
Research Article
GeneralizedCut Functions and n-AryBlockCodes onUP-Algebras

Ali N. A. Koam , Azeem Haider , and Moin A. Ansari

Department of Mathematics, College of Science, Jazan University, Post Box 2097 New Campus, Jazan, Saudi Arabia

Correspondence should be addressed to Moin A. Ansari; maansari@jazanu.edu.sa

Received 8 October 2021; Accepted 8 April 2022; Published 29 April 2022

Academic Editor: M. T. Rahim

Copyright © 2022Ali N. A. Koam et al.�is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, the work is comprised of n-ary block codes for UP-algebras and their interrelated properties. n-ary block codes for a
known UP-algebra is constructed and further it is shown that for each n-ary block codeU, it is easy to associate a UP-algebraU in
such a way that the newly constructed n-ary block codes generated by U, i.e., Ux, contain the code U as a subset. We de�ne a UP-
algebra valued function on a set say X, then we prove that for every n-ary block-code U, a generalized UP-valued cut function
exists that determines U. We have also proved that the UP-algebras associated to an n-ary block code are not unique up
to isomorphism.

1. Introduction

Logical algebras like BCI/BCK, BE, KU-algebras, and many
others with their fuzzy, intuitionistic, and more related
concepts have been interesting topics of study for re-
searchers in recent years and have been widely considered as
a strong tool for information systems and many other
branches of computer sciences including fuzzy informatics
with rough and soft concepts. Imai and Iseki [1] introduced
BCK/BCI algebras as a generalization of the concept of set-
theoretic di�erence and proportional calculi. BCI/BCK al-
gebras form an important class of logical algebras.�ey have
numerous applications to di�erent domains of mathematics,
e.g., sets theory, semigroup theory, group theory, deriva-
tional algebras, etc. As per the requirement to establish
certain rational logic systems as a logical foundation for
uncertain information processing, di�erent types of logical
systems are felt to be established. For this reason, researchers
introduced and studied many types of logical algebras by
using the concepts of BCI/BCK algebras.

A block code is related to channel coding that is one of
the main types of it. Block code adds redundancy to a
message so that, at the receiver end, one can easily decode
the message with a minimum number of errors, where it is
already provided that the information rate would not exceed
the channel capacity. �e task of a block code is to encode

the strings that are formed by an alphabet set sayC into code
words by encoding each letter of C separately. As per the
importance block of codes, they can be source codes used in
data compression or channel codes used for detection and
correction of channel errors [2]. Codes based on a family of
algorithms were constructed by Lempel and Ziv [3], which
are applicable for real-world problems and sequences. A
detailed terminology based on codes and decoding through
graphs is discussed in [4]. Ali et al. introduced the concept of
n-ary block codes related to KU-algebras in [5].

Many researchers have made their studies based on
block codes in the past few years considering di�erent
branches and di�erent directions. One of them is logical
algebra. Surdive et al. studied coding theory in hyper BCK-
algebras [6]. Jun and Song [7] de�ned and studied codes
based on BCK-algebras. Further Fu and Xin [8] introduced
the concept of block codes in lattices.

Iampan introduced the concept of UP-algebras [9].
Iampan contributed on di�erent aspects related to UP-al-
gebras in [10]. Senapati et al. [11] represented UP-algebras in
an intervalued intuitionistic fuzzy environment. Moin et al.
[12] introduced graphs of UP-algebras and studied related
results. �e binary block codes associated to UP-algebras
were discussed by Moin et al. [13]. Wajsberg algebras arising
from binary block codes were studied by Flaut and Vasile
[14].
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In this paper, we have introduced and investigated
generalized UP-valued cut functions and their several
properties. Also, we have established n-ary block-codes for
UP-algebras by using the notion of generalized UP-valued
cut functions. We show that every finite UP-algebra de-
termines a block-code.

Section 2 contains preliminaries and related defini-
tions with some examples. Section 3 is based on the main
results.

2. Preliminaries

(is section is comprises with the concepts of UP-algebras,
UP-subalgebras, UP-ideals, UP-valued function (cut func-
tion), and other important terminologies with examples and
some related results.

