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In the context of strati�ed sampling, we develop a nonparametric regression technique to estimating �nite population quantiles in
model-based frameworks using a multiplicative bias correction strategy. Furthermore, the proposed estimator’s asymptotic
behavior is presented, and when certain conditions are met, the estimator is observed to be asymptotically unbiased and as-
ymptotically consistent. Simulation studies were conducted to determine the proposed estimator’s performance for the three
quartiles of two �ctitious populations under varied distributional assumptions. Based on relative biases, mean-squared errors, and
relative root-mean-squared errors, the proposed estimator can be extremely satisfactory, according to these �ndings.

1. Introduction

Many of the activities conducted by o�cial statistics insti-
tutes are based on surveys conducted on a �nite population
employing strati�ed random sampling with no replacement.
According to �ompson [1], strati�ed simple random
sampling is described as follows: the population is sub-
divided into various mutually exclusive and exhaustive
subgroups or strata, each of which denotes a known portion
of the entire population. �e researcher selects certain in-
stances from each stratum into the sample using random
sampling [2], and the results of these distinct samples are
merged appropriately to yield an estimate of some speci�ed
population parameter. �ese surveys gather information on
three categories of variables: binary variables, categorical
variables with more than two modalities, and continuous
quantitative variables. When numerous homogeneous and
mutually exclusive strata or subpopulations are found in a
population, strati�ed sampling is an appropriate strategy.
Strati�cation can help to increase sample representativeness

by minimizing sampling error. �e greater the di�erence
between the strata, the greater the accuracy gain. Further-
more, certain strata may be smaller in size but signi�cant in
the study. In these circumstances, thorough sampling is
advised, which means that all individuals from these strata
will be included in the sample.

In sample surveys connected to agriculture, markets,
industries, and social research, for example, multiple
characteristics are typically observed out of each selected
unit of population. For economic and e�ciency reasons,
strati�ed random sampling is preferable to alternative survey
designs for gathering information from a heterogeneous
population. �e strati�ed sampling principle is only asso-
ciated with desirable properties of estimators developed
from strati�ed simple random samples, as well as the best
(optimal) sample size to be selected from various strata, to
either maximize the accuracy of designed estimators for a
�xed amount or to reduce survey fees for a �xed speci�city of
estimators. When several features are discerned from each
chosen unit of a �nite population in strati�ed sampling, the
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sample allocation dilemma gets much more challenging. An
allocation that is optimal for one attribute may not be optimal
for others unless the features are significantly related.

Scientists are frequently really into estimating cumula-
tive distribution functions from analytical survey data.
Sedransk and Sedransk [3] studied the suitability of using
estimated cumulative distribution functions to compare
patient treatment at radiation therapy centers using a huge
nationwide survey of cancer patient medical data. Functions
of the cumulative distribution function, such as quantiles
and the interquartile range, are also of relevance.-e Bureau
of Labor Statistics, for example, publishes median salaries for
wage and salary workers in the periodical news on a regular
basis. -e medians are derived from a stratified multistage
subsample of the Current Population Survey. Despite the
fact that large-scale surveys almost always use some sort of
stratified cluster sampling, much of the research on quantile
estimation for finite populations is limited to simple random
sampling or stratified random sampling.

Simple random sampling (SRS) is widely utilized only
when variables’ values do not really change significantly, and
the population is homogeneous. SRS is among themost basic
sampling procedures in many ways, and no further infor-
mation is required. Furthermore, when using SRS to create a
sample, sample weights are not really required for evaluating
data from a survey using, for example, regression ormultivariate
analysis. A downside of SRS is the complexity in managing
accuracy and the inefficiencies of not using supplemental data,
which could result in enormous samples that are unneeded.
Furthermore, because no supplementary information is used,
there is always the potential of a skewed sample.

