⎬

⎭. (3)

.e norm of the vector an􏼈 􏼉
∞
n�0 is

an􏼈 􏼉
∞
n�0

����
����ℓ2 � 􏽘

∞

n�0
an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2⎛⎝ ⎞⎠

1/2

. (4)

Let D be the open unit disk in the complex plane C. .e
Hardy space H2 consists of all analytic functions on D

having power series representations with ℓ2-complex coef-
ficients sequence. .at is

H
2

� f ∈ H(D): f(z) � 􏽘
∞

n�0
anz

n
, an􏼈 􏼉

∞
n�0 ∈ ℓ

2⎧⎨

⎩

⎫⎬

⎭, (5)

where H(D) is the space of analytic functions in D. .e
norm of the vector f(z) � 􏽐

∞
n�0 anzn of H2 is defined as the

ℓ2-norm of an􏼈 􏼉
∞
n�0. .e following mapping

an􏼈 􏼉
∞
n�0↦􏽘

∞

n�0
anz

n
, (6)

is clearly an isomorphism from ℓ2 onto H2, then H2 is a
Hilbert space. Let T be the boundary of the unit disk D. Let
L2 � L2(T) be the Hilbert space of square-integrable func-
tions on T with respect to Lebesgue measure, normalized so
that the measure of the entire circle is 1. It is well known that
there is an isomorphism between H2 and the closed sub-
space 􏽦H2 of L2 which consists of the L2-functions with
negative Fourier coefficients vanishing.

It is clear that the unilateral shiftTz on H2 is an isometric
and pure operator, then (1) holds for Tz on H2. On the other
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hand, the famous Beurling theorem [1] gives a complete
characterization of the invariant subspaces of Tz on H2, that
is, every invariant subspace of Tz on H2 other than 0{ } has
the form ϕH2, where ϕ(z) is an inner function..e Beurling
theorem also implies that (1) holds for Tz on H2, so in this
case, the Beurling theorem is a special case of the Wold-
Kolmogorov decomposition theorem. To generalize the
Beurling theorem, for a bounded linear operator T on a
Hilbert space H, we say that the Beurling-type theorem for T

holds on H if (1) holds. Hence, the Beurling-type theorem
holds for all isometric and pure operators. Another basic
problem in functional analysis is to find whether the
Beurling-type theorem holds for a nonisometric operator on
a Hilbert space. .e most famous example for the non-
isometric operator is the shift operator (it is also called the
Bergman shift) on the Bergman space A2(D) which is the
Hilbert space consisting of the square-integrable analytic
functions on D with Lebesgue area measure.

.e study of the wandering subspaces of invariant
subspaces for the Bergman shift tells that the dimension of
wandering subspace ranges from 1 to ∞ (see [2]). Never-
theless, Aleman, Richter, and Sundberg (see [3]) discovered
that all invariant subspaces of the Bergman shift are also
generated by their wandering subspaces. .is reveals the
internal structure of invariant subspaces of the Bergman
space and becomes a fundamental theorem on the Bergman
space (see [4]). Later, the Beurling-type theorem was studied
by many mathematicians (see [5–9]). In [8], Shimorin
studied the Beurling-type theorem for a nonisometric op-
erator T which is close to an isometry in some sense (in
particular, we can assumeT is left invertible), and proved the
following theorem.

Theorem 1 (Shimorin’s theorem). Let T be a linear operator
on a Hilbert space H with the properties.

(i) ‖Tx + y‖2 ≤ 2(‖x‖2 + ‖Ty‖2) for all x, y ∈ H, and
(ii) ∩∞n�1T

nH � 0{ },
1en H � [H⊖TH].

Definition 1. We say that Shimorin’s condition for T holds
on H if T satisfies the above conditions (i) and (ii) (see [10]).

Shimorin’s theorem gives a simpler proof for the
Beurling type theorem of Bergman shift obtained by Ale-
man, Richter, and Sundberg. .e first step to finding
whether the Beurling-type theorem holds for a nonisometric
operator T on a Hilbert space is to verify whether Shimorin’s
condition for T holds on the invariant subspaces. It is always
difficult to verify directly according to Definition 1, for
example, the reproducing kernel Hilbert spaces with the
complicated kernel functions (see [11]). .erefore, we hope
to give a convenient and feasible criterion for judging
whether the Beurling-type theorem holds for the shift op-
erator on a class of reproducing kernel Hilbert spaces.