Definition 1 (see [9]). A UP-algebra is a structure (U, ∗ ,∅)

of type (2, 0) with a single binary operation ∗ that satisfies
the following identities: for any x, y, z ∈ U,

(UP-1): (y∗ z)∗ [(x∗y)∗ (x∗ z)] � ∅
(UP-2): ∅∗x � x

(UP-3): x∗∅ � ∅
(UP-4): x∗y � y∗ x � ∅ implies x � y

For a commutative UP-algebras U we have the condition
for commutativity as x∗ (x∗y) � y∗ (y∗x).

We define a partial order relation in a UP-algebra U as
y≤x if and only if x∗y � ∅. If (U, ∗ ,∅) and (V, ∘ ,∅) are
two UP-algebras, then a map f: U⟶ V with the property
f(x∗y) � f(x) ∘f(y), for all x, y ∈ U, is called a UP-al-
gebra morphism. If f is one-one and onto map, then f is
simply called isomorphism of U.

Example 1. Let U � ∅, a, b, c{ } be a set in which ∗ is defined
by the following Cayley table

a b c

a b c

a

b a c

c a





   





b





*

We observe here that U � ∅, a, b, c{ } is a UP-algebra.

Example 2. Let U � an|n � 1, 2, 3, . . . , 9  and define a bi-
nary operation ∗ on U as ai ∗ aj � ak,∀ai, aj, ak ∈ U where
k � (lcm(i, j)/j). (en (U, ∗ , a1) is a UP-algebra. (e
following table represents this operation:

*

a1

a1

a1

a1

a1

a1

a1

a1

a1

a1 a1

a1

a1

a1

a1

a1

a2

a2

a2

a2

a2

a2

a2

a2

a3

a3

a3

a3

a3

a3

a3

a3

a4

a4

a4

a4

a4

a5

a5

a5

a5

a5

a5

a5

a6

a6

a6

a6

Lemma 1 (see [10]). In a UP-algebra U the following
properties hold for any a, b, c ∈ U:

(UP-5) a∗ a � ∅
(UP-6) a∗ b � ∅ and b∗ c � ∅⇒ a∗ c � ∅
(UP-7) a∗ b � ∅⇒ (c∗ a)∗ (c∗ b) � ∅
(UP-8) a∗ b � ∅⇒ (b∗ c)∗ (a∗ c) � ∅
(UP-9) a∗ (b∗ a) � ∅
(UP-10) (b∗ a)∗ a � ∅⇔a � b∗ a

(UP-11) a∗ (b∗ b) � ∅

Lemma 2. Let U � (A, ∗ ,∅) be UP-algebras, then define a
binary relation ≤ on U as follows: for all a, b, c ∈ A

(UP-12) a≤ a

(UP-13) ∅≤ a

(UP-14) b∗ a≤ a

(UP-15) a≤ b and b≤ a ⇒ a � b

(UP-16) b≤ a and c≤ b⇒ c≤ a

(UP-17) b≤ a⇒ c∗ b≤ c∗ a

(UP-18) b≤ a⇒ a∗ c≤ b∗ c

(UP-19) (a∗ b)∗ (a∗ c)≤ b∗ c

Definition 2 (see [9]). A nonempty subset A of a UP-algebra
U is called a UP-ideal of U if it satisfies the following
conditions:

(1) ∅∈ A

(2) a∗ (b∗ c) ∈ A, b ∈ A implies a∗ c ∈ A, for all
a, b, c ∈ U

Proposition 1. An algebra (U, ∗ ,∅) of type (2, 0) is a UP-
algebra if and only if the given conditions are satisfied:

(1) (c∗ a)∗ ((b∗ c)∗ (b∗ a)) � ∅ for all a, b, c ∈ U

(2) (b∗∅)∗ a � a for all a, b ∈ U

(3) For all a, b, c ∈ U such that a∗ b � ∅, b∗ a �

∅⇒ a � b
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Proof. If (U, ∗ ,∅) is a UP-algebra. (en, (1) follows from
(UP-1).