Stratification is widely used to enhance the accuracy of
estimates and to ensure that the sample within a survey
region is sufficiently distributed through subpopulations.
Sometimes, it is a characteristic of designs used in soil
surveys and research in soil science.-e population (e.g., the
survey area) is divided into classes that are mutually ex-
clusive or strata that divide the population into survey area
categories. In each stratum, samples are selected indepen-
dently. More reliable estimators can be obtained when the
variance within each stratum of the feature of interest is
small compared to the variation within strata. In addition, if
subpopulations of interest are identified by strata, an allo-
cation scheme can be implemented to ensure that a sufficient
number of sample units for making inferences on these
subpopulations are located within each stratum.

-e benefit of stratified sampling is that the accuracy can
be determined in each stratum. Furthermore, practical
features of response, measurement, and auxiliary informa-
tion may change from one subgroup to the next, and this
information can help stratify the population and increase
efficiency. Geographic territories can be utilized as various
geographical strata for administrative purposes.

-e simple random sampling (SRS) design is the most
commonly used in the literature. To acquire a representative
sample of the population of interest, a more organized
sampling approach, such as stratified sampling or systematic
sampling, might be used in practice. In many agricultural
and environmental studies, as well as more recently in

human populations and reliability analyses (see, e.g., Samawi
and Al-Sagheer [4]), the actual measurement of a sampling
unit might be more expensive than its physical acquisition.
As a result, when all available sampling units contribute to
the selection process but just a small fraction (experimental
units) is used for actual quantification, significant cost re-
ductions can be gained in survey sampling and experimental
research. -e stratified simple random sampling (SSRS)
approach can be used to accomplish this.

In the literature, much emphasis has been placed on the
p th quantile estimation problem. -e cdf estimator is re-
quired to estimate the p th quantile, according to the defi-
nition. Although the empirical distribution function is the
most well-known nonparametric estimation for the cdf, it is
a step function and thus insufficiently smooth.

Majority of contributions in literature use simple random
sampling (SRS) to estimate the α th quantile utilizing kernel
density function; for information we direct the reader see for
example Nadaraya [5], Lio and Padgett [6], Jones [7]. Fur-
thermore, some studies addressed the estimation of the pth
quantile using the SSRS scheme. For example, Samawi et al. [8]
developed an estimation technique for population quantiles
predicted on stratified simple random sampling (SSRS) as well
as stratified ranked set sampling (SRSS) using the empirical
distribution function of a stratified population, and Eftekharian
and Samawi [9] recently introduced kernel-based estimators of
population quantiles based on SSRS and SRSS.

Kernel estimating methods have long claimed that the
smoothing bandwidth of the kernel determines the effec-
tiveness of the method more than the choice of kernel. -e
vast majority of kernels used are symmetric kernels that are
preconfigured. -is method may be beneficial for estimating
boundless support curves, but it is ineffective for compact
support curves with discontinuous border points. For curves
of this sort, a set kernel shape causes a boundary bias. -e
weight allocation of the fixed symmetric kernel outside the
distribution support generates this boundary bias when
smoothing close to the border.

Boundary bias is a widely known challenge, and various
researchers have offered methods to minimize it. -e reader
is recommended to [10–16]. In this study, we present a
nonparametric estimator for the quantile function of a finite
population predicted on SSRS, addressing the problem of
boundary bias in quantile estimation using a multiplicative
bias-corrected technique described in [17]. -is method has
two distinguishing characteristics. One is that it ensures a
precise estimate, and finally, it reduces estimate bias while
increasing variance by a negligible amount.

2. Notation and Basic Concepts

Let UN denote finite population subdivided into L sub-
groups, with Nh being the known number of units within
every stratum and that N � 

L
h− 1 Nh <∞:

UN � uhi: h � 1, . . . , L, i � 1, . . . , Nh 

� UN1
, . . . , UNL

 ,
(1)
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where UNh
� uh1, . . . , uhNh

for h � 1, . . . , L. Assume that
every unit in UN � ∪ L

h− 1UNh
is linked with a unique value of

the feature, Y. -e numbering of the items in each stratum,
UNh

, is considered to be independent of Y. For h � 1, . . . , L

and i � 1, . . . , Nh, let Yhi signify the value of Y associated
with unit uhi− . Let FN be the Y distribution function in the
UN population:

