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This paper addresses the (3 + 1)-dimensional nonlinear Schrödinger equation, which could be utilized to express many physical
media the envelope of the wave amplitude. With the help of He’s semi-inverse method, the solitary wave solutions are
explicitly constructed to the equation. The dark soliton solutions of the equation are also strictly constructed by making use of
the solitary ansatz method; in order to guarantee the existence of solitons, some conditions are given. Furthermore, by
employing the tan h method, we also present complexitons of the equation. Finally, with the aid of linear stability analysis, an
effective and straightforward method is presented to analyze modulation instability of the equation.

1. Introduction

As everyone knows, the nonlinear Schrödinger equations
(NLSEs) have been attractive, which has the vital role in various
fields, such as applied mathematics [1], theoretical physics [2],
andengineering[3] [4].NLSEsarises fromtheresearchofplasma
physics, fluid dynamics, elastic media, modelling of deep water,
nonlinearoptics,andmanyothers. Inthefieldofnonlinearoptics,
optical soliton is one of the important research areas. In the past
many years, great progress has beenmade in the area of research,
and the optical solitons are successfully used in the long distance
telecommunication. As mathematical models for this phenom-
ena, the study of exact solutions of NLSEs can help us better
understand this phenomena. In past years, to construct the exact
solutionsoftheseequations,variousstraightforwardandeffective
approaches have beenused, for example, the sine-cosinemethod
[5, 6], the ðG′/GÞ-expansion method [7–9], the first integral
method [10], and the soliton ansatz method [11–14].

In the present paper, we study the (3 + 1)-dimensional
nonlinear Schrödinger equation [15–18]:

iut + c uxx + uyy + uzz
� �

+ bu + a uj j2u = 0, ð1Þ

where u is the envelope amplitude and a, b, and c are real
constants. When b = 0, it can be reduced to (3 + 1)-dimen-
sional time dependent NLSE [19], which occurs in lots of
areas of electromagnetic wave propagation, physics quantum
mechanics, and optoelectronic devices [20]. In [19], Gagnon
and Winternitz studied symmetry reductions of the (3 + 1)-
dimensional nonlinear Schrödinger equation.

To the best of our knowledge, optical soliton solutions
by applying the He’s semi-inverse method and the solitary
ansatz method have not been discussed of Equation (1).
The main result of this paper is to derive the solitary wave
solitons, dark soliton solutions, and complexitons; the
modulation instability analysis of the model is also
studied.

The structure of the present paper is given as follows. In
Section 2, a variable transformation could be applied to
obtain the solitary wave solutions of Equation (1). Its dark
soliton solutions are constructed on the basis of the solitary
ansatz method [21–23] and symbol calculation methods [24,
25] in Section 3. In Section 4, according to the tan h
method, its complexitons are also provided in a rational
method. In Section 5, modulation instability of the equation
is also studied.
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2. Solitary Wave Solution

We will employ He’s semi-inverse method [26, 27] to con-
struct solitary wave solutions for Equation (1). Firstly, we
seek solution of the form:

u x, y, z, tð Þ = g ξð Þeiϕ, ξ = x + y + z −mt, ϕ = αx + βy + γz − nt,
ð2Þ

wherem is constant wave speed to be decided later and α
, β, and γ, n are also constants. Thus, one obtains

ut = −mg′ − ing
� �

eiϕ,

uxx = g′′ + 2iαg′ − α2g
� �

eiϕ,

uyy = g′′ + 2iβg′ − β2g
� �

eiϕ,

uzz = g′′ + 2iγg′ − γ2g
� �

eiϕ,

uj j2u = g3eiϕ:

ð3Þ

If we substitute these into Equation (1), then from the
imaginary part of the obtained equation, we have

m = 2c α + β + γð Þ: ð4Þ

Therefore, we arrive at the following ordinary differen-
tial equation from the obtained equation

3cg′′ − cα2 + cβ2 + cγ2 − b − n
� �

g + ag3 = 0: ð5Þ

According to [26–28], we could establish the following
variational formulation:

