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e aim of this article is to investigate a coupled hybrid system of fractional di�erential equations with the Atanga-
na–Baleanu–Caputo derivative which contains a Mittag–Le�er kernel function in its kernel. We �rstly apply the Dhage �xed
point principle to obtain the existence of mild solutions. en, we study the Ulam–Hyers stability of the introduced fractional
coupled hybrid system. Finally, an example is presented to exhibit the validity of our results.

1. Introduction

Dhage and Lakshmikantham in 2010 [1] introduced initially
�rst order hybrid di�erential equations (HDEs) and studied
some basic results on the existence and uniqueness of so-
lutions. Furthermore, di�erential inequalities obtained with
respect to HDEs were utilized to examine comparison results
and some qualitative properties of the solution. Since the
work of [1], many researchers in mathematics and other
�elds committed to the study of all kinds of HDEs. In
particular, some scholars showed that fractional-order hy-
brid di�erential equations described the hereditary and
memory properties of biology, chemistry, physics etc., better
than integer order HDEs. us, some scholars would be
interesting to the study of fractional-order hybrid di�er-
ential equations. For instance, Baleanu [2] applied Caputo
fractional-order hybrid di�erential equations to analyze a

thermostat model. Other contributions on fractional-order
hybrid di�erential equations involving the Hadamard de-
rivative [3], Riemann derivative [4], Hilfer derivative [5],
and Atangana derivative [6, 7] (ABC).

On the other hand, thanks to the fact that a large number
of practical and real world phenomena in the �elds of bi-
ology, physics, chemistry, and computer network, can be
modeled by coupled systems of di�erent types of fractional
di�erential equations. Here, we sketch some references, but
not a list of all references is included, such as Hadamard type
[8], Caputo [9] and Riemann–Liouville types [10], and
Ψ-Hilfer type [11].

Motivated by this fact and the work referenced above,
the intent of this work is to study the existence and stability
for a coupled hybrid system of fractional di�erential
equations with Atangana–Baleanu–Caputo derivative de-
scribed by the following equation:
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ABC
0 D

α x(t)

g1(t, x(t), y(t))
  � f1(t, x(t), y(t)), t ∈ [0, T], 0< α< 1,

ABC
0 D

β y(t)

g2(t, x(t), y(t))
  � f2(t, x(t), y(t)), 0< β< 1,

a1
x(0)

g1(0, x(0), y(0))
  + b1

x(T)

g1(T, x(T), y(T))
  � c1,

a2
x(0)

g2(0, x(0), y(0))
  + b2

x(T)

g2(T, x(T), y(T))
  � c2,

f1(0, x(0), y(0)) � f2(0, x(0), y(0)) ≡ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where ABC
0 Dα,ABC

0 Dβ denote the Atangana–Baleanu–Caputo
fractional derivatives of order α and β, respectively,
g1, g2 ∈ C([0, T] × R × R,R, 0{ }), f1, f2 ∈ C([0, T]×

R × R,R) and ai + bi ≠ 0, i � 1, 2. +e main contributions of
this paper are as follows:

(1) +e above-given results [2–7] consider single frac-
tional-order hybrid differential equations, while we
consider coupled fractional-order hybrid systems.

(2) +e work in [8–11] investigated the existence of
solutions or initial value boundary value problem.
However, it is well known that stability is one of the
important dynamic behaviors for fractional-order
hybrid differential equations. Moreover, we should
mention that boundary value problem (1) are rather
general and include some common cases such as
nonseparated boundary and antiperiodic boundary
conditions, and so on, by choosing different values of
ai, bi, ci(i � 1, 2). +us, it is meaningful to study
existence and stability for (1).

+e remainder of the paper is organized as follows:
Section 2 contains some necessary concepts, assumptions,
and facts. In Section 3, we prove an existence result and the
Ulam–Hyers stability for the problem (1). Finally, an ex-
ample is constructed to show the correctness of our results.

2. Preliminaries

Let C([0, T],R) be the space of all continuous functions
on [0, T] endowed with the norm ‖x‖ � supt∈[0,T] x(t){ }.
We denote by X � AC([0, T],R) the space of all absolutely
continuous functions. Obviously, the product space E � X ×

X is a Banach space with norm ‖(x, y)‖E � ‖x‖ + ‖y‖. In the
remainder of this paper, we recall the necessary basic notions
and properties related to fractional calculus.