FN(t) � N
− 1



L

h�1


Nh

h�1
I Yhi ≤ t( , (2)

where

I Yhi ≤ t(  �
1, if Yhi ≤ t,

0, if elsewhere.
 (3)

Conversely, the distribution function of Y in every
stratum can be used to define FN(t):

FN(t) �
1
N



L

h�1
NhFNh

(t), (4)

where

FNh
(t) � N

− 1
h 

Nh

h�1
I Yhi ≤ t( . (5)

-e population’s αth quantile of Y is described as

Q(α) � inf t: FN(t)> α , (6)

where α takes the values between 0 and 1. Simple random
samples of predetermined size n1, . . . , nL are taken from
the L stratum interdependently with no replacement. Let
yhi denote the values of the characteristic Y corresponding
with the units in the sample from stratum h(h � 1, . . . , L)

for i � 1, . . . , nh. For the combined sample of n � 
L
h− 1 nh,

the weighted empirical distribution function is expressed
by

Fn(t) � N
− 1



L

h�1


nh

h�1
whI yhi ≤ t( , (7)

in which the weight designated unit hi is wh � Nh(nhN)− 1 �

Whn− 1
h , Wh � NhN− 1, and

I yhi ≤ t(  �
1, if yhi ≤ t,

0, if yhi > t.
 (8)

-e weight, wh, is inversely proportional to the likeli-
hood that ith unit in stratum h will be included in the sample.
It is also possible to write the weighted empirical distribution
function as

Fn(t) �
1
N



L

h�1
NhFnh

(t), (9)

where

Fnh
(t) � n

− 1
h 

nh

h�1
I yhi ≤ t( . (10)

-e α sample quantile is denoted as

Q(α) � inf t: Fn(t)> α . (11)

-e following assumptions were considered:

(i) -e underlying population of the hth stratum has
the cdf as Fh(·) which is Hölder continuous with a
square-integrable second derivative for any
h � 1, . . . , L.

(ii) Kh(·) is an absolutely continuous function, such
that limz− − aKh(x) � 0 and limx⟶aKh(x) � 1,

h � 1, 2, . . . , L.
(iii) -e kernel function kh(x) satisfies the following

conditions for any x

kh(x) � kh(− x),


a

− a
kh(x)dx � 1,


a

− a
x
2
kh(x)dx≠ 0.

(12)

3. MBC Quantile Estimation for SSRS

In this section, we describe the multiplicative bias cor-
rection distribution function based on SSRS which was
proposed by Onsongo et al. [18] and later use it to in-
troduce quantile estimator along with its asymptotic
properties. For the hth stratum, let Xhi, i � 1, 2, . . . , Nh be
the auxiliary variable with associated survey measure-
ment Yhi, i � 1, 2, . . . , Nh from a predominant univariate
distribution function. Suppose a simple random sample
of size nh is taken from stratum hth without replacement,
with the sample fraction fh � nh/Nh⟶ 0 as nh⟶ Nh

as well as Nh⟶∞. Accordingly, for a finite population,
the empirical distribution function is therefore defined
as

FN(t) �
1
N



N

i�1
Δ t − yi( . (13)

For a stratified population, the associated estimator of a
distribution function is defined as

F
S

Ny(t) �
1
N



H

i�1
Nh

1
Nh



Nh

i�1
Δ t − yhi( ⎛⎝ ⎞⎠

�
1
N



H

i�1
NhFhy(t),

(14)

in which Δ is perhaps step function of a particular set,
t, α-quantile, and i represent measurements taken from hth

stratum. Fhy(t) is the hth stratum distribution function for
the random variable Y. Suppose s represents a set of data nh

units selected from hth stratum using simple random
sampling with no replacement, j ∈ r ∈ h � (Nh − s) repre-
sent nonsampled units in hth stratum. Suppose that survey
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variables were generated with the help of a super population
model, which is represented by

yhi � m xhi(  + σ xhi( ϵhi, (15)

where εhi ∼ ii dN(0, σ2(xhi)) and

Cov yhi, yhj  �
σ2 xhi( , if i � 1, 2, . . . , N,

0, elsewhere.

