Hindawi

Journal of Mathematics

Volume 2022, Article ID 4741224, 12 pages
https://doi.org/10.1155/2022/4741224

Research Article

@ Hindawi

Existence and Stability for a Coupled Hybrid System of Fractional

Differential Equations with

Atangana—Baleanu—Caputo Derivative

Liyuan Zhao' and Yirong Jiang

"Wujiajing Nine-Year School, Wuwei 733000, Gansu, China

2College of Science, Guilin University of Technology, Guilin, Guangxi 541004, China

Correspondence should be addressed to Yirong Jiang; jiangyirong996@126.com

Received 10 March 2022; Accepted 28 June 2022; Published 26 September 2022

Academic Editor: Guotao Wang

Copyright © 2022 Liyuan Zhao and Yirong Jiang. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

The aim of this article is to investigate a coupled hybrid system of fractional differential equations with the Atanga-
na-Baleanu-Caputo derivative which contains a Mittag-Leffler kernel function in its kernel. We firstly apply the Dhage fixed
point principle to obtain the existence of mild solutions. Then, we study the Ulam-Hyers stability of the introduced fractional
coupled hybrid system. Finally, an example is presented to exhibit the validity of our results.

1. Introduction

Dhage and Lakshmikantham in 2010 [1] introduced initially
first order hybrid differential equations (HDEs) and studied
some basic results on the existence and uniqueness of so-
lutions. Furthermore, differential inequalities obtained with
respect to HDEs were utilized to examine comparison results
and some qualitative properties of the solution. Since the
work of [1], many researchers in mathematics and other
fields committed to the study of all kinds of HDEs. In
particular, some scholars showed that fractional-order hy-
brid differential equations described the hereditary and
memory properties of biology, chemistry, physics etc., better
than integer order HDEs. Thus, some scholars would be
interesting to the study of fractional-order hybrid differ-
ential equations. For instance, Baleanu [2] applied Caputo
fractional-order hybrid differential equations to analyze a

thermostat model. Other contributions on fractional-order
hybrid differential equations involving the Hadamard de-
rivative [3], Riemann derivative [4], Hilfer derivative [5],
and Atangana derivative [6, 7] (ABC).

On the other hand, thanks to the fact that a large number
of practical and real world phenomena in the fields of bi-
ology, physics, chemistry, and computer network, can be
modeled by coupled systems of different types of fractional
differential equations. Here, we sketch some references, but
not a list of all references is included, such as Hadamard type
[8], Caputo [9] and Riemann-Liouville types [10], and
V-Hilfer type [11].

Motivated by this fact and the work referenced above,
the intent of this work is to study the existence and stability
for a coupled hybrid system of fractional differential
equations with Atangana-Baleanu-Caputo derivative de-
scribed by the following equation:
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)=f1(t,x(t),y(t)), te[0,T],0<a<]1,

>=f2(t,x(t),y(t)), 0<pB<1,

x(T)

() i)~
N1 (0,x(0),y(0))) " "\ gy (T,x(T), y(T))) ~ "

x(T)

where 45¢D* ABC DF denote the Atangana-Baleanu-Caputo
fractional derivatives of order a and p, respectively,
91-9> € C([0, T] x R x R, R, {0}), fi> fa e C([0,T]x
R xR,R)and a; + b; #0,i = 1, 2. The main contributions of
this paper are as follows:

(1) The above-given results [2-7] consider single frac-
tional-order hybrid differential equations, while we
consider coupled fractional-order hybrid systems.

(2) The work in [8-11] investigated the existence of
solutions or initial value boundary value problem.
However, it is well known that stability is one of the
important dynamic behaviors for fractional-order
hybrid differential equations. Moreover, we should
mention that boundary value problem (1) are rather
general and include some common cases such as
nonseparated boundary and antiperiodic boundary
conditions, and so on, by choosing different values of
a;b;,¢;(i =1,2). Thus, it is meaningful to study
existence and stability for (1).

The remainder of the paper is organized as follows:
Section 2 contains some necessary concepts, assumptions,
and facts. In Section 3, we prove an existence result and the
Ulam-Hyers stability for the problem (1). Finally, an ex-
ample is constructed to show the correctness of our results.