Definition 1 (see [12]). +e fractional Riemann–Liouville
integral of order α> 0 for a continuous function x on [0, b] is
given by the following equation:

I
α
0x( (t) �

1
Γ(α)


t

a
(t − s)

α− 1
x(s)ds, α> 0, b≥ t> 0. (2)

Definition 2 (see [13, 14]). Let x be differentiable on (0, b) ,
such that x ∈ L1(0, b), 0< b, α ∈ [0, 1]. +en, the left Atan-
gana–Baleanu–Caputo derivative (ABC) of x for order α is
defined by the following equation:

ABC
0 D

α
x (t) �

N(α)

1 − α


t

0
x′(s)Eα − α

(t − s)
α

1 − α
 ds, (3)

and in the left ABR sense (Riemann–Liouville type) is de-
fined as follows:

ABR
0 D

α
x (t) �

N(α)

1 − α
d
dt


t

0
x(s)Eα − α

(t − s)
α

1 − α
 ds, (4)

and the fractional integral associated the above operators is
AB

I
α
0x (t) �

1 − α
N(α)

x(t) +
α

N(α)
I
α
0x(t), (5)

where Eα is a parameter Mittag–Leffler function defined by
Eα(z) 

∞
n�0 zn/Γ(nα + 1), N(α) is a normalization function

satisfying N(0) � N(1) � 1.

Remark 1. In works [13, 14], it has been verified that
(ABIα0)(ABR

0 Dαx)(t) � x(t) and (ABR
0 Dα)(ABIα0x)(t) � x(t).

Also, the authors in the work [13] have established that
(ABC
0 Dαx)(t) � (ABR

0 Dαx)(t) − N(α)/1 − αx(0)Eα (− α/1
− αtα).

Lemma 1 (see [15]). If x(t) be well defined on [0, b], then
(ABIα0)(ABCIα0x)(t) � x(t) − 

N
k�0 x(k)(0)/k!tk.

Definition 3 (see [16]). An element (x, y) ∈ X × X is said to
be a coupled fixed point of a mapping T: X × X⟶ X if
T(x, y) � x and T(y, x) � y.

Lemma 2 (see [17]). Suppose that S is a nonempty, closed,
convex, and bounded subset of the Banach algebra X, S �

S × S and P, G: X⟶ X and F: S⟶ X are three operators
such that,

(i) P and G are Lipschitzian with a Lipschitz constants σ
and δ, respectively

(ii) F is completely continuous
(iii) y � PyFx + Gy⇒y ∈ S, ∀x ∈ S
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(iv) 4σM + δ < 1, where M � sup ‖Fx‖: x ∈ S{ }

:en, the operator equation T(y, x) � PyFx + Gy ad-
mits at least one coupled fixed point in S.

Lemma 3 (see [18]). Let S∗ be a nonempty, closed, convex,
and bounded subset of the Banach space X and let
P,G: X⟶ X and F : S∗ ⟶ X be three operators such that,

(i) P and G are Lipschitzian with a Lipschitz constants
LP and LG, respectively

(ii) F is completely continuous
(iii) y � PyFx + Gy⇒y ∈ S, ∀x ∈ S∗

(iv) LPMF + LG < 1, where MF � sup ‖Fx‖: x ∈ S∗{ }

:en, the operator equation PyFx + Gy � y possesses a
solution in S∗.

3. Main Results

To start for verifying the main results, the following as-
sumptions are needed for us in the sequel:

(H1) Two functions g1, g2 ∈ C([0, T] × R × R,R, 0{ })

are such that,

(i) Two functions x↦x/g1(t, x, y) and
y↦y/g2(t, x, y) are increasing in R a.e. For each
t ∈ [0, T]

(ii) functions x/g1(t, x, y), y/g2(t, x, y) ∈ AC([0,

T],R)

(H2) +ere exist constants Lfi
> 0, Lgi
> 0 such that

i � 1, 2

fi t, x1, y2(  − fi t, x2, y2( 


≤Lfi
x1 − x2


 + y1 − y2


 ,

gi t, x1, y2(  − gi t, x2, y2( 


≤Lgi
x1 − x2


 + y1 − y2


 , ∀ t, xi, yi(  ∈ [0, T] × R × R.