In [12], the authors proved the Beurling-type theorem
for the shift operator on H2(c) which is the Hilbert space
over the bidisk D2 generated by a positive sequence
cnm􏼈 􏼉n,m≥ 0. In this paper, we mainly study the Beurling-type

theorem for reproducing kernel Hilbert spaces. Let H2(β) be
the space generated by a positive sequence β � βn􏼈 􏼉n≥ 0; that
is, the space consists of all formal power series
f(z) � 􏽐

∞
n�0 anzn satisfying

‖f‖
2
β � 􏽘
∞

n�0
β2n an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2 <∞. (7)

We define the map on H2(β)⊗H2(β) as

〈f, g〉 � 􏽘
∞

n�0
β2nanbn, (8)

where f, g ∈ H2(β), and

f(z) � 􏽘
∞

n�0
anz

n
,

g(z) � 􏽘
∞

n�0
bnz

n
.

(9)

Note that f � g in H2(β) if and only an � bn for any
n≥ 0, then it is easy to check that is an inner product on
H2(β), so H2(β) is a Hilbert space. Let

Kw(z) � Kβ(z, w) � 􏽘
∞

n�0

w
n
z

n

β2n
∈ H

2
(β), (10)

and it is easy to see that f(w) � 〈f, Kw〉 for any f ∈ H2(β).
Hence, we call H2(β) the reproducing kernel Hilbert spaces
generated by the positive sequence β � βn􏼈 􏼉n≥ 0.

A power series f(z) � 􏽐
∞
n�0 anzn in H2(β) will satisfy

lim
n⟶∞

βn an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 0. (11)

Hence, for n sufficiently large, we have that |an|≤ β− 1
n .

.us, the radius of convergence Rf of f satisfying

R
− 1
f � limsup

n⟶∞
an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
1/n ≤ limsup

n⟶∞
β− (1/n)

n � liminf
n⟶∞

β1/nn􏼒 􏼓
− 1

.

(12)

.erefore, f ∈ H2(β) will have a radius of convergence
greater than

R ≔ liminf
n⟶∞

β1/nn . (13)

Provided R> 0, then every function in H2(β) defines an
analytic function on the disk of radius R and thus H2(β) can
be viewed as a space of analytic functions on this disk.

.e classical examples of H2(β) is as follows.

Example 1. If

(1) If βn ≡ 1, n � 0, 1, . . ., then R � 1,
Kw(z) � 1/(1 − wz). In this case, H2(β) � H2(D),
the Hardy space.

(2) If βn �
�����
n + 1

√
, n � 0, 1, . . ., then R � 1,

Kw(z) � (1/wz)log1/(1 − wz). In this case,
H2(β) � D, the Dirichlet space.

(3) If βn �
���������������
(n!Γ(c)/Γ(n + c))

􏽰
, n � 0, 1, · · ·, where c> 1,

then R � 1, Kw(z) � 1/(1 − wz)c. In this case,
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H2(β) � A2
c− 2(D), the weighted Bergman space. In

particular, when c � 2, A2
0(D) � A2(D) is the clas-

sical Bergman space.
(4) If βn �

��
n!

√
, n � 0, 1, . . ., then R � +∞, Kw(z) � ewz.

In this case, H2(β) � F2(C), the Fock space.

Let Tz be the shift operator on H2(β) defined by
(Tzf)(z) � zf(z). Note that Tz is a compression operator
on H2(β) when

βn ≤ βn− 1, n≥ 1, (14)

hence, in the present paper, we assume thatTz is bounded on
H2(β). We give a criterion for judging the Beurling-type
theorem holds for Tz on H2(β) (.eorem 2), and as an
application, we find that the Beurling-type theorem holds for
the shift operator on a family of classical reproducing kernel
Hilbert spaces.