2. Preliminaries

Let C([0,T],R) be the space of all continuous functions
on [0,T] endowed with the norm |[x| = sup,coryix (£)}.
We denote by X = AC([0, T], R) the space of all absolutely
continuous functions. Obviously, the product space E = X x
X is a Banach space with norm [|(x, y)llg = [x] + [|¥ll. In the
remainder of this paper, we recall the necessary basic notions
and properties related to fractional calculus.

Definition 1 (see [12]). The fractional Riemann-Liouville
integral of order « > 0 for a continuous function x on [0, b] is
given by the following equation:

(I%) (1) = j (t-9)"'x(s)ds, a>0,b2t>0. (2)

I (a)

o grarorye) )-¢
\920,x(0),y(0) )\ gy (T, x(T), y(T))) 7
[ £1(0,x(0), y(0)) = £,(0,x(0), y(0)) =0,

Definition 2 (see [13, 14]). Let x be differentiable on (0,b),
such that x € L' (0,b),0<b, a € [0, 1]. Then, the left Atan-
gana-Baleanu-Caputo derivative (ABC) of x for order « is
defined by the following equation:

)0 =" (" s )
1-«

and in the left ABR sense (Riemann-Liouville type) is de-
fined as follows:

N _ o
(00 =70 & [ xom, ( G )ds, @
-«
and the fractional integral associated the above operators is

(*"r5x) 1) =

where E, is a parameter Mittag-Leftler function defined by
E,(2) Y2 2"/T (na + 1), N (a) is a normalization function
satistying N (0) = N (1) = 1.

(ABC

N( )"““N( a)

Ijx (t), (5)

Remark 1. In works [13, 14], it has been verified that
(ABL9) (ABRD%x) (£) = x (£) and (ABRD) (4B I3x) (£) = x (6).
Also, the authors in the work [13] have established that
(A5Dx)(t) = (§BRD%x)(t) - N (a)/1 — ax(0)E, (-a/l
— at®).

Lemma 1 (see [15]). If x(t) be well defined on [0,b], then
(ABIE) (ABCIEx) (1) = x (8) - Zk 0 x% (0)/k!Ex.

Definition 3 (see [16]). An element (x, y) € X x X is said to
be a coupled fixed point of a mapping T: X x X — X if
T(x,y)=xand T(y,x) =

Lemma 2 (see [17]). Suppose that S is a nonempty, closed,
convex, and bounded subset of the Banach algebra X, S =
SxSand P,G: X — X and F: S — X are three operators
such that,

(i) P and G are Lipschitzian with a Lipschitz constants o
and 6, respectively
(ii) F is completely continuous
(iii) y = PyFx + Gy=y € §,Vx € §
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(iv) 40M + 6 < 1, where M = sup{|Fx||: x € S}

Then, the operator equation T (y,x) = PyFx + Gy ad-
mits at least one coupled fixed point in S.

Lemma 3 (see [18]). Let S* be a nonempty, closed, convex,
and bounded subset of the Banach space X and let
P,G: X — X and[F: §* — X be three operators such that,

(i) P and G are Lipschitzian with a Lipschitz constants
Ly and Lg, respectively
(ii) F is completely continuous
(iii) y =PyFx + Gy=>y €S, Vx € §*
(iv) LpMp + Lg < 1, where M = sup{||Fx|: x € §*}

Then, the operator equation PyFx + Gy = y possesses a
solution in S*.

3. Main Results

To start for verifying the main results, the following as-
sumptions are needed for us in the sequel:

(H1) Two functions g,,g, € C([0,T] xR xR, R, {0})
are such that,

(i) Two functions x=x/g, (8%, y) and
y—ylg,(t, x, y) are increasing in R a.e. For each

t e [0,T]
(ii) functions x/g, (t,x, y), ylg, (t, x, y) € AC(]0,
T1,R)
(H2) There exist constants L £>0,L, >0 such that
i=1,2

i % 1’)’2 i ]":2’}/2 _fo ':1 :2 yl y2 ’
gi L, l’yz gi "2’}’2 —Lg 1 2 yl yz > "i’yi S [:’1 XI]);XHR.