(6)

(H3) +ere exist constants Mfi
, Mgi
∈ R+ such that

i � 1, 2

fi(t, x, y)


≤Mfi
, gi(t, x, y)


≤Mgi
∀(t, x, y)

∈ [0, T] × R × R.
(7)

(H4) fi: [0, T] × R × R⟶ R are absolutely contin-
uous and there exist constants Kfi

(t) ∈ L1([0, T],R+)

such that i � 1, 2

fi(t, x, y)


≤Kfi
(t), ∀t ∈ [0, T]. (8)

In order to study problem (1), we firstly consider the
following problem:

ABC
0 D

α x(t)

g1(t, x(t), y(t))
  � ψ1(t), t ∈ [0, T], 0< α< 1,

ABC
0 D

β y(t)

g2(t, x(t), y(t))
 

� ψ2(t), 0< β< 1, a1
x(0)

g1(0, x(0), y(0))
  + b1

x(T)

g1(T, x(T), y(T))
 

� c1, a2
x(0)

g2(0, x(0), y(0))
  + b2

x(T)

g2(T, x(T), y(T))
  � c2,ψ1(0) � ψ2(0) ≡ 0,

(9)

Similar to Definition 1 in [6], we give a definition of (9)

Definition 4. A function (x, y) ∈ AC([0, T],R) × AC

([0, T],R) is called a solution of (9), if functions x/g1
(t, x, y), y/g2(t, x, y) ∈ AC([0, T],R), ∀x, y ∈ R, (ψ1,ψ2)

∈ L1([0, T],R) × L1([0, T],R), and (x, y) satisfies (9).

An application of Lemma 4 in [7], Lemma 4 in [9],
and+eorem 3.1 in [6], we derive an equivalent fractional
integral equation to (9). In order to make this paper
readable, we present the proof.Let (x, y) ∈ E be a
solution of (42), (x, y) ∈ E be a solution of problem (1)
satisfying
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Lemma 4. Let 0< α, β< 1, ψ1,ψ2 ∈ AC([0, T],R) and as-
sume that (H1) holds. :en, the solution of problem (9) if and
only if it is a solution of the following system:

x(t) � g1(t, x(t), y(t))
1 − α
N(α)

ψ1(t) +
α

N(α)
I
α
0ψ1( (t)

−
1

a1 + b1
b1

1 − α
N(α)

ψ1(T) +
α

N(α)
I
α
0ψ1( (T)  − c1 ,

y(t) � g2(t, x(t), y(t))
1 − β
N(β)

ψ1(t) +
β

N(α)
I
β
0ψ2 (t)

−
1

a2 + b2
b2

1 − β
N(β)

ψ2(T) +
β

N(α)
I
β
0ψ2 (T)  − c2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

Proof. +e main idea of the proof comes from Lemma 4 in
[7] and +eorem 3.1 in [6]. In the view of Lemma 4 in [7], if

(x, y) is a solution of (9), then (x, y) satisfies fractional
integral system (10).

Conversely, since

ABC
0 D

α x(t)

g1(t, x(t), y(t))
  � ψ1(t), t ∈ [0, T], 0< α< 1,

ABC
0 D

β y(t)

g2(t, x(t), y(t))
  � ψ2(t), 0< β< 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(11)

By (x, y) ∈ AC([0, T],R) × AC([0, T],R), applying
ABIα0 , ABI

β
0 on both sides, and thanks to Remark 1, we obtain

the following equation:

AB
I
α
0 

ABC

0 D
α x(t)

g1(t, x(t), y(t))
  �

x(t)

g1 t( , x t( ), y t( ))
−

x(0)

g1(0, x(0), y(0))
, t ∈ [0, T], 0< α< 1,

AB
I
β
0 

ABC

0 D
β y(t)

g2(t, x(t), y(t))
  �

y(t)

g2(t, x(t), y(t))
−

y(0)

g2(0, x(0), y(0))
, 0< β< 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Hence

ABI
α
0ψ1(t) �

x(t)

g1(t, x(t), y(t))
−

x(0)

g1(0, x(0), y(0))
, t ∈ [0, T], 0< α< 1,

ABI
β
0ψ2(t) �

y(t)

g2(t, x(t), y(t))
−

y(0)

g2(0, x(0), y(0))
, 0< β< 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(13)
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Since ψ1,ψ2 ∈ AC([0, T],R), we know that
ABIα0ψ1(t), ABI

β
0ψ2(t) ∈ AC([0, T],R). Because

x/g1(t, x, y), y/g2(t, x, y) ∈ AC([0, T],R) (see condition

(H1)), the two functions in both sides of (13) are continuous
and thus (13) hold for every t ∈ [0, T]. It follows from
Lemma 1 that

x(t)

g1(t, x(t), y(t))
�

AB
I
α
0ψ1(t) + x(0), t ∈ [0, T],

y(t)

g2(t, x(t), y(t))
�

AB
I
β
0ψ2(t) + y(0), t ∈ [0, T].

