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A proper cluster is usually defined as maximally coherent groups from a set of objects using pairwise or more complicated
similarities. In general hypergraphs, clustering problem refers to extraction of subhypergraphs with a higher internal density, for
instance, maximal cliques in hypergraphs. *e determination of clustering structure within hypergraphs is a significant problem
in the area of data mining. Various works of detecting clusters on graphs and uniform hypergraphs have been published in the past
decades. Recently, it has been shown that the maximum 1, 2{ }-clique size in 1, 2{ }-hypergraphs is related to the global maxima of a
certain quadratic program based on the structure of the given nonuniform hypergraphs. In this paper, we first extend this result to
relate strict local maxima of this program to certain maximal cliques including 2-cliques or 1, 2{ }-cliques. We also explore the
connection between edge-weighted clusters and strictly local optimum solutions of a class of polynomials resulting from
nonuniform 1, 2{ }-hypergraphs.

1. Introduction

Many important phenomena depend on the structures of
graphs or hypergraphs, for example, the spread of disease in
a society, image segmentation problems in image analysis, or
feature extraction in networks. To understand hypergraph
structure, we often start with the study of the subhyper-
graphs with denser relations inside and sparser connections
to other subhypergraphs. *us, detecting such hypergraph
clusters of closely related objects remains one of the most
interesting problems in the field of bioinformatics, social
society, and data mining. Clustering is a process of parti-
tioning a set of objects into meaningful subsets so that all
objects in the same group are similar and objects in different
groups are dissimilar. It is a method of data exploration and
a way of looking for patterns or structure in the data that are
of interest. *e majority of approaches to clusters available
in the literature assume that objects similarities are
expressed as pairwise relations in networks in terms of 2-
graphs. *ere is also study of pairwise clustering to edge-
weighted and vertex-weighted graphs (see [1–6], respec-
tively). For uniform hypergraphs, there are various works on

clustering with applications in different aspects, such as face
clustering, perceptual grouping, and parametric motion
segmentation, as well as image categorization using high
order relations, since approximation of more complicated
similarities in terms of pairwise interaction can lead to
substantial loss of information (see [7–14]). In real-world
cases, similarities in a group of objects may be more ap-
propriate to be modeled in nonuniform weighted edges in
general hypergraphs. As an illustration, think of a society of
people with different income levels. It makes perfect sense to
define similarity measures over one person and two persons
that indicate how close they are. To be specific, two persons
knowing each other would get pairwise weight 1 and weight
0 otherwise; this pairwise relationship can be modeled by the
well-known adjacent matrix in this society; further, for a
person labeled i with income bigger than certain amount, say
m, we would assign this person weight 1 on a single edge i{ };
for income less than this amount, we would assign this
person weight 0 on the single edge i{ }; this situation in-
volving a subset in the society may be denoted by a vector B

→
.

Naturally, the internal coherency of a cluster can be rep-
resented by a maximum optimization problem based on the
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society as follows: max x
→T

A x
→

+ B x
→

􏼚 􏼛. *is optimization is

the same as the graph-Lagrangian formed from a nonuni-
form 1, 2{ }-hypergraph that models the relationship in this
society (the detailed definition is given in the next section).
*erefore, it is interesting to detect different types of clusters,
say 1, 2{ }-cliques or 2-cliques. Clearly, this example can be
generalized to any model fitting problem, where the devi-
ation of a set of points from the model provides a measure of
their dissimilarity. *e problem of data clustering using
more comprehensive dissimilarity (uniform or nonuniform)
is usually referred to as hypergraph clustering, since we can
represent any instance of this problem by means of a
hypergraph, where vertices are the objects to be clustered
and the (edge-weighted) hyperedges (uniform or nonuni-
form) encode different order similarities.