(H3) There exist constants M oMy € R* such that
i=1,2
|fi(t,x, )| <M, |gi (8 x, p)| <MV (5 x, y)

(7)
€ [0, T] xR x R.

(H4) f;: [0,T] xRxR — R are absolutely contin-

uous and there exist constants Ky (t) € L' ([0,T], R"Y)

such that i = 1,2

(6)

|fi(t,x,y)|SKfi(t), vt e [0,T]. (8)

In order to study problem (1), we firstly consider the
following problem:

) x(t) B apcpypf oy
{(?BCD (m>_yxl(t), te[0,T],0<a<1,y D (gz(t,x(t),y(t))>

x(0)

=y, (t), 0<ﬁ<1,a1<m

x(0)

x(T)

x(T) ) ©)

>+ 1<g1 (T x(T), y (T))

= C1>a2(92(0’x(0)’y(0))) - 2(92 (T, x(T), y(T))

Similar to Definition 1 in [6], we give a definition of (9)

Definition 4. A function (x,y) € AC([0,T],R)x AC
([0,T],R) is called a solution of (9), if functions x/g,
(t) x’ J’), J’/gz (t) x) y) € AC( [0’ T]’ R)) Vx: }/ € R) (wp l//z)
€ L' ([0, T],R) x L' ([0, T],R), and (x, y) satisfies (9).

) =, ¥, (0) =9,(0) =0,

An application of Lemma 4 in [7], Lemma 4 in [9],
and Theorem 3.1 in [6], we derive an equivalent fractional
integral equation to (9). In order to make this paper
readable, we present the proof.Let (X,79)€cE be a
solution of (42), (x, y) € E be a solution of problem (1)
satisfying
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Lemma 4. Let 0<a, <1, vy, ¥, € AC([0,T],R) and as-
sume that (H1) holds. Then, the solution of problem (9) if and
only if it is a solution of the following system:

x(t) = g, (t,x(8), y(t))(ﬁwl (1) + ﬁ (I%,) ()

1 l1-«a " .
a; +l’)1 (bl[N(a)WI (T) +W (101//1)(]")] _Cl))s
| (10)

y () = g, (6, x(D), y(t))(ﬁgwl (1) + %(15%) (1)

1 1-B B8 _
i (xS e )] o) )

Proof. The main idea of the proof comes from Lemma 4 in (x,y) is a solution of (9), then (x,y) satisfies fractional
[7] and Theorem 3.1 in [6]. In the view of Lemma 4 in [7], if integral system (10).
Conversely, since

éBcDa<L)=%(t), te[0,T,0<a<1,

9. (£, x (1), y (1))
(11)
ABC B y(#) -
& D (gz(t,x(t),y(t))> =y,(t), 0<f<l
By (x,y) € AC([0,T],R)x AC([0,T],R), applying
ABTa ABTE on both sides, and thanks to Remark 1, we obtain
the following equation:
AB 7a\ABC o X(t) x(t) X(O)
= - , 0, T], 0 )
(F1a), (gl (), y(t))> g1 Ex 0,y ®) g, 0x0),yoy " < OTh 0est
(12)
AB F\ABC g y(t) ) _ y(t) ~ y(0)
(o) (gzu,x(t),y(t» 7Ex 0@ 50x0 0y Pt
Hence
ABp® _ x(t) _ x(0) ’ 0,T],0 1,
O Ex0,y®) g Ox0),yy OO
(13)

y () ¥(0)

AB7P — -
Iy, (1) = g, (t,x (), y() g, (0,x(0), y(0))

0<p<l.
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Since v, y, € AC([0,T],R), we know that (H1)), the two functions in both sides of (13) are continuous
ABISw, (1), “BIyy, (1) € AC([0,T], R). Because  and thus (13) hold for every ¢ € [0,T]. It follows from
x/g, (t,x, ¥), ¥/g,(t, x, y) € AC([0,T],R) (see condition Lemma 1 that

m Igy, (t) + x(0), te[0,T],
(14)
y ()

_ YW _aBp
g 6x®, (@) Ioy, (1) + y(0), te[0,T]