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

By boundary condition (1) and solving the system, we
can obtain x(t) and y(t) which have given in (10). □

Theorem 1. If hypotheses (H1)–(H4) hold and
(Lg1

+ Lg2
)(Δ1 + Δ2)< 1, then the coupled system (1) has a

solution (x, y) ∈ E, where

Δ1 � 1 +
b1




a1 + b1



 

1 − α
N(α)

+
T
α

N(α)Γ(α)
   Kf1

�����

�����L1 +
c1




a1 + b1



,

Δ2 � 1 +
b2




a2 + b2



 

1 − β
N(β)

+
T
β

N(β)Γ(β)
   Kf2

�����

�����L1 +
c2




a2 + b2



.

(15)

Proof. We choose R∗ so that

Mg1
+ Mg2

  Δ1 + Δ2( 

1 − Lg1
+ Lg2

  Δ1 + Δ2( 
≤R
∗
, (16)

and specify a subset S∗ of the Banach space X × X by

S
∗

� (x, y) ∈ X × X: ‖(x, y)‖E ≤R
∗

 . (17)

Evidently, S∗ is a convex, bounded and closed subset of
the Banach space E. According to Lemma 4, if
(x, y) ∈ S∗⊆X × X is a solution of (1), then it is a solution of
the next system

x(t) � g1(t, x(t), y(t))
1 − α
N(α)

f1(t, x(t), y(t)) +
α

N(α)
I
α
0f1(t, x(t), y(t))

−
1

a1 + b1
b1

1 − α
N(α)

f1(T, x(T), y(T)) +
α

N(α)
I
α
0f1(T, x(T), y(T))  − c1 ,

y(t) � g2(t, x(t), y(t))
1 − β
N(β)

f2(t, x(t), y(t)) +
β

N(β)
I
β
0f2(t, x(t), y(t))

−
1

a2 + b2
b2

1 − β
N(β)

f2(T, x(T), y(T)) +
β

N(β)
I
β
0f2(T, x(T), y(T))  − c2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

For i � 1, 2, we define operators P � (P1,P1): E

⟶ E, F � (F1, F2): S∗ ⟶ E by
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Pi(x, y)(t) � gi(t, x(t), y(t)),

F1(x, y)(t) �
1 − α
N(α)

f1(t, x(t), y(t)) +
α

N(α)
I
α
0f1(t, x(t), y(t))

−
1

a1 + b1
b1

1 − α
N(α)

f1(T, x(T), y(T)) +
α

N(α)
I
α
0f1(T, x(T), y(T))  − c1 ,

F2(x, y)(t) �
1 − β
N(β)

f2(t, x(t), y(t)) +
β

N(β)
I
β
0f2(t, x(t), y(t))

−
1

a2 + b2
b2

1 − β
N(β)

f2(T, x(T), y(T)) +
β

N(β)
I
β
0f2(T, x(T), y(T))  − c2 .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

+en, the coupled hybrid system of (18) transformed into
the coupled system of operator equations as follows:

P(x, y)(t)F(x, y)(t) � (x, y)(t), t ∈ [0, T]. (20)

+is implies that

P1(x, y)(t)F1(x, y)(t) � x(t), t ∈ [0, T],

P2(x, y)(t)F2(x, y)(t) � y(t), t ∈ [0, T].
 (21)

By Lemma 3, we divide our proof into four steps: □

Step 1. P � (P1,P1) are Lipschitz operators with constants
LP � (Lg1

+ Lg2
) on E. Let (xi, yi), ∈ E, i � 1, 2. +en it

follow from (H2) that

P1 x1, y1( (t) − P1 x2, y2( (t)




� g1 t, x1(t), y1(t)(  − g1 t, x2(t), y2(t)( 




≤ Lg1
x1(t) − x2(t)


 + y1(t) − y2(t)


 

≤ Lg1
x1 − x2

����
���� + y1 − y2

����
���� .

