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Counting polynomials are closely related to certain features of chemical graphs and provide an elegant means of expressing graph
topological invariants.  e current paper aims to calculate four polynomials for double benzenoid chains, Sadhana, omega, theta,
and Padmakar–Ivan (PI).  e edge-cut method is used to derive analytical closed expressions for these polynomials.

1. Introduction

In chemistry, graph theory has a wide range of applications,
particularly in the mathematical modeling of chemical
structures [1–3]. Atoms are referred to as vertices in
chemical graph theory, while the bonds that connect them
are referred to as edges. GraphH (V, E) is a connected, �nite,
simple chemical graph, where vertex and edge sets are
debited by V and E, respectively. Pólya [4] coined the
concept of a counting polynomial in the �eld of chemistry in
1936. However, chemists did not pay much attention to the
subject for several decades, even though characteristic
polynomials are computed from molecular orbitals of un-
saturated hydrocarbons [5]. Polynomial counting is a
common method for expressing molecular invariants in a
chemical graph in polynomial form. Chemical graph fea-
tures such as equidistant edges, independent sets, matching
sets, and chromatic numbers in�uence these polynomials.
Characteristic polynomials, Hosoya polynomial, rotational
polynomial, Wiener polynomial, and sextet polynomial are
some well-known polynomials. Polynomials can be used to
produce a variety of signi�cant topological indices, either
directly or thenceforth integrals or derivatives. A topological
index is a numeric quantity that can quantify many chemical

properties in organic chemistry and is invariant under the
graph’s automorphism and derived according to speci�c
rules. Topological indices were �rst used in chemistry in
1947; Harary Wiener introduced a renowned topological
descriptor called the Wiener index [6], which is given as

W(H) �
1
2
∑

p∈V(G)
∑

q∈V(G)
d(p, q), (1)

where d(p, q) is the shortest distance between vertices p and
q.

For a molecular graph H(V, E), the edges e � xy and
f � wz of H are called codistant, denoted by eCof if they
satisfy the following topologically parallel relation: d(x, z) �
d(y, w) � d(x, w) + 1 � d(y, z) + 1 and. d(x, w) � d(y, z).

Co is symmetric and re�exive. It is not transitive in
general. Set C(e) � f ∈ E(G): eCof{ }.  e given relation
“Co” is transitive on C(e), and C(e) is said to be orthogonal
cut oc in the graph. It is named a quasiorthogonal cut qoc if
the relation Co is not transitive.

By quasiorthogonal cuts, omega, theta, PI polynomials,
and Sadhana are well-de�ned. Diudea [7] de�ned omega
polynomial Ω(H, x) as calculating “quasiorthogonal cut”
strips, qoc strips in H as
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Ω(H, t) � 􏽘
k

m(H, k)t
k
, (2)

where m(H, k) represents the number of qoc of length k.
Diudea et al. [8] were the first to introduce the theta

polynomial θ(H, x) in 2008. It is defined as counting several
edges equidistant for each edge f of the graph and given as

θ(H, t) � 􏽘
k

m(H, k)kt
k
. (3)

+e Sadhana polynomial denoted by s d(H, t) was in-
troduced by Ashrafi et al. [9]. It is given as follows:

sd(H, t) � 􏽘
k

m(H, k)t
e−k

. (4)

After Khadikar et al. [10] presented the Padmakar–Ivan
(PI) index, Ashrafi et al. [11] proposed the PI polynomial.
+e polynomial, denoted by PI(H, t), counts no equidistant
edges in G and is given as follows:

PI(H, t) � 􏽘
k

m(H, k)kt
e−k

. (5)

Counting polynomials have piqued the interest of an-
alysts and researchers working in the field of chemical graph
theory, with some recent work included in [12–16]. In ad-
dition, various topological features of hexagonal chains have
been considered in [17–20]. +is paper calculated four
counting polynomials of double benzenoid chains: Sadhana,
omega, theta, and Padmakar–Ivan (PI).

2. Results and Discussion

2.1.CountingPolynomials andaDoubleBenzenoidHexagonal
Chain. Benzenoid hydrocarbons play a significant role in

organic chemistry. +is hexagonal system has congruent
interior regions and contains no cut vertex. +e system is
named pericondensed if at least one vertex belongs to three
hexagons; otherwise, the hexagonal system is said to be
catacondensed. +e chain is an arrangement of hexagons in
which no two hexagons are adjacent to each other. We
obtain n-tuple hexagonal chain which is formed when
condensed identical hexagonal chains combine [9, 21].

A double hexagonal chain can be obtained when n� 2
[22, 23]. A pericondensed hexagonal system is formed with
the aid of a new fused naphthalene, which is a double
hexagonal (benzenoid) chain.

Let us have a look at the naphthalene structure with
horizontal internal edges. +ere are two types of naphtha-
lene fusion in this regard, as shown in Figure 1.