Next, (3) follows from (UP-4).
By using (UP-2) and (UP-3) we get (2) as (b∗ 1)∗ a �

1∗ a � a.
Indirectly we consider (U, ∗ ,∅) satisfies given condi-

tions, then (UP-1) and (UP-4) follows from (1) and (2),
respectively. Next, replace b by a, a by 1 and c by 1 in (1) and
using (3) we get, (∅∗∅)∗ [(a∗∅)∗ (a∗∅)] � ∅⇒
(a∗∅)∗ (a∗∅) � ∅⇒ a∗∅ � ∅ which shows (UP-3).
Further, using a∗∅ � ∅ in (2) we get, ∅∗ a � a for all
a ∈ U. Hence (U, ∗ ,∅) is a UP-algebra.

Let (U, ∗ ,∅) be a finite UP-algebra with n elements and
U be a finite nonempty set. A map f: U⟶ U is called a
UP-function. Let Un � 0, 1, 2, . . . , n − 1{ } be a finite set. In
the following, we will consider UP-algebra U and the set U,
where U � l0, l1, . . . , ln−1 , U � u0, u1, . . . , um−1 m≤ n. A
generalized cut function of f is a map flj

: U⟶ Un, lj ∈ U,
such that flj

(ui) � u if and only if lj ∗f(ui) � lu, for all
lj, lk ∈ U, ui ∈ U, and i, j, u ∈ 0, 1, 2, . . . , n − 1{ }.

For such each UP-function f: U⟶ U, it is easy to
define an n-ary block code with codewords having length m.
For this purpose, we suppose that for each element l ∈ U the
generalized cut function fl: U⟶ Un. For every such
function, there will be corresponding a codeword wr, having
symbols taken from the set Un. So, we get
wl � w0, w1, . . . , wm−1, with wi � j, j ∈ Kn, if and only if
fl(xi) � j, that means l∗f(xi) � lj. We denote this new
code by UX. Hence, it is easy to associate an n-ary block code
for every such UP-algebra. □

Example 3. We take the UP-algebra U � 1, 2, 3, 4{ } having ∘
where ∘ is defined by the following table:

a b c

a b c

a

b 1 c

c a

1

11

1 1 a c

1

1

b

1

1



We can easily show that U � U4 � 1, 2, 3, 4{ }. We con-
sider the generalized cut function f: U⟶ U, f(1) � 2,

f(2) � a, f(3) � b, f(4) � c and fl: U4⟶ U4, l ∈ U. In
this way r � 1, returns the codeword w1 � 0000. For l � a,
we get the codeword 1001. In fact, fa(1) � 2, since
a ∘f(1) � a ∘ 1 � a � f(1); fa(a) � 1 since a ∘f(2) � a ∘
a � 1 � f(0); fa(b) � 1 and a ∘f(2) � a ∘ b � 1 � f(1);

fa(c) � 1, also a ∘f(4) � a ∘ c � a � f(2).
(e following result investigates about the existence of

the converse part whether it is true or not.

3. Main Results

We consider a finite set Un
′ � 1, 2, . . . , n − 1{ } and its n-ary

codewords U � v1, v2, . . . , vm , of length h, h≥ n − 2, as-
cending ordered after lexicographic order. We consider
vi � vi1vi2, . . . , vih, vij ∈ Un

′, j ∈ 1, 2, . . . , h{ }, with vij

descending ordered such that vivik

≤ u, i ∈ 1, 2, . . . , m{ },

u ∈ 1, 2, . . . , min n − 1, h{ }{ } and vij � 1 in the rest.

Definition 3. Let U � v1, v2, . . . , vm  be an n-ary code.
Further we suppose that vi � vi1, vi2 . . . , vih, vij ∈ Un

′.
j ∈ 1, 2, . . . , h{ }, q≥ n − 2, as above. We now associate a
matrix A � (αst)s,t∈ 0,1,...,l−1{ }, A ∈ Al(Un), to this code where
l � m + h + 1. Let l � m + h + 1. We define αss � 0,

αs0 � s, α0s � 0, s ∈ 0, 1, 2, . . . , l − 1{ }. For 1≤ s≤ h, let
αst � 1, if t< s, and αst � 0, if t≥ s. For s> h, we put αst � vit,
for t ∈ 1, 2, . . . , h{ } and αs(h+j) � 1, for h + j< s. We suppose
that αst � 0, for t≥ s.