(22)

+us, we operate the supremum norm over t and obtain

P1 x1, y1(  − P1 x2, y2( 
����

����≤Lg1
x1 − x2

����
���� + y1 − y2

����
���� .

(23)

Along the same lines, one has

P2 x1, y1(  − P2 x2, y2( 
����

����≤Lg2
x1 − x2

����
���� + y1 − y2

����
���� .

(24)

+us, we use the definition of operator P to get

P x1, y1(  − P x2, y2( 
����

����

� P1 x1, y1( ,P2 x1, y1( (  − P1 x2, y2( ,P2 x2, y2( ( 
����

����

� P1 x1, y1(  − P1 x2, y2( ,P2 x1, y1(  − P2 x2, y2( 
����

����

≤ P1 x1, y1(  − P1 x2, y2( 
����

���� + P2 x1, y1(  − P2 x2, y2( 
����

����

≤ Lg1
x1 − x2

����
���� + y1 − y2

����
����  + Lg2

x1 − x2
����

���� + y1 − y2
����

���� 

� Lg1
+ Lg2

  x1 − x2
����

���� + y1 − y2
����

���� 

� LP x1, y1(  − x2, y2( 
����

����.

(25)

+erefore, we can confirm that P is also Lipschitzian
with Lipschitz constant LP � (Lg1

+ Lg2
).

Step 2. Now, we show that F � (F1, F2) is a continuous and
compact operator from S∗ into E . We firstly prove the
continuity of F , let (xn, yn) n∈N be a sequence in S∗ con-
verging to a point (x, y) ∈ S∗. +en, Lebesgue dominated
convergence theorem yields

limn⟶∞F1 xn,yn( (t) �
1 − α
N(α)

limn⟶∞f1 t,xn(t),yn(t)(  +
α

N(α)
limn⟶∞I

α
0f1 t,xn(t),yn(t)( 

−
1

a1 + b1
b1

1 − α
N(α)

limn⟶∞f1 T,xn(T),yn(T)(  +
α

N(α)
limn⟶∞I

α
0f1 T,xn(T),yn(T)(   − c1 

�
1 − α
N(α)

limn⟶∞f1 t,xn(t),yn(t)( 

+
α

N(α)

1
Γ(α)


t

0
(t − s)

α− 1limn⟶∞f1 s,xn(s),yn(s)( ds

−
1

a1 + b1
b1

1 − α
N(α)

limn⟶∞f1 T,xn(T),yn(T)( 

+
α

N(α)


T

0
(T − s)

α− 1limn⟶∞f1 s,xn(s),yn(s)( ds − c1 � F1(x,y)(t).

(26)
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Similarly, we prove

limn⟶∞F2 xn, yn( (t) � F2(x, y)(t). (27)

+erefore, F(xn, yn) � (F 1(xn, yn), F2(xn, yn)) con-
verges to F(x, y).

In what follows, the compactness of F is explored on S∗.
Firstly, we prove the uniform boundedness. Let (x, y) ∈ S∗.
+en using (H4), one has for t ∈ [0, T],

F1(x, y)(t)


≤
1 − α
N(α)

f1(t, x(t), y(t))


 +
α

N(α)

1
Γ(α)


t

0
(t − s)

α− 1
f1(s, x(s), y(s))


ds

−
1

a1 + b1
b1

1 − α
N(α)

f1(T, x(T), y(T))


 +
α

N(α)


T

0
(T − s)

α− 1
f1(s, x(s), y(s))ds


  + c1


 

≤
1 − α
N(α)

Kf1

�����

�����L1 +
T
α

N(α)Γ(α)
Kf1

�����

�����L1

+
1

a1 + b1




b1


(1 − α)

N(α)
Kf1

�����

�����L1 +
b1


T

α

N(α)Γ(α)
Kf1

�����

�����L1 + c1


 .