By boundary condition (1) and solving the system, we Theorem 1. If hypotheses (HI1)-(H4) hold and
can obtain x(¢) and y(¢) which have given in (10). O (Lg] + ng)(A1 +A,) <1, then the coupled system (1) has a
solution (x,y) € E, where

_ |b4] a T" lei|
A‘_KHlawbl)(N(a) N((x)F(oc)>]'|Kf1HLl+ b

P (15)
_ |b | B T |C2|
o[ i) 5 v o
§* ={(x, y) e X x X: lI(x, y)lg <R"}. (17)

Proof. We choose R* so that
Evidently, S* is a convex, bounded and closed subset of

(My1 + Mgz) (A, +4,) <R* (16) the Banach space E. According to Lemma 4, if
1 —(Lg1 + ng) (A +4,) ’ (x,y) € S*cX x X is a solution of (1), then it is a solution of

the next system

and specify a subset S* of the Banach space X x X by

x(t) = g, (t, x(¢), y(t))(N( )fl(t ,x (1), y(t))+N( ) Io f1 (8 x (), y (1))

1 -«
a+b, (bl[N(a)fl(T x(T), y(T)) +N( ) Iy 1 (T,x(T),y(T))] —c1>>,

(18)

y(t) =g, (t,x(t),y(t))(zl\];([gfz (t,x(1), y (1)) + N[(;ﬁ)lgfz (tx(t), y (1)

1 1-5 B P i
612+b2< |:N(ﬁ)f2(T X(T) y(T))+N(ﬁ)10f2(T,X(T),y(T)):| (;2))

For i=1,2, we define operators P = (P,,P,): E
— E,F=(F,F,): S — E by



6
[P’-(x () = g,-(t x (), y (1),
F,(x, p)(t) = N( )fl(tx(t) Yy () + ——
1
F,(x, p)(t) = N([gfz(t x(t), y () +
1 1-

B

¢l

Then, the coupled hybrid system of (18) transformed into
the coupled system of operator equations as follows:

a,+b

P (x, y) (OF (x, y) (1) = (x, y) (), ¢ € [0,T]. (20)

This implies that

{ P, (x, y) (F, (x, ¥)(t) = x(t), te[0,T], (21)
P, (x, y) )F, (x, y)(t) = y(t), te€[0,T].

By Lemma 3, we divide our proof into four steps: [

Step 1. P = (P,,P,) are Lipschitz operators with constants
(Lg +Lg) on E. Let (x;,y;),€E,i=1,2. Then it
follow from (H2) that

|[|:l>1 (1 1) () = Py (x5, 3,) (t)l
= |91 (t,x1 (£, y1 (1) = g1 (£ %, (1), y, (t))l
<L, (|2, (8) = x, (8)] +]y, (8) = v, (1)])
<Ly, (|1 = 2] 31 = 32l )
Thus, we operate the supremum norm over ¢ and obtain
"[FDI (x5 1) =Py (x2>)’2)" SLg](”xl - Xz" +||)’1 - J’2||)~
(23)

Along the same lines, one has

Journal of Mathematics

N( ) Io f1 (8, x(8), y (1))
+N( ) Iof 1 (T, x(T)y(T))]—cl), (19)
Nf ﬁ)zﬁ f2(tx(0), y (1)
+ N[zﬁ)lgfz (T, x(T), y(T))] )
[P2 (x1 31) = P (20 )]l < L, (1 = x| #3122
(24)

Thus, we use the definition of operator [P to get

[P (1o 1) = P (2 35|
= ”(I]:Dl (xl’ J’1): P, (xp)’l)) - (I]:Dl (xz’ J’z)’ P, (%J’z))"
= le (xl’)ﬁ) -P, (xZ))’z)’ P, (xp)/l) -P, (xz>)’2)“
< ||[pl (xl,yl) -P, (x2>;"2)” +“[P)z (xv)’l) -P, (x2>J’2)||
< (Lo, (1 =2l +lys = 3a0) + Lo 1 = 2]+ = 22)
=(Lg, + Lo, ) (s = 2l 71 = 520
= L[F""(xl’yl) - (x2>)/2)“~

(25)

Therefore, we can confirm that P is also Lipschitzian
with Lipschitz constant Lp = (Lg1 + ng).