α − type : v � 1, w � 2, x � 3, y � 4,

β − type : u � 2, v � 3, w � 4, x � 5.
(6)

At every stage, fusion type is obtained by η, where
η ∈ α, β􏼈 􏼉. A double (benzenoid) chain is denoted by
H(η1, η2, . . . , ηn) where η1, η2, . . . , ηn ∈ α, β􏼈 􏼉 are fusion
types, respectively. It is seen that H(η1, η2, . . . , ηn) contains
2n+ 2 regular hexagons and n + 1 naphthalene, see Fig-
ure 1. +e number of codistant edges of the double ben-
zenoid chain H(α, β, α, β, . . . , α, β) is given in Table 1.

+e details of double hexagonal (benzenoid) chains can
be seen in [21, 24–27]. +e edge-cut procedure proposed by
Klavzar [28] will be used to compute the counting
polynomials.

Theorem 1. 3e omega polynomial of the double hexagonal
H(α,β,α,β,...,β) is given by

Ω(H(α, β, α, β, . . . , β), t) � 2t
2

+ 2t
4

+(n + 2)t
3

+(n −2)t
5
. (7)

Proof. Consider a graph H of a double hexagonal chain
H(α, β, α, β, . . . , β), with 8n + 11 number of edges. +e
omega polynomial of graph H is Ω(H, t) � 􏽐km(H, k)tk.

+e elementary cuts of the double benzenoid hexagonal
chain are described in Figure 2.

Using Table 1 for the number of qocs and the number of
codistant edges, we get the desired result.

Ω(H(α, β, α, β, . . . , β), t) � 2t
2

+ 2t
4

+(n + 3)t
3

+(n −2)t
5
. (8)

□
Theorem 2. 3e Sadhana polynomial of the double hexag-
onal H(α, β, α, β, . . . , α, β) is given by

sd(H(α, β, α, β, . . . , β), t) � t
8n+6 2t

3
+(n + 3)t

2
+ 2t + n −2􏼐 􏼑. (9)
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Proof. Consider a graph H of a double hexagonal chain
H(α, β, α, β, . . . , β).  e Sadhana polynomial of graph H is
s d(H, t) � ∑km(H, k)te−k, where e � |E| � 8n + 11.

Using Table 1 for the number of qocs and the number of
codistant edges, we get the desired result.

Sd(H(α, β, α, β, . . . , β), t) �(n −2)t8n+11−5 +(n + 3)t8n+11−3 + 2t8n+11−4 + 2t8n+11−2. (10)

On simplifying it becomes

Sd(H(α, β, α, β, . . . , β), t) � t8n+6 2t3 +(n + 3)t2 + 2t + n −2( ). (11)
□

a

y

x

w

v

u

3

2

1

4

5

(a)

b

(b)

Figure 1: (a) Naphthalene fusion β type in the double hexagonal benzenoid chain. (b) A double hexagonal benzenoid chain
H(η1, η2, η3, η4, η5, η6).

Table 1: Number of codistant edges of the double benzenoid hexagonal chain H(α, β, α, β, . . . , α, β) (using Figure 2).

Types of qocs Types of edges No. of codistant edges No. of qocs

M s1

2 2
4 2
5 n− 2

S s2 3 n+ 3

Figure 2:  e elementary cuts of the double benzenoid hexagonal chain H(α, β, α, β, α, β).

Journal of Mathematics 3



Theorem 3. 3e theta polynomial of the double hexagonal
H(α, β, α, β, . . . , α, β) is given by

θ(H(α, β, α, β, . . . , β), t) � 4t
2

+ 8t
4

+ 3(n + 3)t
3

+ 5(n −2)t
5
. (12)

Proof. Consider a graph H of a double hexagonal chain
H(α, β, α, β, . . . , β). +e theta polynomial of graph H is

θ(H, t) � 􏽘
k

m(H, k)kt
k
. (13)

Using Table 1 for several qocs and several codistant
edges, we get the desired result.

θ(H(α, β, α, β, . . . , β), t) � 4t
2

+ 8t
4

+ 3(n + 3)t
3

+ 5(n −2)t
5
. (14)

□
Theorem 4. 3e PI polynomial of the double hexagonal
H(α, β, α, β, . . . , α, β) is given by

PI(H(α, β, α, β, . . . , β), t) � t
8n+6 4t

3
+ 3(n + 3)t

2
+ 8t + 5n − 10􏼐 􏼑. (15)

Proof. Consider a graph H of a double hexagonal chain
H(α, β, α, β, . . . , β, α). +e PI polynomial of graph H with
e � |E| � 8n + 3 is PI(H, t) � 􏽐km(H, k)kte−k.