(28)

Consequently, one has

F1(x, y)(t)
����

����≤ 1 +
b1




a1 + b1



 

1 − α
N(α)

+
T
α

N(α)Γ(α)
   Kf1

�����

�����L1 +
c1




a1 + b1



� Δ1. (29)

Similarly, we prove

F2(x, y)(t)
����

����≤ 1 +
b2




a2 + b2



 

1 − β
N(β)

+
T
β

N(β)Γ(β)
   Kf2

�����

�����L1 +
c2




a2 + b2



� Δ2. (30)

Consequently, we get

‖F(x, y)(t)‖ � F1(x, y)(t)
����

���� + F2(x, y)(t)
����

����≤Δ1 + Δ2.
(31)

Hence, it yields that F is uniformly bounded. Next we
prove that F is equicontinious, Let t1, t2 ∈ [0, T], t1 < t2, any
(x, y) ∈ S∗, one has

F1(x, y) t2(  − F1(x, y) t1( 


≤
1 − α
N(α)

f1 t2, x t2( , y t2( (  − f1 t1, x t1( , y t1( ( 




+ |
α

N(α)

1
Γ(α)


t1

0
t2 − s( 

α− 1
− t1 − s( 

α− 1
 f1(s, x(s), y(s))ds

+
α

N(α)

1
Γ(α)


t2

t1

t2 − s( 
α− 1

f1(s, x(s), y(s))ds|.

(32)

It is easy to see that |f1(t2, x(t2), y(t2)) − f1
(t1, x(t1), y(t1))|⟶ 0 as |t1 − t2|⟶ 0, in view of (H4),
we obtain
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F1(x, y) t2(  − F1(x, y) t1( 


≤
α

N(α)

Kf1

�����

�����L1

Γ(α + 1)


t1

0
t2 − s( 

α− 1
− t1 − s( 

α− 1
 ds

+
α

N(α)

Kf1

�����

�����L1

Γ(α + 1)


t2

0
t2 − s( 

α− 1ds

≤
Kf1

�����

�����L1

Γ(α + 1)
t2 − t1( 

α
+ t

α
2 − t

α
1 .

(33)

Hence, for ε> 0, there exists δ > 0 such that
|t1 − t2|< δ⇒|F1(x, y)(t2) − F1(x, y)(t1)|< ε. Similarly, we
prove

F2(x, y) t2(  − F2(x, y) t1( 


⟶ 0, t2⟶ t1. (34)

Consequently, we get

F(x, y) t2(  − F(x, y) t1( 
����

����⟶ 0. (35)

+is implies that F is equicontinious on S∗, and so F is
relatively compact. In consequence, we apply the

Arzelá–Ascoli theorem to show that F is a complete
continuous.

Step 3. we show that the item (iii) of Lemma 3 is satisfied.
Let (x, y) ∈ S∗ satisfy (20).

(x, y) � P1(x, y)F1(x, y),P2(x, y)F 2(x, y)( . (36)

+en, one has

|x(t)| � P1(x, y)F 1(x, y)




≤ g1(t, x(t), y(t))



1 − α
N(α)

f1(t, x(t), y(t))


 +
α

N(α)

1
Γ(α)


t

0
(t − s)

α− 1
f1(s, x(s), y(s))


ds

+
1

a1 + b1
b1

1 − α
N(α)

f1(T, x(T), y(T))


 +
α

N(α)


T

0
(T − s)

α− 1
f1(s, x(s), y(s))ds


  + c1


 

≤ g1(t, x(t), y(t)) − g1(t, 0, 0) + g1(t, 0, 0) 

×
1 − α
N(α)

+
T
α

N(α)Γ(α)
+

b1




a1 + b1




1 − α
N(α)

+
T
α

N(α)Γ(α)
   Kf1

�����

�����L1 +
c1




a1 + b1



 

≤ Lg1
(|x(t)| +|y(t)|) + Mg1

 

×
1 − α
N(α)

+
T
α

N(α)Γ(α)
+

b1




a1 + b1




1 − α
N(α)

+
T
α

N(α)Γ(α)
   Kf1

�����

�����L1 +
c1




a1 + b1



 .

(37)

Hence, we have

‖x‖≤ Lg1
(‖x‖ +‖y‖) + Mg1

  ×
1 − α
N(α)

+
T
α

N(α)Γ(α)


+
b1




a1 + b1




1 − α
N(α)

+
T
α

N(α)Γ(α)
  Kf1

�����

�����L1 +
c1




a1 + b1





� Lg1
(‖x‖ +‖y‖) + Mg1

  × Δ1.