In what follows, a nontrivial subspace M of H2(β) is said
to be invariant if zM ⊂M, that is, M is invariant for the shift
operator Tz. .e following is our main result of the paper.

Theorem 2. Let H2(β) be the reproducing kernel Hilbert
spaces generated by the sequence β � βn􏼈 􏼉n≥ 0 with βn > 0
which satisfies

β20 ≤ 2β
2
1,

β2n+1 + β2n− 1
2
≤
β2n+1β

2
n− 1

β2n
, n � 1, 2, . . . ,

(15)

then for every nontrivial invariant subspace M of H2(β),
M � [M⊖zM].

We note that the above condition is equivalent to the
following condition:

1
β2n− 1

+
1

β2n+1
≤ 2

1
β2n

. (16)

Namely, the sequence 1/β2n􏽮 􏽯
n≥ 0 satisfies some property

of “convex up,” and it is much convenient to verify the
Beurling type theorem for the reproducing kernel Hilbert
spaces H2(β) satisfying the above condition.

2. Proof of Main Result and Its Applications

In this section, we first prove our main result and then give
several useful applications to a class of classical reproducing
kernel Hilbert spaces.

Proof. (Proof of .eorem 2) Let M be a nontrivial in-
variant subspace of the reproducing kernel Hilbert space
H2(β). Since it is closed, M itself is a Hilbert space under the
inner product of H2(β). It is easy to see that ∩∞n�1T

n
zM � 0{ },

so the condition (ii) of .eorem 1 is satisfied. Given f(z) �

􏽐
∞
n�0 anzn and g(z) � 􏽐

∞
n�0 bnzn in H2(β). Since

0≤
an− 1

β2n+1
−

bn

β2n− 1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

2

�
|an− 1|

2

β4n+1
+

|bn|
2

β4n− 1
−

2
β2n+1β

2
n− 1

Re bnan− 1( 􏼁, (17)

we obtain

2Re bnan− 1( 􏼁≤ an− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2β2n− 1

β2n+1
+ bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2β2n+1

β2n− 1
. (18)

So, we have

an− 1 + bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2β2n � an− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 2Re bnan− 1( 􏼁􏼐 􏼑β2n

≤ β2n 1 +
β2n− 1

β2n+1
􏼠 􏼡 an− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

+ 1 +
β2n+1

β2n− 1
􏼠 􏼡 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2

􏼢 􏼣

�
β2n
β2n− 1

+
β2n
β2n+1

􏼠 􏼡 an− 1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2β2n− 1

+
β2n
β2n+1

+
β2n
β2n− 1

􏼠 􏼡 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2β2n+1.

(19)

By the assumption of the theorem, we have

β2n+1 + β2n− 1
2
≤
β2n+1β

2
n− 1

β2n
, (20)

for every n � 1, 2, 3, · · ·, which yields

β2n
β2n− 1

+
β2n
β2n+1
≤ 2. (21)

It follows from the above that (19) becomes

an− 1 + bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2β2n ≤ 2 an− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2β2n− 1 + 2 bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2β2n+1. (22)

Hence, for any f, g ∈ H2(β), we have

‖zf + g‖
2
H2(β) � b0 + 􏽘

∞

n�1
an− 1 + bn( 􏼁z

n

���������

���������

2

� b0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2β20 + 􏽘

∞

n�1
an− 1 + bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2β2n

≤ b0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2β20 + 2 􏽘

∞

n�1
an− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2β2n− 1 + bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2β2n+1􏼐 􏼑.

(23)

On the other hand, we have

2 ‖f‖
2
H2(β) +‖zg‖

2
H2(β)􏼐 􏼑

� 2 􏽘
∞

n�0
an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2β2n + 􏽘

∞

n�1
bn− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2β2n⎛⎝ ⎞⎠

� 2 􏽘
∞

n�1
an− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2β2n− 1 + 􏽘

∞

n�0
bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2β2n+1

⎛⎝ ⎞⎠

� 2 b0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
2β21 + 2 􏽘

∞

n�1
an− 1

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2β2n− 1 + bn

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2β2n+1􏼐 􏼑.