⎧⎨

⎩ (16)

As a result, the predicted form of the empirical distri-
bution function for a stratified population is obtained using
the model-based technique.

F
S
Ny

(t) �
1
N



L

h�1
Nh

1
Nh


i∈s∈h

I yhi ≤ t(  + 
j∈r∈h

I yhj ≤ t ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦⎛⎝ ⎞⎠.

(17)

-e second term of equation (17) is not known, and the
concern is determining how to accurately estimate it.
Onsongo et al. [18] suggested a multiplicative bias-corrected
estimator for finite population distribution under stratified
sampling to estimate equation (17).

F
S

MBC(t) �
1
N



L

h�1
Nh

1
Nh


j∈s∈h

I yhi ≤ t(  + 
j∈r∈h

G t − μnh
xhj  ⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦⎛⎝ ⎞⎠,

(18)

where the term μ(xhj) represents nonparametric estimator
under model-based technique for μ(xhj) and G(t − μ(xhj))

denotes residual estimated distribution function, where
residuals are given by ehj � yhj − μ(xhj) for h th stratum.
According to Onsongo et al. [18], F

S

MBC(t) leads to an
unbiased estimator for FN(t) and variance is expressed as

Var F
(S)

MBC(t) − FN(t)  �

1
N

2


i∈s



Nh− nh

j− 1


Nh− nh

k− 1
w
∗
ijw
∗
ik

Di t − max ηhj, ηhk  

− Di t − ηhj Di t − ηhk( 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

+ Nh − nh( P yhj ≤ t  1 − P yhj ≤ t  

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(19)

We have that F
(S)

MBC(t)⟶P FN(t). Hence, the SSRS
MBC-based estimator of cdf, F

(S)

MBC(·), can be considered for
estimating quantile function. As with 0< α< 1, the α th
quantile of the underlying distribution FN(·) is defined as
follows:

Q
S
Ny

(α) � inf t: FN(t)≥ α , (20)

and is alternatively denoted by F− 1
N (α). Based on a

sample from SSRS with size n and using an approach
similar to that used by Eftekharian and Samawi [9], it is
immediate that an MBC estimator of the α th quantile is
proposed as

Q
S

MBC(α) � inf t ∈ U: F
S

MBC(t)> α  � F
(S)− 1
MBC (α), (21)

where α is an index taking values between 1/N and
(N − 1)/N. -at is, Q

S

MBC(α) is the smallest value of t for
which at least 100α% of the population yi values are less than
or equal to that value. Furthermore, from (18), Q

S

MBC(α) can
be computed by solving F

S

MBC( Q
S

MBC(α)) � α. However,
under assumption (i), it can be easily seen that
F

S

MBC( Q
S

MBC(α)) is twice differentiable at Q
S

MBC(α).
Now, assume that n be proportionally allocation into L

strata, then using Taylor series expansion of the function
FS
MBC(QS

Ny
(α)) around Q

S

MBC(α), we can write

F
S

MBC Q
S
Ny

(α)  � α + Q
S

MBC(α) − Q
S
Ny

(α) f
S
MBC Q

S
Ny

(α)  + Rn,

(22)

where FS
MBC � fS

MBC > 0 and Rn � O(n− 1/2) [19] become
negligible as n⟶∞. From equation (22), Bahadur’s
representation [20] of the estimator, Q

S

MBC(α), is given by

Q
S

MBC(α) � Q
S
Ny

(α) +
α − F

S

MBC Q
S
Ny

(α) 

f
S
MBC Q

S
Ny

(α) 

+ Rn. (23)

As with 0< α< 1, the proportion of individuals in the
population that are less than or equal to the population
quantile is as follows:

nF
S

MBC Q
S

N
(α)
y

  � 
n

i�1
zi, (24)

where zi � I yi ≤QS
Ny

(α)  follows a hypergeometric dis-
tribution with the parameters N, NF

S

MBC(QS
Ny

(α)), and n.
Using findings from Francisco [21], the estimator’s expec-
tation and variance are computed as