(38)

Similarly, we prove

‖y‖≤ Lg2
(‖x‖ +‖y‖) + Mg2

  × Δ2. (39)

It follows from (38) and (39) that

‖x‖ +‖y‖≤
Mg1

+ Mg2
  Δ1 + Δ2( 

1 − Lg1
+ Lg2

  Δ1 + Δ2( 
≤R
∗
. (40)

Formula (40) implies that item (iii) of Lemma 3 holds.

Step 4. we show that the condition (iv) of Lemma 3 is
fulfilled. Since
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MF � sup ‖F(x, y)‖: (x, y) ∈ S
∗

 

� sup F1(x, y)
����

���� + F1(x, y)
����

����: (x, y) ∈ S
∗

 

≤Δ1 + Δ2.

(41)

+us, we have LPMF � (Lg1
+ Lg2

)(Δ1 + Δ2)< 1, that is,
condition (iv) of Lemma 3 holds.

From steps 1 to step 4, it follows that all the conditions of
Lemma 3, coupled system of hybrid (1) has a solution.

In what follows, we show the Ulam-Hyers stability of (1).

Definition 5. coupled system of hybrid (1) is Ulam–Hyers
stable, if for all ϑ � max ϑ1, ϑ2 > 0 and for all (x, y) ∈ E of
(42)

ABC
0 D

α x(t)

g1(t, x(t), y(t))
  � f1(t, x(t), y(t))




≤ ϑ1, t ∈ [0, T], 0< α< 1,

ABC
0 D

β y(t)

g2(t, x(t), y(t))
  � f2(t, x(t), y(t))




≤ ϑ2, 0< β< 1,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(42)

there is λ � max λ1, λ2 > 0 and a solution (x, y) ∈ E of (1)
such that,

‖(x, y) − (x, y)‖≤ λϑ. (43)

Remark 2. (x, y) ∈ E is called a solution of (42) iff there is a
function (x, y) ∈ E≤ (depending on (x, y)) satisfying

|u1(t)|≤ ϑ1 and |u2(t)|≤ ϑ2, t ∈ [0, T];

ABC
0 D

α x(t)

g1(t, x(t), y(t))
  � f1(t, x(t), y(t)) + u1(t), ∀t ∈ [0, T], 0< α< 1,

ABC
0 D

β y(t)

g2(t, x(t), y(t))
  � f2(t, x(t), y(t)) + u2(t), ∀t ∈ [0, T], 0< β< 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(44)

Lemma 5. For (x, y) ∈ E solution of (42), the following
inequality holds:

x(t)

g1(t, x(t), y(t))
− φ1(0) −

AB
I
α
0f1(t, x(t), y(t))




� ABI

α
0u1( (t)




≤ ϑ1
1 − α
N(α)

+
T
α

N(α)Γ(α)
 φ1(0) �

x(0)

g1(0, x(0), y(0))
;

y(t)

g2(t, x(t), y(t))
− φ2(0) −

AB
I
α
0f2(t, x(t), y(t))




� ABI

α
0u2( (t)




≤ ϑ2
1 − α
N(β)

+
T
β

N(β)Γ(β)
 ,φ2(0) �

y(0)

g2(0, x(0), y(0))
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(45)

Theorem 2. If (H1)–(H4), (42) Θ � (1 − Λ1)(1 − Λ2)
− Λ2Λ1 ≠ 0 are fulfilled, then (1) is Ulam-Hyers stable, where

Λ1 � Lf1
Mg1

(1 − α/N(α) + Tα/N(α)Γ(α + 1)),
Λ2 � Lf2

Mg2
(1 − β/N(β) + Tβ/N(β)Γ(β + 1)).
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Proof. Let (x, y) ∈ E be a solution of (42), (x, y) ∈ E be a
solution of problem (1) satisfying

x(0)

g1(t, x(0), y(0))
� φ1(0) �

1
a1 + b1

− b1
AB

I
α
0f1(T, x(T), y(T))  + c1 ,

y(0)

g2(t, x(0), y(0))
� φ2(0) �

1
a2 + b2

− b2
AB

I
β
0f2(T, x(T), y(T))  + c2 .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(46)

□

By Definition 2 and Lemma 2, conditions (H3), (H4),
Lf1
≤N(α)/1 − α, we have

|x(t) − x(t)|≤Mg1

x(t)

g1(t, x(t), y(t))
−

x(t)

g1(t, x(t), y(t))