Here, A is the lower triangular matrix, and it is known as
the matrix associated with the n-ary block code
U � v1, v2, . . . , vm .

Definition 4. Consider A ∈ Ai(Un) is associated to the n-ary
block code U � k1, k2, . . . , km  defined onUn

′. Suppose that
Ul � 0, 1, . . . , l − 1{ } is a nonempty set. (e multiplication
i ∘ j � αij is defined on Ul.

Theorem 1. 9e set (U∅, ∘ , 0) is a UP-algebra.

Proof. We see here that Proposition 1 (2), (3) are well
defined. From Definition 1, we need to show that
(b∗ c)∗ ((c∗ a)∗ (c∗ a)) � 1, for all a, b, c ∈ 0, 1, . . . ,{

l − 1}. For the elements a, b, c we have 3 situations here that
are given as follows:

Case 1: c � 0, b≠ 0. We get b∗ a≤ a, which implies
a∗ (b∗ a) � 0.
Case 2: b � 0, c≠ 0. We need to show that
c∗ ((c∗ a)∗ a) � 0.(us for a � 0, it is obvious and for
c � 0, we obtain (0∗ a)∗ (0∗ a) � 0∗ (a∗ a) � 0. For
c≠ 0, a≥ l − m, c ∈ 1, 2, . . . , h{ }, we have ((a∗ c)∗ a) �

wxwac ≤ c, therefore c∗ (c∗ a)∗ a � 0. For c≠ 0, a≥ l −

m, c≥ h + 1, we obtain c∗ ((c∗ a)∗ a)∗ c � 0. Next, if
c∗ a � 1, since 1∗ a≤ n − 1< h + 1≤ c, in returns we
get c∗ ((c∗ a)∗ a) � c∗ (1∗ a) � 0. If c∗ a � 0, then
c∗ ((c∗ a)∗ a) � c∗ (0∗ a) � c∗ a � 0. For a< l − m,

c≤ h + 1, we have c∗ ((c∗ a)∗ a) � 0, since c∗ a � 1,

1∗ a � 1 and c∗ 1 � 0. For a< l − m, c> h + 1, it results
c∗ ((c∗ a)∗ a) � 0, since c∗ a � 0, it yield
c∗ (0∗ a) � c∗ a � 0.
Case 3: c≠ 0, b≠ 0. Here, we have to prove that
(c∗ a)∗ ((b∗ k)∗ (b∗ a)) � 0. Hence, it is shown for
a � 0. Furthermore, let a≠ 0. For a≥ l − m and
b, c< l − m, b< k, we get n − 1≥ (b∗ a)≥ (c∗ a), hence
((c∗ a)∗ (b∗ a)) � 1. We also get b∗ c � 1, hence
(c∗ a)∗ ((c∗ b)∗ (b∗ a)) � 1∗ 1 � 0. For a≥ l − m

and b, c< l − m, c< b, we get n − 1≥ (c∗ a)≥ (b∗ a),
then ((c∗ a)∗ (b∗ a)) � 0. It results that (c∗ a)∗
((b∗ c)∗ (b∗ a)) � 0. For a≥ l − m and b, c≥ l − m,

b< c, we can get that b∗ a � 1 and c∗ a � 1, so
(c∗ a)∗ (b∗ a) � 0. We also obtain b∗ a � 1,

c∗ a � 0, and b∗ c � 1, since b< c. It yield
(c∗ a)∗ ((b∗ k)∗ (b∗ a)) � 1∗ (0∗ 1) � 1∗ 1 � 0.
Or, we can have b∗ a � 0, c∗ a � 0,; hence (c∗ a)∗
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((b∗ k)∗ (b∗ a)) � 0. For a≥ l − m and b, k≥ l − m,

c< b, we can have b∗ a � 1 and c∗ a � 1, hence
(c∗ a)∗ (b∗ a) � 0. Or, we have c∗ a � 1, b∗ a � 0,
and b∗ c � 0, as a result we get zero. We also can have
b∗ a � 0, c∗ a � 0,; hence the relation is 0. For a≤ l −

m and c< l − m< b, if b∗ a � 0, it shows that the asked
relation is 0. If b∗ a � 1, then (c∗ a)∗
((b∗ k)∗ (b∗ a)) � 0∗ ((c∗ a)∗ 1) � β∗ 1, with β≥ 1,
and c< a.