Step 2. Now, we show that F = (F,,[F,) is a continuous and
compact operator from S* into E . We firstly prove the
continuity of F , let {(x,, ,)},cy be a sequence in §* con-
verging to a point (x, y) € S*. Then, Lebesgue dominated
convergence theorem yields

mn—>oo Ofl (t x (t) yn (t))

N( ) n—>ooIgfl (T’xn(T)’yn(T))]_cl>

(26)

limn_}OO[Fl (xn’y”) (t) Z;]_(:C)l n—>oof1 (t X, (t) }’n (l’))+ )

1 1 @

Ca,+b, (b [N( ) m, oo f1(T:x,(T),y, (1)) +——

1- oc

N( ) im, o f1 (t’xn ), y,, (t))
o 1 J’ (t—5)* 4 ( (), ())

N(oc)F(oc) $ im, o f1(5%, (), y, (s
1 l-a

a,+b, (b [N( ) m, o f1(T,x,(T), y,(T))

N((x)

J (T —s)* "im,,__ £, (s,%, (), yn(s))ds] _51) =F, (x,p) (1)
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Similarly, we prove

lim, o F, (x,, y,) () = F, (x, ) (). (27)
Therefore, [F(x,,y,) = (F,(x,, y,),F, (x,, y,))

verges to F(x, y).

con-

|F, (x, ) ()] < Lo

ngfl(t x(0), y ()| +

N()F(a)

1
a, +b

o 1 I w1
TN (@Al T N (T () Al

1 |b1|(l—(x)”
* U
|a, + b, N(a) | Kpllw

Consequently, one has

( [N( o 11 (T (D, y ()] +

In what follows, the compactness of [ is explored on S*.
Firstly, we prove the uniform boundedness. Let (x, y) € S*.
Then using (H4), one has for t € [0,T7],

J |t =9 f1 (s x(5), y(5))|ds

T
N( ) jo|(T—s)"“If1 (s,x(s),y(s))ds|] +|c1|)

[ba|T°

IF, e (0] < [(1 i

Similarly, we prove

|b1| l—oc+
a, +b1| N (@)

IF, (. ) @) < [(1 +

Consequently, we get

IF (x, 9) (O =|[F, () O] +]F2 (5 0) ()] <4, + A,
(31)

IFy (x, ) (t,) = Fy (e ) (0)| s = | 1 (B2 x

o 1

(24

It is easy to see that
(tlix(tl))y(tl))l — 0 as |t1
we obtain

Lf1(ty, x(8,), y (£3)) = f4

—t,| — 0, in view of (H4),

() 1o
|a2+b2| N(B) N(ﬁ)r(ﬁ) fallr

N(oc)l"(oc)Jl[( =) =t =) f1 (5 x(8), y(9))ds

(28)
N(O()r(oc)" f1||L1 |C1|)
T
N(“)F(“))] [+ |a1|c+l|b1| =Ar (29)
|a|c+2|b| B (30)

Hence, it yields that F is uniformly bounded. Next we
prove that F is equicontinious, Let t,t, € [0,T],t; <t,, any
(x, y) € §*, one has

(t,), ¥ (t)) = fr(tx(81), ¥ (1))

(32)

a—1
N(oc) T(a) J (ty=5)" f1(s,x(s), y(s))dsl.
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[Fo ) () - R )< g r"(afl"Lf)J (-9 = (0, -9 ]ds
K 2
N (a) r"(af;"Lf) J (o) s (33)
K
< r"(afl“ﬁl) [(t2-8)" + 63 -41)

Hence, for &>0, there exists 6>0 such that  Arzela-Ascoli theorem to show that F is a complete
[t, = t,] <6=|F, (x, y) (t,) — F, (x, y) ()| < e. Similarly, we continuous.
prove

|F, (. ) () = Fy (%, ) (£))| — 0,8, — ¢4 (34)  Step 3. we show that the item (iii) of Lemma 3 is satisfied.
Let (x,y) € S* satisty (20).