In 1965, Motzkin and Straus provided a solution to the
maximum value of a class of homogeneous quadratic mul-
tilinear functions on n variable over the standard simplex of
the n-dimension Euclidean space, where the homogeneous
quadratic multilinear function is associated with the edge set
of a graphwith n vertices. Motzkin–Straus’ result established a
connection between the order of a maximum complete
subgraph and the graph-Lagrangian of a graph. *is result
also provided a new proof of a theorem by Turán who pushed
the development of the study of extremal problems in graph
theory. In [15], Motzkin and Straus’ result was extended to
characterization of local maxima in simple graphs. For
Motzkin and Straus’ type result in nonuniform hypergraphs,
recently, in [16], it has been shown that the global maxima of a
certain quadratic program are related to the maximum
1, 2{ }-clique size in 1, 2{ }-hypergraphs.

In this paper, we extend uniform hypergraph clustering
result to nonuniform hypergraphs and provide a solution to
the maximum value of a class of nonhomogeneous multi-
linear functions in n variables over the standard simplex of
the n-dimension Euclidean space. Specifically, we first ex-
tend this result to relate strict local maxima of this program
to certain maximal cliques (either 2-cliques or 1, 2{ }-cliques
or both). We also explore the connection between edge-
weighted clusters and strictly local optimum solutions of a
class of polynomials in the given hypergraphs. Nonhomo-
geneous multilinear functions discussed in this paper are
associated with nonuniform hypergraphs.

*is paper is organized as follows. In Section 2, we give
the brief introduction to main concepts, terminology, and
related results. In Section 3, we list some useful lemmas. In
Section 4, we present the characterization of certainmaximal
cliques (either 2-cliques or 1, 2{ }-cliques or both) in terms of
strictly local optimum solutions of a class of polynomials
formed from unweighted 1, 2{ }-graphs. In Section 5, we
discuss the parametrization graph-Lagrangian and cliques in
1, 2{ }-graphs. In Section 6, we extend the result in Section 4
to edge-weighted 1, 2{ }-graphs in some way. Conclusions are
given in Section 7.

2. Definitions and Related Results

A hypergraph H � (V, E) consists of a vertex set V and an
edge set E, where every edge in E is a subset of V. *e set
T(H) � |F|: F ∈ E{ } is called the set of edge types of H. We
also say that H is a T(H)-graph. For example, if
T(H) � 1, 2{ }, then we say that H is a 1, 2{ }-graph. If all
edges have the same cardinality r, then H is an r-uniform
hypergraph. A 2-uniform graph is called a graph. A
hypergraph is nonuniform if it has at least two edge types.
For any r ∈ T(H), the rth-level hypergraphHr is the
hypergraph consisting of all edges with r vertices of H and
E(Hr) denotes the edge set of Hr. We write HT

n for a
hypergraph H on n vertices with T(H) � T. Given a subset
U⊆V(H), the induced subgraph denoted by H[U] is a
hypergraph on U with the edge set F ∈ E(H): F⊆U{ }. An
edge i1, i2, . . . , ir􏼈 􏼉 in a hypergraph is simply written as
i1i2 · · · ir throughout the paper.

For a positive integer n, let [n] denote the set 1, 2, . . . , n{ }.

For a finite set V and a positive integer i, let V

i
􏼠 􏼡 denote the

family of all i-subsets of V. *e complete hypergraph KT
n is a

hypergraph on n vertices with edge set ⋃i∈T
[n]

i
􏼠 􏼡. For

example, K r{ }
n is the complete r-uniform hypergraph on n

vertices. K[r]
n is the nonuniform hypergraph with all possible

edges of cardinality at most r. *e complete graph on n

verticesK 2{ }
n is also called a clique.We also let [k] r{ } represent

the complete r-uniform hypergraph on vertex set [k].
For a T-graph H � (V, E), for r ∈ T, we denote the

(r − 1)-neighborhood of a vertex i ∈ V by

Er
i � A ∈ V − i{ }

r − 1􏼠 􏼡: A∪ i{ } ∈ E􏼨 􏼩. Similarly, we will de-

note the (r − 2)-neighborhood of a pair of vertices i, j ∈ V

by Er
ij � B ∈ V − i, j􏼈 􏼉

r − 2􏼠 􏼡: B∪ i, j􏼈 􏼉 ∈ E􏼨 􏼩. We denote the

complement of Er
i by Er

i � A ∈ V − i{ }

r − 1􏼠 􏼡: A∪ i{ } ∈􏼨

V

r
􏼠 􏼡\E}. Denote Er

i\j � Er
i ∩Er

j.