J =
ð∞
0

3
2 c g′
� �2

+ 1
2 cα2 + cβ2 + cγ2 − b − n
� �

g2 −
1
4 ag

4
� �

dξ:

ð6Þ

Based on the Ritz method, we consider the solitary
wave solution in the form

g ξð Þ = p sec h qξð Þ, ð7Þ

where p represents the amplitude of the soliton and q
is the inverse width of the soliton. Putting (7) into (6), we
can get

J =
ð∞
0

� 3
2 c p2q2 sec h2 qξð Þ tan h2 qξð Þ	 


+ 1
2 cα2 + cβ2 + cγ2 − b − n
� �

p2 sec h2 qξð Þ

−
1
4 ap

4 sec h4 qξð Þ
�
dξ

= 3
2 cp

2q2
ð∞
0

sec h2 qξð Þ tan h2 qξð Þ	 

dξ

+ 1
2 cα2 + cβ2 + cγ2 − b − n
� �

p2
ð∞
0

sec h2 qξð Þdξ

−
1
4 ap

4
ð∞
0

sec h4 qξð Þdξ

= 1
2 cp

2q + p2

2q cα2 + cβ2 + cγ2 − b − n
� �

−
ap4

6q :

ð8Þ

For guaranteeing J stationary with respect to p and q
leads to the following formulation:

∂J
∂p

= cpq + p
q

cα2 + cβ2 + cγ2 − b − n
� �

−
2
3 a

p3

q
= 0,

∂J
∂q

= 1
2 cp

2 −
p2

2q2 cα2 + cβ2 + cγ2 − b − n
� �

+ ap4

6q2 = 0,

ð9Þ

which is equivalent to

3cq2 + 3 cα2 + cβ2 + cγ2 − b − n
� �

− 2ap2 = 0,

3cq2 − 3 cα2 + cβ2 + cγ2 − b − n
� �

+ ap2 = 0:
ð10Þ

Solving the above equation about p and q, we have

p =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cα2 + cβ2 + cγ2 − b − n
� �

a

s
, q =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cα2 + cβ2 + cγ2 − b − n

3c

r
:

ð11Þ

Therefore, we can get the solitary wave solution

g ξð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cα2 + cβ2 + cγ2 − b − n
� �

a

s
sec h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cα2 + cβ2 + cγ2 − b − n

3c

r
ξ

 !
:

ð12Þ

In terms of (2), it is straightforward to find out the
solitary wave solution of the (3+ 1)-dimensional nonlinear
Schrödinger equation:

u = exp i αx + βy + γz − ntð Þ½ � ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 cα2 + cβ2 + cγ2 − b − n
� �

a

s
sec hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cα2 + cβ2 + cγ2 − b − n
3c

r
x + y + z − 2c α + β + γð Þtð Þ

" #
:

ð13Þ
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With the help of software Maple, we present Figures 1
and 2 by taking suitable parameters.

3. Dark Soliton Solution

We utilize the solitary ansatz method to Equation (1) for
constructing the dark soliton solution in this section. To
begin with, we consider the following hypothesis [21, 29]:

u = P x, y, z, tð Þeiϕ x,y,z,tð Þ, ð14Þ

where Pðx, y, z, tÞ denotes the shape of the pulse and ϕðx
, y, z, tÞ = −k1x − k2y − k3z + ωt + θ represents the phase por-
tion of the soliton; k1, k2, and k3 are the wave numbers; ω is
the frequency of the soliton; and θ denotes the center of the
phase. From (14), we can get the following form:

iut = iPt − ωPð Þeiϕ,
uxx = Pxx − 2ik1Px − k21P

� �
eiϕ,

uyy = Pyy − 2ik2Px − k22P
� �

eiϕ,

uzz = Pzz − 2ik3Px − k23P
� �

eiϕ,

uj j2u = P3eiϕ:

ð15Þ

Then, substituting (15) into Equation (1) and separating
real and imaginary parts of the obtained equation yields

−ωP + c Pxx − k21P + Pyy − k22P + Pzz − k23P
� �

+ bP + aP3 = 0,

Pt + c −2k1Px − 2k2Py − 2k3Pz

� �
= 0:

ð16Þ

ForgettingthedarksolitonsolutionofEquation(1),weassume

P = A tan hpτ, ð17Þ

inwhichτ = B1x + B2y + B3z − vt;A,B1,B2,B3 andtheexpo-
nentpareunknownfreeparameters; andv is thevelocityof thesol-
iton. Therefore, one obtains

Pt = −pvA tan hp−1τ − tan hp+1τ
� �

,

Px = pAB1 tan hp−1τ − tan hp+1τ
� �

,

Py = pAB2 tan hp−1τ − tan hp+1τ
� �

,

Pz = pAB3 tan hp−1τ − tan hp+1τ
� �

,

Pxx = pAB2
1 p − 1ð Þ tan hp−2τ − 2p tan hpτ + p + 1ð Þ tan hp+2τ
	 


,

Pyy = pAB2
2 p − 1ð Þ tan hp−2τ − 2p tan hpτ + p + 1ð Þ tan hp+2τ
	 


,

Pzz = pAB2
3 p − 1ð Þ tan hp−2τ − 2p tan hpτ + p + 1ð Þ tan hp+2τ
	 


,

P3 = A3 tan h3pτ:

ð18Þ
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Figure 1: (Color online) The solitary wave solution (13) of Equation (1) with suitable parameters: a = 3, b =
ffiffiffi
2

p
− 4, c = 1, α =

ffiffiffi
2

p
, β = γ = 0,

y = z = 0, and n = −
ffiffiffi
2

p
. (a) Perspective view of the solitary wave solution of the real part. (b) The overhead view (density plot) of the solitary

wave solution of the real part. (c) The wave propagation pattern of the wave along the x-axis of the real part.
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The substitution of (18) into (16) yields

−ωA tan hpτ + cpAB2
1 p − 1ð Þ tan hp−2τ − 2p tan hpτ + p + 1ð Þ tan hp+2τ
	 


− ck21A tan hpτ + cpAB2
2 p − 1ð Þ tan hp−2τ − 2p tan hpτ + p + 1ð Þ tan hp+2τ
	 


�− ck22A tan hpτ + cpAB2
3 p − 1ð Þ tan hp−2τ − 2p tan hpτ + p + 1ð Þ tan hp+2τ
	 


− ck23A tan hpτ + bA tan hpτ + aA3 tan h3pτ = 0,

ð19Þ

−pvA tan hp−1τ − tan hp+1τ
� �

− 2k1cpAB1 tan hp−1τ − tan hp+1τ
� �

−2k2cpAB2 tan hp−1τ − tan hp+1τ
� �

− 2k3cpAB3 tan hp−1τ − tan hp+1τ
� �

= 0:

ð20Þ

According to (20), it is obvious that

v = −2k1cB1 − 2k2cB2 − 2k3cB3, ð21Þ

from (19), equating the exponents of tan h3pτ and tan hp+2τ
yields3p = p + 2 so thatp = 1. Then, setting their respective coeffi-
cients to zero results in

−ωA − 2cAB2
1 − ck21A − 2cAB2

2 − ck22A − 2cAB2
3 − ck23A + bA = 0,

2cAB2
1 + 2cAB2

2 + 2cAB2
3 + aA3 = 0:

ð22Þ

After some calculationwith (22), we get

A =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c B2

1 + B2
2 + B2

3
� �

−a

s
, ac < 0ð Þ,

ω = −2cB2
1 − ck21 − 2cB2

2 − ck22 − 2cB2
3 − ck23 + b:

ð23Þ

Finally,thedarksolitonsolutiontoEquation(1)ispresentedby

u = A tan h B1x + B2y + B3z − vtð Þei −k1x−k2y−k3z+ωt+θð Þ: ð24Þ

Here, A and B1, B2, and B3 are restricted by the first
expression in (23); v is given by (21); and the second expres-
sion of (23) provides ω. All of these conditions guarantee the
existence of the dark soliton solutions. In the following, we
also present Figure 3 of the dark soliton solution of Equation
(1) by selecting suitable parameters.