For a≥ l − m and b< l − m< c, we have that b∗ a � 1. If
c∗ a � 1, we obtain 0. If c∗ a � 0, hence we find (c∗ a)∗
((b∗ c)∗ (b∗ a)) � (b∗ c)∗ (0∗ 1) � (b∗ c)∗ 1 � 0, since
b∗ c≥ 1.

For a< l − m and b, c< l − m, b< c, we have
b∗ a � 1, c∗ a � 1,; therefore, we obtain the result as zero.
For a< l − m and b, c< l − m, c≤ b, we can obtain
(c∗ a)∗ ((b∗ c)∗ (b∗ a)) � 1∗ (0∗ 1) � 0. Or, we find
(b∗ a) � 0; thus, we can say that obtained result is 0. For
a< l − m and b, c< l − m, b< c, since b< c, it returns
b∗ c � 1. We can get b∗ a � 1, c∗ a � 0 and b∗ c � 1,
therefore (c∗ a)∗ ((b∗ c)∗ (b∗ a)) � 0∗ (1∗ 1) � 1∗
1 � 0. For a< l − m and c< l − m≤ b, we can get
(c∗ a)∗ ((b∗ k)∗ (b∗ a)) � 1∗ (0∗ 1) � 0. Or, if
(b∗ a) � 0; thus we obtain 0 and that is required. For a< l −

m and b, c≥ l − m, b< c, we have (b∗ a) � 0; then, we get
zero. For a< l − m and b, c≥ l − m, b> c, it results
(b∗ a) � 0, hence the asked relation is 0. □

Note.

(1) We find that a UP-algebra (Ul, ∗ , 0) from (eorem
1 is extracted by using the matrix A, which is
uniquely determined by an n-ary code, say U, given
as per Definition 1; thus, we can say that (Ur, ∗ , 0) is
a uniquely determined algebra.

(2) By (eorem 1, we suppose that (Cl, ∗ , 0) is the
resulted UP-algebra, with Ul � 0, 1, 2, . . . , l − 1{ }. If
U � a0 � 1, a1, a2, . . . al−1  with multiplication “∗ ”
given by the relation ai ∗ aj � ac if and only if
a∗ b � c, for a, b, c ∈ 0, 1, 2, . . . , l − 1{ }, then
(U, ∗ , 1) is a UP-algebra.

(3) If we suppose that Ch � 0, 1, 2, . . . h − 1{ }, the map
f: Ch⟶ U, f(a) � ai, returns a code UX, that can
be associated to the above UP-algebra (U, ∗ , 1), that
contains the code U as a subset.

We consider U as an n-ary block code. (en, from
(eorem 1 and above Note, we can have a UP-algebra U in
such a way that the obtained n-ary block code UX contains
the n-ary block code U as of its subset. Suppose that U is a
binary block code with m code words of length h. By using
the abovementioned notations, consider X is the associated
UP-algebra and W � 1, w1, . . . , wr  is the associated n-ary
block codes that contains the code U. Next consider wa �

a1a2, . . . , ah and wb � b1b2, . . . , bh are two codewords that
belong to W. Here, we define an order relation ≤ c on W by
the following logic wa ≤wb if and only if bi ≤ ai, for all
i ∈ 1, 2, . . . , h{ }. On U � W, with the order relation ≤ c, we
define the following multiplication:

(1) a ∘ 1 � 1 and a ∘ a � 1,∀a ∈ U

(2) b ∘ a � 1 if a≤ cb,∀a, b ∈ U

(3) b ∘ a � a if b≤ ca,∀a, b ∈ U

(is order relations give UP-algebra structure. It is clear
that wl ≤ c · · · ≤ cw1 ≤ c1. □

Proposition 2. V � 1, wl−m, wl−m+1, . . . , wl  gives an UP-
algebra ideal in the U.