E F
S

MBC Q
S

N
(α)
y

   � ZN � N
− 1



N

i�1
Zi � F

S
Ny

Q
S
Ny

(α)  � α, (25)

Var F
S

MBC Q
S
Ny

(α)   � (1 − f)(n − 1)
− 1α(1 − α). (26)

4. Properties of the Proposed Estimator

4.1. Asymptotic Unbiasedness of the Proposed Estimator.
Now, consider the bias for the nonparametric estimator
Q

S

MBC(α) defined by

E Q
S

MBC(α) − Q
S
Ny

(α)  � E Q
S

MBC(α)  − E Q
S
Ny

(α) .

(27)

-en, from equation (23), it follows that

E Q
S

MBC(α)  � E Q
S
Ny

(α) +
α − F

S

MBC Q
S
Ny

(α)  

f
S
MBC Q

S
Ny

(α) 

+ O n
− (1/2)

 
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(28)

Using the results of equation (25), it can be easily seen
that
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E Q
S

MBC(α)  � Q
S
Ny

(α) + O n
− (1/2)

 . (29)

Since O(n− 1/2) becomes negligible as n⟶∞ [19], the
right-hand side of equation (29) tends to 0, and so, Q

S

MBC(α)

is asymptotically unbiased.

4.2. Asymptotic Variance of the Proposed Estimator. -e
variance of QMBC(α) will now be computed as follows. From
equation (23), taking variance on both sides, we have

Var Q
S

MBC(α)  � Var Q
S
Ny

(α) +
1

f
S
MBC Q

S
Ny

(α) 

α − F
S

MBC Q
S
Ny

(α)   + O n
− (1/2)

 
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (30)

Applying the results of equation (26), it is immediate that

Var Q
S

MBC(α)  �
1

fS
MBC QS

Ny
(α) 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2

(1 − f)(n − 1)
− 1α(1 − α)

�
1 − f

n − 1
α(1 − α) f

S
MBC Q

S
Ny

(α)  
− 2

.

(31)

4.3. Asymptotic Mean-Squared Error. Asymptotic MSE of
the estimator Q

S

MBC(α) is expressed as

MSE Q
S

MBC(α)  � Var Q
S

MBC(α)  + Bias Q
S

MBC(α)  
2
. (32)

From equations (29) and (31), the following results are
immediate consequences:

MSE Q
S

MBC(α)  �
1 − f

n − 1
α(1 − α) f

S
MBC Q

S
Ny

(α)  
− 2

+ O
1
n

 .

(33)

Equation (33) tends to zero as n⟶∞, and thus,
MSE( Q

S

MBC(α))⟶ 0. -is shows that Q
S

MBC(α) is a con-
sistent estimator of QS

Ny
(α). Furthermore, Q

S

MBC(α) has an
asymptotic normal distribution as in Serfling [22].

N Q
S
Ny

(α),
1 − f

n − 1
α(1 − α) f

S
MBC Q

S
Ny

(α)  
− 2

 . (34)

5. Empirical Study

5.1. Description of the Population. In this part, simulation
studies were carried out to investigate the performance of the
proposed multiplicative bias-corrected quantile estimator
for a stratified population. Two data variables, linear and
cosine, were used to simulate a population of size 1000. -e
linear function was constructed using a linear model that has
the following relationship.

Yi � 1 + 2 xi − 0.5(  + ei. (35)

-e cosine function, which has the relationship

Yi � cos 1 + 2 xi − 0.5( 
2

  + ei, (36)

was used to get the second study variable or mean function.
-e supplementary variable X was considered to have a
uniform distribution on a range of [0, 1]. -e error term ei is
perceived as a standard normal variable that follows
ei ∼ N(0, 1).

To investigate the proposed estimator’s practical per-
formance, each of the populations (i.e. Yi

′s) was subdivided
into 5 equal, disjoint, and mutually exclusive subgroups
(Nh � 200, h � 1, 2, . . . , 5), which are made as homoge-
neous as possible to ensure that units in each stratum vary
little from each other. -ereafter, a sample of size n � 200
was drawn, with each stratum providing a sample size of
nh � 40, (h � 1, 2, . . . , 5) employing simple random sam-
pling with no replacement for each scenario. -e Epa-
nechnikov kernel, defined by,

K(v) �
3
4

1 − u
2

 I |v|≤1{ }, (37)

was employed for kernel smoothing on the different
populations.