(%, ) = (Py (x, )F; (%, ¥), P, (6, y)F, (x, ). (36)

Then, one has

Consequently, we get
IF (x, ») (£,) = F (. ) (1) — O (35)

This implies that F is equicontinious on $*, and so F is
relatively compact. In consequence, we apply the

Ix ()] =|P, (x, )F, (x, )]

<|g, (t:x (1), y (1)) |{N( )|f1(t,x(t),y(t))| +N(zoc) ) Jol(t—5)a71f1(s,x(s),y(s))|ds

: (T, x(T), y(T)) ' (T =9 f1(s,x(s), y ()ds| | +]c,]

+a1+b1 N()lfl x(T), y (D) + N()Jol $) f1(s,x(s), y(s))ds| | +|c,
<[g, (& x (1), (1)) = g, (£,0,0) + g, (£,0,0)] (37)

. |b, | (l—oc T "K " N lei|
N(oc) N(oc)F(oc) |a, +5,[\N (@)~ N(@T(a)) )17l g, + b,

< [Ly, (X O] +ly (1)) + M, |

i (v * @) e+
N((x) N(oc)F(oc) la, + by \N (@) " N (o)) )10 " S, |

Iyl <|L, (lxll +Iyl) + M, | xA,. (39)
Hence, we have y [ 92 Y 52] 2

l-a + T It follows from (38) and (39) that
N(ax) N(a) () ( )

M, +M, ) (A +4,)
b (1-a T lei| Il + ) < BB —
|a1 +by| \N(a) N(a)r((x) “Kﬂ”v * |a, +b,] ( ot 52)( 1+4y)

Formula (40) implies that item (iii) of Lemma 3 holds.

e < [ L, (e 1y + My, ] x [(

<R". (40)

= [L,, lxll +1yl) + M, ] x A,
(38) Step 4. we show that the condition (iv) of Lemma 3 is

Similarly, we prove fulfilled. Since
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Mg = sup{|IF (x, p)ll: (x,y) €S}
= sup{||F, (x, )| +[|Fy (5, P (o) €8} (41)
<A+ A,

Thus, we have LpM = (Lg] +ng)(A1 +A,) <1, that is,
condition (iv) of Lemma 3 holds.

0

ABC py x(t)
(91 (t,x (1), y(t

ABC B y ()
o P (92 (t, x (1), y (1)

there is A = max{\,,A,} >0 and a solution (x, y) € E of (1)
such that,

(X, ) = (e, I < AD. (43)
0P (91 (t,x (1), y (1)

ABcDﬁ< y (1)
0 g, (£, x(1), y (1))

Lemma 5. For (X,9) € E solution of (42), the following

inequality holds:

%(t) )
g, (6 x(1), y (1)

S191<l—oc T

O
9, (L3 (0), 5 (1)

_ B
SS2(1 o T

Theorem 2. If (HI)-(H4), (42) ©=(1-A))(1-4A,)

—A, A, #0 are fulfilled, then (1) is Ulam-Hyers stable, where

))) = f1 (6 x(0), y (1))

) = fL(6x (D), y (1))

N " N(a)r(a))"’l 0) =

From steps 1 to step 4, it follows that all the conditions of
Lemma 3, coupled system of hybrid (1) has a solution.
In what follows, we show the Ulam-Hyers stability of (1).

Definition 5. coupled system of hybrid (1) is Ulam-Hyers
stable, if for all § = max{9,,9,} >0 and for all (%,7) € E of
(42)

<9, te[0,Tl,0<ax<l,

(42)

<9,, 0<f<l,

Remark 2. (X,%) € E is called a solution of (42) iff there is a
function (x, y) € E< (depending on (X%, 7)) satisfying
lu, ()] <9, and |u, (t)| <9,,t € [0,T];

)=f1(t,x(t),y(t))+u1(t), vt e [0,T],0<a<1,

(44)
) = f,(t,x(t), y(£) +u,(t), Vte[0,T],0<B<1.
9, (0) - PIof1 (£, % (1), ?(t))‘ =[(*P15u,) (1)
%(0) .
9,(0,%(0),7(0))
(45)

20) = £, 0,50, 5 0)] = () 1)

y(0)