Proof. Considering V � 1, wl−m, wl−m+1, . . . , wl . We will
show that b ∈ V, a ∈ U, and b ∘ a ∈ V, implies a ∈ V. By
using multiplication rule in the UP-algebra U and chosen
n-ary codes, we get for a ∈ U − V, b ∘ a � a ∈ U − V. If
a, b ∈ V, then b ∘ a � a ∈ V or b ∘ a � 1 ∈ V. □

Example 4. Consider K5 � 0, 1, 2, 3, 4{ }, n � 5, q � 4, m � 3,

l � 8, V � w1, w2, w3 , with
w1 � 3211, w2 � 4221, w3 � 4321.

Entries of the matrixA associated with the n-ary code U,
are aij � 0,∀i≤ j, ai1 � i − 1, a62 � 3, a63 � 2, a72 � 4, a73 �

2, a74 � 2, a82 � 4, a83 � 3, a84 � 2 and aij � 1 for the rest of i

and j.
(e corresponding UP-algebra, (U, ∘ , 1), where

U � a0 � 1, a1, a2, a3, a4, a5, a6, a7 , is shown with the fol-
lowing multiplication table.

1

1 1

1 1

1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

a1

a1
a1 a1

a2 a2
a2 a2

a2

a2

a2

a1 a1
a1a1

a3

a3

a3
a3

a3
a4
a5
a6
a7

a7

a7

a6

a6

a5

a5

a4

a4

a4 a4

a1 a1
a1 a1 a1

a1a1
a1

Considering U � 1, 2, 3, 4{ }. (e map f: U⟶ U,

f(1) � a1, f(2) � a2, f(3) � a3, f(4) � a4 gives us the
following block code U′ � 0000, 1000, 1100, 1110, 1111,{

3211, 4221, 4321}, that contains U as a subset.

0000 − 1000 − 1100 − 1110 − 1111 − 3211 − 4221 − 4321.

(1)

Clearly it is a noncommutative UP-algebra as
(a6 ∘ a7) ∘ a7 � a1 ∘ a7 � a4 and (a7 ∘ a6) ∘ a6 � 1 ∘ a6 � a6.
(is clarifies that U is not an implicative UP-algebra. Also
we note that it is not a positive implicative UP-algebra. Since
(a6 ∘ a7) ∘ a6 � a1 ∘ a6 � a3 ≠ a6 and
a3 ∘ (a6 ∘ a7) � a3 ∘ a1 � 1≠ (a3 ∘ a6)(a3 ∘ a7) � a1 ∘ a2 � a1.

Example 5. Consider K4 � 0, 1, 2, 3{ }, n � 4, q � 5, m � 3,

l � 9, U � w1, w2, w3 , with w1 � 21111, w2 � 32111, w3
� 33111.
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Entries of the matrixA associated with the n-ary code U,
are aij � 0∀, i≤ j, ai1 � i − 1, a72 � 2, a82 � 3, a92 � 3, a83 �

2, a93 � 3 and aij � 1 for the rest of i and j.
(e corresponding UP-algebra (X, ∘ , 1), where

X � a0 � 1, a1, a2, a3, a4, a5, a6, a7  is shown with the fol-
lowing multiplication table.

1

1 1
1 1
1 1 1
1 1 1 1
1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

a1
a1

a1

a2

a2

a2
a2

a3 a3
a3

a3

a3

a2

a1

a3
a4
a5

a5 a6

a6

a6

a7

a7

a8

a8

a8a7

a5
a4

a4

a2

a1 a1
a1a1

a1

a1

a1
a1

a1
a1

a1 a1 a1

a1
a1

a1a1
a1
a1 a1

a1

a1



Let K � 1, 2, 3, 4, 5{ }. (en, f: K⟶ X, f(1) � a1,

f(2) � a2, f(3) � a3, f(4) � a4, f(5) � a5 returns the
given block code U′ � 00000, 10000, 11000, 11100, 11110,{

21111, 32211, 33111}, where U is contained in it as a subset.
(e diagram of this generated code is given as

00000 10000 11000 11100 11110

32211

33111

21111
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