Using Table 1 for the number of qocs and the number of
codistant edges, we get

PI(H(α, β, α, β, . . . , β, α), t) � 5(n −2)t
8n+11−5

+ 3(n + 3)t
8n+11−3

+ 8t
8n+11−4

+ 4t
8n+11−2

. (16)

On simplifying, we get

PI(H(α, β, α, β, . . . , β, α), t) � t
8n+6 4t

3
+ 3(n + 3)t

2
+ 8t + 5n − 10􏼐 􏼑. (17)

□
2.2. Double BenzenoidHexagonal Linear Chain andCounting
Polynomials. H(η1, η2, . . . , ηn) is said to be a double linear
hexagonal (benzenoid) chain, L2×n, if for all i, ηi � η i+1 in
H(η1, η2, . . . , ηn), see Figure 3. L2×n has 8n + 11 edges. +e
number of codistant edges of the double benzenoid chain
L2×n is given in Table 2.

Theorem 5. 3e omega polynomial of the double hexagonal
L2×n is given by

Ω L2×n, t( 􏼁 � 2t
n+2

+(2n + 1)t
3

+ 2t
2
. (18)

Proof. Consider the double hexagonal chain L2×n and
omega polynomial of the graph H as

Ω(H, t) � 􏽘
k

m(H, k)t
k
. (19)

+e elementary cuts of the double benzenoid linear chain
are described in Figure 4.

Using the definition of omega polynomial, and putting
the values of m(H, k) and k from Table 2, we get the desired
result that

Ω L2×n, t( 􏼁 � 2t
n+2

+(2n + 1)t
3

+ 2t
2
. (20)

□

Theorem 6. 3e Sadhana polynomial of the double linear
hexagonal L2×n is given as follows:

Sd L2×n, t( 􏼁 � t
7n+8 2t

n+1
+(2n + 1)t

n
+ 2t􏼐 􏼑. (21)

Proof. Since sd(H, t) � 􏽐
k

m(H, k)te−k, e� 8n+ 11.
Again using Table 2, and putting the values of m(H, k)

and k in the definition of Sadhana polynomial, we get
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Sd L2×n, t( ) � 2t8n+11− n−2 +(2n + 1)t8n+11−3 + 2t8n+11−2. (22)

On simplifying, we get

Sd L2×n, t( ) � t7n+8 2tn+1 +(2n + 1)tn + 2t( ). (23)
□

Theorem 7. �e theta polynomial of the double linear
hexagonal L2×n is given by

θ L2×n, t( ) �(2n + 4)tn+2 +(6n + 3)t3 + 4t2. (24)

Proof. We know that θ(H, t) � ∑km(H, k)ktk.
Putting values of m(H, k) and k from Table 1, we get

θ L2×n, t( ) � 2(n + 2)tn+2 + 3(2n + 1)t3 + 4t2, (25)

which simpli�es to

u

v

w

x

y

1

2

3

4

5

a

(a)

b

(b)

Figure 3: (a) Naphthalene α type fusion in the double hexagonal benzenoid chain. (b) A double linear hexagonal benzenoid chain L2×5.

Table 2: Number of codistant edges of the double linear benzenoid chain L2×n.

Types of qocs Types of edges No. of codistant edges No. of qocs
M s1 n+ 2 2
N s2 3 2n+ 1
N s2 2 2

Figure 4:  e elementary cuts of the double benzenoid linear chain L2×5.
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θ L2×n, t( 􏼁 � (2n + 4)t
n+2

+(6n + 3)t
3

+ 4t
2
. (26)

□

Theorem 8. 3e PI polynomial of the double linear hexag-
onal L2×n is given by

PI L2×n, t( 􏼁 � t
7n+8 4t

n+1
+(6n + 3)t

n
+(4n + 2)t􏼐 􏼑. (27)

Proof. By definition, PI polynomial is given as e � |E| �

8n + 11 and

PI L2×n, t( 􏼁 � 􏽘
k

m(H, k)kt
e−k

. (28)

Again employing Table 2 for values of k and m(H, k), we
get the following polynomial:

PI L2×n, t( 􏼁 � 2(n + 2)t
8n+11− n−2

+ 3(2n + 1)t
8n+11−3

+ 4t
8n+11−2

,

(29)

which leads the result.

PI L2×n, t( 􏼁 � t
7n+8 4t

n+1
+(6n + 3)t

n
+(2n + 4)t􏼐 􏼑. (30)

□

3. Conclusion

Counting polynomials are a simple technique to encode
topological indices of chemical graphs, which are quantifiers
of various physiochemical aspects of compounds and are
commonly employed in structure-activity correlations. +e
edge-cut method of Klavzar is used to compute distance-
based counting polynomials of the double benzenoid chain,
such as omega, Sadhana, theta and PI polynomials. +ese
polynomials are well-known methods for matching the
chemical graph with the physiological features of various
double benzenoid chains.
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[2] J. M. Amigó, J. Gálvez, and V. M. Villar, “A review on
molecular topology: applying graph theory to drug discovery
and design,” Naturwissenschaften, vol. 96, no. 7, pp. 749–761,
2009.
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