NGB N(B)F(ﬁ))’ 9200 = 0,200, 5 (0))

A =L;M, (1-a/N(a)+ TN () (« + 1)),
Ay =Ly My (1-B/N(B)+TF/N(BI(B+1)).
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Proof. Let (X,%) € E be a solution of (42), (x,y) € E be a
solution of problem (1) satisfying

x(0)

7Gx,y - 7 O=

117 (=by [*PI5 f1 (T, x (), y (T)] +¢,),
1

(46)
y(0)

92 (t,x(0), y (0))

1
=‘P2(0):a

By Definition 2 and Lemma 2, conditions (H3), (H4),
Ly <N (a)/1 — a, we have

. 1 M. 1
|x(t) x(t)|SMg1|g1 tx(),7(1) g, (t,x(t),y(t))|

<M,| ’(ij; I F (X0, (1)

B E (0,5 (0) - 9, (=PI f, (1,x(8) y(t))‘

x(t)
Nf (%0, 7))
+ My [*PI3f1 (6% (0, 7 O)-T5 £ (1, (), y (1) @)

<M

BLEEL (R0, 7(1) - ¢, (o>|

l1-« Ta AB 7 /|~ —~
SSl(N((x) + N(oc)F(oc)) +Lp My I (1X(8) = x (O] +1y (1) = y (D)

<9 l—oc+ T
"N\ N(a) N(a)(a)
l-« T N _
+Lg My, [(N(a)+N(a)r(“+ 1)>(IIX—XII +IIy—yII)]

l-« T" R R
S91(1\](“) +N(oc)F(oc)> + A (1% = x[ +1y =y

T
Using (47), we get (1_ 2)")’ I+ A lx - x[ <9, <N(£ N(ﬁ)r(ﬁ)>

TO(
(1=ADIx = xll+ Ay -yl < 9( ) (49)

N(a ) N (a)T (a)
(48) It follows from (48) and (49) that

Similar the proof of (48), we can obtain

1A (1-a T Mg (1-p, T )
. 9 o ’ N
1% - xll<—g (N(oc) N(a)r(a))+ <N(/3) N AT () v

~ A, l1-«a T 1-A, 1-p T’
17 -l S691<N(a) +N(oc)r((x)> + ® SZ(N(ﬁ) +N(ﬁ)1"(ﬁ))’ (51)
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Using (50) and (51), we get

N - 1
% - x| +||y—y||£( -

11
“A Ay, [1-a T
+6>91<N(a) +N(oc)F(oc)>
1§ (52)

A 1-A, T#
(3% >92(N<ﬁ)+N<ﬁ)r<ﬁ>>

- A
S

¢

where Q; = (1 -a/N(a) + T*/N () ()),Q, = (1-p/N
(B) +TFIN(B)(B)). For 9=max{9,,9,} and A= ((1
A+ A)Q + (A +1-A,)/0), we can get

A A 1-
2)90 <+ lS) 2>9202’

Therefore, by means of Definition 2, the solution of
problem (1) is Ulam-Hyers stable.

4. An Example

(%, ) = (6, I =M% = x[ +1y = yl <A9. (53)
We consider the next problem
ABC yl/ x () _tf x(®) y () "
0 (1 + (sin (x (¢))/32) + (sin (¥ (£))/32) 9\ 1 +]x(b)] " 1+]y(t)l e 0.1l
1 1
Ex(O) +£x(7r) =0
(54)
ABC R/ y (1) _ E x(t) y (1)
0 (1 + (sin(x(¢))/32) + (sin(y (£))/32) 9\ 1 +]x(b)] - 2+ y(t) e[0Tl
1 1
770 +2y(m) =0
Obviously, for i=1,2, = 1/32,K; () =t, [2] D. Baleanu, S. Etemad, and S. Rezapour, “A hybrid Caputo
M =M, =1, and taking N (a) = N(ﬁ) =1lasa normal— fractional modeling for thermostat with hybrid boundary

ization function, all hypotheses of Theorem 2 are satisfied.
In fact, since |[t/9];, =n?/18, we can find that
LpMg = (L, + Ly ) (A +Ay) = 7*/18 x 7/4 x 1/16 < 1.
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