4. Complexitons

In this part, the tan h method will be used to construct the
complexitons [29] of Equation (1). Meanwhile, it can be uti-
lized to carry out the integration to Equation (1). Firstly,
consider the following hypothesis [30]:

u x, y, z, tð Þ = f ζð Þeiμ, ð25Þ
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Figure 2: (Color online) The solitary wave solution (13) of Equation (1) with suitable parameters: a = 3, b =
ffiffiffi
2

p
− 4, c = 1, α =
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p
, β = γ = 0,

y = z = 0, and n = −
ffiffiffi
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p
. (a) Perspective view of the solitary wave solution of the imaginary part. (b) The overhead view (density plot) of the

solitary wave solution of the imaginary part. (c) The wave propagation pattern of the wave along the x-axis of the imaginary part.

4 Journal of Mathematics



where ζ = k0ðx + y + z − 2l1t + χÞ; f ðζÞ is a real valued
function; μ = l1x + l2y + l3z + β1t + θ0; and the constants l1
, l2, l3, β1, and θ0 are to be determined later. By putting
(25) into Equation (1), the following equation is
revealed:

M1 f ′′ +M2 f ′ +M3 f + af 3 = 0: ð26Þ

Here, M1 = 3ck20, M2 = −2ik0l1 + 2icl1k0 + 2icl2k0 + 2icl3
k0, and M3 = b − β1 − cl21 − cl22 − cl23. According to balancing
principle, the linear term of highest order derivative f ′′ is
balanced with the highest order nonlinear terms f 3. Then

by the tanh method, we suppose that Equation (26) has
the following solution:

f = s0 + s1Y , ð27Þ

where Y = tan hζ; substituting (27) into (26) yields the
following algebra equations:

Y0 : M2s1 +M3s0 + as30 = 0,
Y1 : −2M1s1 +M3s1 + 3as20s1 = 0,

Y2 : −M2s1 + 3as0s21 = 0,
Y3 : 2M1s1 + as31 = 0:

ð28Þ
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Figure 3: (Color online) Dark soliton solution (24) for Eq. (1) with suitable parameters: a = −1, b = 3/2, c = 1/2, k1 = k3 = 1, k2 = −1, θ = 0,
B1 = B2 = 1, B3 = −1, and y = z = 1. ðjuj2Þ (a) Perspective view of the dark soliton solution. (b) The overhead view (density plot) of the
solution. (c) The corresponding contour plot. (d) The contour plot in spherical coordinates. (e) The contour plot in cylindrical
coordinates. (f) Field plot.
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From (28), it is easy to get the following results:

s0 = 0,
M2 = 0,

s1 = ±

ffiffiffiffiffiffiffiffiffiffiffi
−6ck20
a

s
, ac < 0,

M3 = 2M1,
β1 = b − c l21 + l22 + l23

� �
− 6ck20:

ð29Þ

Finally, Equation (1) admits the following complexi-
tons:

u = ±

ffiffiffiffiffiffiffiffiffiffiffi
−6ck20
a

s
tan h k0 x + y + z − 2l1t + χð Þ½ �ei l1x+l2y+l3z+β1t+θ0ð Þ:

ð30Þ

5. Modulation Instability Analysis

In the previous sections, solitary wave solutions, dark soliton
solutions, and complexitons of Equation (1) have been
investigated. Now, in this section, we will employ linear sta-
bility analysis to study the modulation instability of Equa-
tion (1). Modulation instability analysis can be utilized to
analyze whether the modulated envelopes are modulation-
ally stable or not [31–33]. Firstly, we suppose that Equation
(1) has the stationary solutions of the following form:

u = u0e
i r1x+r2y+r3z+wtð Þ, ð31Þ

where u0, r1, r2, and r3 are the real constants. Substitut-
ing (31) into Equation (1), we can get

w = −c r21 + r22 + r23
� �

+ b + au20: ð32Þ

Based on the concept of linear stability analysis, we set
the stationary solutions (31) with a small perturbation as fol-
lows:

u = u0 + ε~uð Þei r1x+r2y+r3z+wtð Þ, ð33Þ

where ε is a perturbation parameter; as for ~u, we con-
sider it has the following form:

~u = R1e
i er1x+er2y+er3z−ϖt� �

+ R2e
−i er1x+er2y+er3z−ϖt� �

, ð34Þ

where er j , (j =1,2,3) and ϖ are the normalized wave num-
bers and real disturbance frequency, respectively. Taking
Equations (33) and (34) into Equation (1) yields two linear
homogeneous equations about R1 and R2 as follows:

Γ11R1 + Γ12R2 = 0,
Γ21R1 + Γ22R2 = 0,

ð35Þ

with

Γ11 = ϖ −w − c er12 + 2r1er1 + r21 + er22 + 2r2er2 + r22 + er32 + 2r3er3 + r23
� �

+ b + 2au20,

Γ12 = au20,

Γ21 = au20,

Γ22 = −ϖ −w + c −er12 + 2r1er1 − r21 − er22 + 2r2er2 − r22 − er32 + 2r3er3 − r23
� �

+ b + 2au20:
ð36Þ

For making (35) has the nontrivial solutions: the deter-
minant of coefficients of Equation (35) need to satisfy

Γ11 Γ12

Γ21 Γ22


 = 0: ð37Þ

Substituting (36) into (37), we get the following disper-
sion relation:

ϖ = c 2r1er1 + 2r2er2 + 2r3er3ð Þ ±
ffiffiffiffi
Y

p
, ð38Þ

with

Y = −w − c er12 + r21 + er22 + r22 + er32 + r23
� �

+ b + 3au20
h i
−w − c er12 + r21 + er22 + r22 + er32 + r23

� �
+ b + au20

h i
:

ð39Þ

If Y ≥ 0, ϖ is always real, then the steady state for Equa-
tion (1) is stable against the small perturbation. On the other
hand, the steady-state solution becomes unstable in the case
of Y < 0 due to the value of ϖ will be complex.

6. Conclusions and Discussions

In this paper, we have investigated the (3 + 1)-dimensional
nonlinear Schrödinger equation. With the help of the He’s
semi-inverse method, we have constructed a solitary wave
solution of Equation (1). It could be seen that He’s semi-
inverse method is straightforward. The profile of the solitary
wave solution that was obtained numerically has been shown
in Figures 1 and 2. Subsequently, based on the solitary ansatz
method, we have established dark soliton solution of Equa-
tion (1). In Figure 3, we have shown the dynamical charac-
teristics of the dark soliton solution, in which amplitude
and shape of dark soliton solution maintain unchange dur-
ing the propagation. It needs to be noted that the (3 + 1)-
dimensional nonlinear Schrödinger equation can be inte-
grated by the inverse scattering transform method that is
one of the most powerful methods to carry out the integra-
tion of NLEEs. However, this paper has carried out the inte-
gration of the (3 + 1)-dimensional nonlinear Schrödinger
equation by using a couple of simpler methods that are

6 Journal of Mathematics



known as the ansatz method and the tanh method. These
two methods are a few of the several methods of integrability
that was developed in the past decade. What’s more, the
tan h method have been applied to study the complexitons
solutions of Equation (1). Finally, the modulation instability
analysis for the (3 + 1)-dimensional nonlinear Schrödinger
equation has been presented. We hope that the obtained
solutions will be indeed valuable for the future research,
and our results are going to be helpful to a variety of fields
of applied mathematics.
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