≤Mg1
|
x(t)

f1( 
−

AB
I
α
0f1(t, x(t), y(t))

+
AB

I
α
0f1(t, x(t), y(t)) − φ1(0)−

AB
I
α
0f1(t, x(t), y(t))



≤Mg1

x(t)

f1(t, x(t), y(t))
−

AB
I
α
0f1(t, x(t), y(t)) − φ1(0)





+ Mg1

AB
I
α
0f1(t, x(t), y(t))−

AB
I
α
0f1(t, x(t), y(t))





≤ ϑ1
1 − α
N(α)

+
T
α

N(α)Γ(α)
  + Lf1

M
AB
g1

I
α
0(|x(t) − x(t)| +|y(t) − y(t)|)

≤ ϑ1
1 − α
N(α)

+
T
α

N(α)Γ(α)
 

+ Lf1
Mg1

1 − α
N(α)

+
T
α

N(α)Γ(α + 1)
 (‖x − x‖ +‖y − y‖) 

≤ ϑ1
1 − α
N(α)

+
T
α

N(α)Γ(α)
  + Λ1(‖x − x‖ +‖y − y‖).

(47)

Using (47), we get

1 − Λ1( ‖x − x‖ + Λ1‖y − y‖≤ ϑ1
1 − α
N(α)

+
T
α

N(α)Γ(α)
 .

(48)

Similar the proof of (48), we can obtain

1 − Λ2( ‖y − y‖ + Λ1‖x − x‖≤ ϑ2
1 − β
N(β)

+
T
β

N(β)Γ(β)
 .

(49)

It follows from (48) and (49) that

‖x − x‖≤
1 − Λ1
Θ

ϑ1
1 − α
N(α)

+
T
α

N(α)Γ(α)
  +

Λ1
Θ
ϑ2

1 − β
N(β)

+
T
β

N(β)Γ(β)
 , (50)

‖y − y‖≤
Λ2
Θ
ϑ1

1 − α
N(α)

+
T
α

N(α)Γ(α)
  +

1 − Λ2
Θ

ϑ2
1 − β
N(β)

+
T
β

N(β)Γ(β)
 , (51)
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Using (50) and (51), we get

‖x − x‖ +‖y − y‖≤
1 − Λ1
Θ

+
Λ2
Θ

 ϑ1
1 − α
N(α)

+
T
α

N(α)Γ(α)
 

+
Λ1
+

1 − Λ2
Θ

 ϑ2
1 − β
N(β)

+
T
β

N(β)Γ(β)
 

�
1 − Λ1
Θ

+
Λ2
Θ

 ϑ1Ω1 +
Λ1
+

1 − Λ2
Θ

 ϑ2Ω2,

(52)

where Ω1 � (1 − α/N(α) + Tα/N(α)Γ(α)),Ω2 � (1 − β/N
(β) +Tβ/N(β)Γ(β)). For ϑ � max ϑ1, ϑ2  and λ � ((1
− Λ1 + Λ2)Ω1 + (Λ1 + 1 − Λ2)/Θ), we can get

‖(x, y) − (x, y)‖ � ‖x − x‖ +‖y − y‖≤ λϑ. (53)

+erefore, by means of Definition 2, the solution of
problem (1) is Ulam–Hyers stable.

4. An Example

We consider the next problem

ABC
0 D

1/2 x(t)

1 +(sin(x(t))/32) +(sin(y(t))/32)
  �

t

9
x(t)

1 +|x(t)|
+

y(t)

1 +|y(t)|
 t ∈ [0, T],

1
2

x(0) +
1
2

x(π) � 0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ABC
0 D

1/2 y(t)

1 +(sin(x(t))/32) +(sin(y(t))/32)
  �

t

9
x(t)

1 +|x(t)|
+

y(t)

2 + y(t)
 t ∈ [0, T],

1
2

y(0) +
1
2

y(π) � 0.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(54)

Obviously, for i � 1, 2, Lgi
� 1/32, Kfi

(t) � t,
Mgi

� Mfi
� 1, and taking N(α) � N(β) � 1 as a normal-

ization function, all hypotheses of +eorem 2 are satisfied.
In fact, since ‖t/9‖L1 � π2/18, we can find that

LPMF � (Lg1
+ Lg2

)(Δ1 + Δ2) � π2/18 × 7/4 × 1/16< 1.
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