(24)

Combining the above with (23), and the assumption
β20 ≤ 2β

2
1 we get
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‖zf + g‖
2
H2(β) ≤ ‖f‖

2
H2(β) +‖zg‖

2
H2(β)􏼐 􏼑, (25)

which implies that condition (i) of .eorem 1 is also sat-
isfied. Hence, applying Shimorin’s theorem we finish the
proof of the main result.

We point out that the condition of .eorem 2 is only
sufficient for the Beurling-type theorem to be true. For
example, the classical Dirichlet space D is a reproducing
kernel Hilbert space H2(β) generated by the sequence
β �

�����
n + 1

√
􏼈 􏼉n≥0. It is well known that if M is a nontrivial

invariant subspace of D, then M � [M⊖zM] and
dim[M⊖zM] � 1 (see [13]). However, we easily see that, for
n � 1, 2, · · ·,

β2n+1 + β2n− 1
2

� n + 1> n + 1 −
1

n + 1
􏼒 􏼓 �

n(n + 2)

n + 1
�
β2n+1β

2
n− 1

β2n
.

(26)

However, for the Hardy space or some weighted Berg-
man space case, we have the following two corollaries which
are direct applications of the main result.

Corollary 1. Any nontrivial invariant subspace M of the
Hardy space H2(D) has the property M � [M⊖zM].

Proof. Since the classical Hardy space H2(D) is the space
H2(β) generated by sequence β2n ≡ 1 for n � 0, 1, · · ·, we have

β2n+1 + β2n− 1
2

�
β2n+1β

2
n− 1

β2n
, (27)

and β20 � 1< 2 � 2β21. .us, the corollary follows from
.eorem 2.

Corollary 2. Any nontrivial invariant subspace M of the
weighted Bergman space A2

c− 2(D)(1< c≤ 2) has the property
M � [M⊖zM].

Proof. When c> 1, the weighted Bergman space
A2

c− 2(D) � H2(β) generated by the sequence
β � βn: n � 0, 1, 2, · · ·􏼈 􏼉, where βn �

�������������
n!Γ(c)/Γ(n + c)

􏽰
. .us,

we have that for n � 1, 2, · · ·,

β2n+1 + β2n− 1
2

�
1
2

(n + 1)!Γ(c)

Γ(n + 1 + c)
+

(n − 1)!Γ(c)

Γ(n − 1 + c)
􏼢 􏼣

�
1
2

n(n + 1)

(n + c)(n − 1 + c)
+ 1􏼢 􏼣

(n − 1)!Γ(c)

Γ(n − 1 + c)
,

(28)

β2n+1β
2
n− 1

β2n
�

(n + 1)!Γ(c)

Γ(n + 1 + c)
·
(n − 1)!Γ(c)

Γ(n − 1 + c)
·
Γ(n + c)

n!Γ(c)

�
n + 1
n + c

·
(n − 1)!Γ(c)

Γ(n − 1 + c)
.

(29)

Since 1< c≤ 2, then c2 − 3c + 2≤ 0, it is equivalent to

(n + c)(n − 1 + c) + n(n + 1)≤ 2(n + 1)(n − 1 + c), (30)

or
n(n + 1)

(n + c)(n − 1 + c)
+ 1≤ 2

n + 1
n + c

, (31)

and hence we have

1
2

n(n + 1)

(n + c)(n − 1 + c)
+ 1􏼢 􏼣

(n − 1)!Γ(c)

Γ(n − 1 + c)

≤
n + 1
n + c

·
(n − 1)!Γ(c)

Γ(n − 1 + c)
,

(32)

which combining with (28) and (29) we obtain

β2n+1 + β2n− 1
2
≤
β2n+1β

2
n− 1

β2n
, n � 1, 2, · · · . (33)

In addition, it is easy to see that β20 � 1 and β21 � 1/c, thus
we have β20 ≤ 2β

2
1 since 1< c≤ 2. Applying .eorem 2 we

then get the desired conclusion. .e proof is complete.
We remark here that Hedenmalm and Zhu (see [14])

showed that the Beurling-type theorem can fail in certain
weighted Bergman spaces A2

c− 2(D) for some c> 2.
Let g(z) � 􏽐

∞
n�0 cnzn, where cn > 0 for all integer n≥ 0.