5.2. Estimators Included in the Empirical Study. We compare
the MBC quantile estimator under SSRS defined by (21) to
some of the popular quantile estimators under SSRS pro-
posed in the literature since one of our goals is to develop
estimators with desirable features with respect to bias,
variance, and asymptotic mean-squared error. For com-
parison purposes, the following estimators were used, and
first, we include in our study estimator of [8] defined as

ζp � F
− 1
SSRS(p), (38)

where FSSRS(x) � (1/nh) 
L
h�1 

nh

i�1 WhI(Xhi ≤ x). We also
include in our empirical study kernel-based estimator of the
quantile based on SSRS which is proposed by Eftekharian
and Samawi [9].

ξ
SSRS
p � F

− 1
SSRS(p), (39)

where, in this case, FSSRS(x) � (1/nh) 
L
h�1 

nh

i�1 WhKh(x −

Xha/dh) Finally, in our empirical study, we include
Chambers and Clark estimator studied in [23].

F
rob

Ny(t) �
1
N


i∈s

dit + 
j∈r

G t − bvzj ⎡⎢⎢⎣ ⎤⎥⎥⎦. (40)
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Table 1: Unconditional biases, relative mean errors, and relative root-mean-squared errors.

Linear Cosine
α Estimator Bias RME RRMSE Bias RME RRMSE

0.25
ESQE 1.4245 1.4801 0.2156 0.4288 1.4423 0.4470
RCQE 0.3268 1.0781 0.1571 1.3966 1.0086 0.3126
MBCQE 0.1176 0.7877 0.1148 0.10001 0.7998 0.2479

0.5
ESQE 0.5715 0.9747 0.1264 0.4929 0.8758 0.2214
RCQE 0.9571 1.0140 0.1315 0.8559 0.9203 0.2326
MBCQE 0.5266 0.8639 0.1121 0.4434 0.7843 0.1982

0.75
ESQE 1.0373 1.6103 0.1892 1.2112 1.5113 0.3169
RCQE 1.6081 1.2953 0.1522 1.5092 1.4223 0.2983
MBCQE 1.0315 1.1818 0.1388 0.7838 0.9709 0.2037

Table 2: Comparison of empirical quantile estimator with other estimators.

Quantile estimates

Mean functions Estimators 0.25 0.50 0.75
Q(p) 6.8636 7.7089 8.5115

Linear

ESQE 5.4392 6.7519 6.9034
RCQE 7.1905 7.1374 7.4742
MBCQE 6.7460 7.1823 7.4801

Q(p) 3.2265 3.9561 4.7677

Cosine
ESQE 1.8298 3.1001 3.2586
RCQE 3.6553 3.4631 3.5565
MBCQE 3.1265 3.5127 3.9839
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Figure 1: CB, CRAB, and CMSE for estimators: linear mean function, α � 0.25.
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Figure 2: CB, CRAB, and CMSE for estimators: linear mean function, α � 0.5.
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Figure 3: CB, CRAB, and CMSE for estimators: linear mean function, α � 0.75.
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Figure 5: CB, CRAB, and CMSE for estimators: cosine mean function, α � 0.5.
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Figure 4: CB, CRAB, and CMSE for estimators: cosine mean function, α � 0.25.
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-e corresponding estimator of the quantile function
according to Chambers and Clark [23] was defined by

QRC(p) � inf t: F
rob

Ny(t)≥p , 0<p< 1. (41)

5.3. Results. -e unconditional biases, unconditional
relative mean error (RME), and unconditional relative
root-mean-squared error (RRMSE) for the estimators for
various values of the quantile α (i.e., 0.25, 0.5, and 0.75)
are shown in Table 1. -e findings were tabulated using
linear and cosine mean functions. Additional mean
functions, including bump, quadratic, cycle, and sine, can
provide comparable findings and draw similar conclu-
sions. For any estimator Q