.en Kw(z) � K(z, w) � g(wz) � 􏽐
∞
n�0 cnwnzn is a kernel

function. Accordingly, we denote the corresponding
reproducing kernel Hilbert space generated by g as H2

g.
Without loss of the generality, we may assume the gener-
ating function g has convergence radius 1. .us, H2

g is a
functional Hilbert space consisting of analytic functions on
the unit diskD. It is clear that ��

cn

√
zn􏽮 􏽯

n≥ 0 is an orthonormal
basis and ‖zn‖2 � (1/cn). If f ∈ H2

g and f(z) � 􏽐
∞
n�0 anzn,

then its norm is defined by ‖f‖2 � 􏽐
∞
n�0 |an|2/cn.

In the framework H2
g of reproducing kernel Hilbert spaces,

if we put cn � 1/β2n, then H2
g � H2(β) where β � βn: n �􏼈

0, 1, 2, · · ·}. .en .eorem 2 can be restated as follows.

Theorem 3. Let H2
g be the reproducing kernel Hilbert spaces

generated by g(z) � 􏽐
∞
n�0 cnzn. If cn􏼈 􏼉 satisfies

c1 ≤ 2c0,

cn+1 + cn− 1 ≤ 2cn, n � 1, 2, · · · ,
(34)

then for each nontrivial invariant subspace M of H2
g,

M � [M⊖zM].

If we restrict ourselves to the H2(β) generated by β �

βn􏼈 􏼉 where βn � (n + 1)] for some real number ]. .ese
spaces are also known in the literature as weighted Dirichlet
spaces or D] spaces. For f ∈ D], if f(z) � 􏽐

∞
n�0 anzn, then

the norm is simply written as

‖f‖
2

� 􏽘

∞

n�0
(n + 1)

2]
an

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
2
. (35)

Let us consider φ(x) � (1 + x)α, where α is a real
number and x> 0. It is easy to see that φ is a convex-up
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function on (− 1, +∞) when 0≤ α≤ 1. Setting
cn � (n + 1)α � (1/β2n), we have

1
β2n+1

+
1

β2n− 1
� cn+1 + cn− 1 ≤ 2cn � 2

1
β2n

, (36)

for n � 1, 2, · · ·, and since β20 � (1/c0) � 1, β21 �

(1/c1) � (1/2α), we have

β20 � 1≤ 21− α
� 2β21, (37)

when 0≤ α≤ 1. From the discussion above, we obtain the
following result.

Corollary 3. If M is a nontrivial invariant subspace of
weighted Dirichlet space D](− (1/2)≤ ]≤ 0), then
M � [M⊖zM].

Using .eorem 3, it is convenient to construct a more
reproducing kernel Hilbert space for which the nontrivial
invariant subspace has a Beurling-type theorem. As an
example, we consider a positive function

φ(x) �
x + ae

2

ln x + ae
2

􏼐 􏼑
, (38)

for x≥ 0, where a> 1 is a constant. Note that

φ″(x) �
2 − ln x + ae

2
􏼐 􏼑

x + ae
2

􏼐 􏼑ln3 x + ae
2

􏼐 􏼑
< 0, (39)

since a> 1, then φ(x) is a convex-up function on [0, +∞). If
we write

cn �
n + ae

2

ln n + ae
2

􏼐 􏼑
,

β2n �
1
cn

,

(40)

then for n � 1, 2, · · ·, we have
1

β2n+1
+

1
β2n− 1

� cn+1 + cn− 1 ≤ 2cn � 2
1
β2n

, (41)

and β20 ≤ 2β
2
1. .e application of our main result to this case,

we can get the following result.

Corollary 4. Let H2(β) be reproducing kernel Hilbert space
generated by the sequence β � βn􏼈 􏼉 where

βn �

����������

ln n + ae
2

􏼐 􏼑

n + ae
2

􏽳

, n � 0, 1, 2, · · · , (42)

and M a nontrivial invariant subspace of H2(β). If a> 1, then
we have M � [M⊖zM].
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