S

n,X(p), say, we define the rel-
ative mean error as

RME �
1

Q
S
(p)

1
1000



1000

r�1

Q
S(r)

n,X (p) − Q
S
(p) 

⎧⎨

⎩

⎫⎬

⎭, (42)

and the relative root-mean-squared error as

RRMSE �
1

Q
S
(p)

�������������������������

1
1000



1000

r�1

Q
S(r)

n,X (p) − Q
S
(p) 

2




, (43)

where Q
S(r)

n,X (p) is the quantile corresponding to the rth

simulated sample.

It is clear from Table 1 that, in terms of bias, MBCQE is
less biased than ESQE and RCQE for all values of α since it
exhibits a smaller bias. In terms of performance as measured
by RME and RRMSE, MBCQE is better than ESQE and
RCQE since it has smaller values of RME and RRMSE for
both linear and cosine mean functions.

Table 2 tabulates the quantile estimates findings of the
two different sets of mean function. Using n � 200, and
α � 0.25, 0.50, and 0.75, this table illustrates the true pop-
ulation quantile Q(p), MBCQE, RCQE, and ESQE. Com-
parison of Q(p) to the listed estimators suggests that
MBCQE is better estimator of the true population quantile
since it is close to it at all probability levels.

We now turn to the conditional performances of the
estimators by studying the plots of conditional bias (CB),
conditional relative absolute bias (CRAB), and conditional
mean-squared error (CMSE) of the estimators plotted versus
group means of the means of auxiliary variables, X for
quantile levels 0.25, 0.50, and 0.75. -e objective is to de-
termine whether significant differences exist among these
various estimators. In Figures 1–6, the red, green, and blue
lines, respectively, represent RCQE, MBCQE, and ESQE.

Figures 1–3 show the conditional bias (CB), conditional
relative absolute bias (CRAB), and conditional mean-
squared error (CMSE) when linear mean functions were
considered, and Figures 4–6 show the conditional bias (CB),
conditional relative absolute bias (CRAB), and conditional
mean-squared error (CMSE) when a cosine mean function
was used.
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Figure 6: CB, CRAB, and CMSE for estimators: cosine mean function, α � 0.75.
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Expected value, bias, andMSE are functions of sample size
and the quantile level, and they can be used to exhibit the
performance characteristics of individual estimators. Bias and
MSE are two criteria by which estimators can be compared.
Estimators should have low bias and minimum MSE.

It is clear that the proposed estimator MBCQE has a
lower bias and minimum MSE at all values of α-quantile, as
shown in Figures 1–6 for both linear and cosine mean
functions. It is evident that MBCQE outperforms all other
estimators investigated. Our results indicate that the pro-
posed estimator MBCQE performs well, both uncondi-
tionally and conditionally.

6. Conclusion

-e quantile estimator based on stratified simple random
sampling has been proposed. We investigated the proposed
estimator’s properties and discovered that it possesses as-
ymptotic normal distributions. Under SSRS, it is also an
asymptotically unbiased estimator and asymptotically con-
sistent estimator of population quantiles. It is clear from
simulation results that the quantile estimator based on SSRS
results in a larger decrease of bias than the one achieved
using Chambers and Clark [23], Samawi et al. [8], and
Eftekharian and Samawi [9]. In terms of performance,
MBCQE has consistently produced results that are more
precise than existing quantile estimators. We can therefore
conclude that MBCQE can be used in estimating finite
population quantiles for stratified populations in various
sectors since it yields very good results.

Further study on the constructing of confidence intervals
for the suggested estimator can be done, and a researcher can
explore other bias correction procedures in quantile esti-
mation, including adaptive boosting and bootstrap bias
reduction strategies. Furthermore, the design of quantile
estimators under stratified rank set sampling, as well as the
usage of complex sample designs such as cluster sampling, is
a research focus of discussion.

Data Availability

-e dataset used to back up the theoretical assertions was
obtained through simulation using the R-GUI statistical
software.
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