Definition 1. For an r-uniform graph H with the vertex set
[n], edge set E(H), and a vector x

→
� (x1, . . . , xn) ∈ Rn, we

associate a homogeneous polynomial in n variables, denoted
by λ(H, x

→
), as follows: λ(H, x

→
) ≔ 􏽐i1i2 ···ir∈E(H)xi1

xi2
. . . xir

.
Let Δ ≔ x

→
� (x1, x2, . . . , xn): 􏽐

n
i�1 xi � 1, xi ≥􏼈 0 for i �

1, 2, . . . , n}. *e graph-Lagrangian of H, denoted by λ(H), is
the maximum of the above homogeneous multilinear
polynomial of degree r over the standard simplex S.
Precisely,

λ(H) ≔ max λ(H, x
→

): x
→∈ Δ􏼈 􏼉. (1)
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*e value xi is called the weight of the vertex i. A vector
x
→

� (x1, x2, . . . , xn) ∈ Rn is called feasible weighting for H

if and only if x
→∈ S. A vector y

→∈ S is called optimal
weighting for H if and only if λ(H, y

→
) � λ(H).

Remark 1. λ(H) was called Lagrangian of H in literature
[17–20].*e terminology “graph-Lagrangian” was suggested
by Franco Giannessi.

*e characteristic vector of a set C⊆V, denoted by
x
→C

� (xC
1 , xC

2 , . . . , xC
n ), is the vector in S defined as

x
C
i �

1i∈C
|C|

(2)

where |C| denotes the cardinality of C and 1P is the indicator
function returning 1 if property P is satisfied and 0
otherwise.

In [21], Motzkin and Straus provided the following
simple expression for the graph-Lagrangian of a 2-graph.

Theorem 1 (see Theorem 1 in [21] ). If H is a 2-graph with n

vertices in which a largest clique has order t then
λ(H) � λ(K

2{ }
t ) � (1/2)(1 − (1/t)). Furthermore, the char-

acteristic vector of a maximum clique of H is optimal
weighting for H.

*is result provided a solution to the optimization
problem of this type of quadratic functions over the standard
simplex of an Euclidean space.

In [16], Peng et al. generalized the concept of graph-
Lagrangian to nonuniform hypergraphs as given below.

Definition 2. For a hypergraph HT
n with T(H) � T and a

vector x
→

� (x1, . . . , xn) ∈ Rn, define

λ′ H
T
n , x

→
􏼐 􏼑 � 􏽘

r∈T
r! 􏽘

i1i2 ···ir∈E Hr( )

xi1
xi2

· · · xir
⎛⎝ ⎞⎠. (3)

Let Δ � x
→

� (x1, x2, . . . , xn): 􏽐
n
i�1 xi � 1, xi ≥ 0 for i􏼈 �

1, 2, . . . , n}. *e Lagrangian of HT
n , denoted by λ′(HT

n ), is
defined as

λ′ H
T
n􏼐 􏼑 � max λ′ H

T
n , x

→
􏼐 􏼑: x

→∈ Δ􏽮 􏽯. (4)

*e value xi is called the weight of vertex i. A vector
y
→∈ S is called optimal weighting for H if λ′(H, y

→
) � λ′(H).

In [22], Peng and Yao gave a generalization of Motz-
kin–Straus result to 1, 2{ }-graphs.

Theorem 2 (see Theorem 1.4 in [22]). If H is a 1, 2{ }-graph
with n vertices and the order of its maximum complete
1, 2{ }-subgraph is t (where t≥ 2), then λ′(H) �

λ′(K
2{ }

t ) � 2 − (1/t). Furthermore, the characteristic vector of
a maximum clique of H is optimal weighting for H.

In [23, 24], Gu et al. and Tang et al. obtained more
Motzkin–Straus results to some uniform hypergraphs.

3. Graph-Lagrangians and Cliques in
1, 2{ }-Graphs: Unweighted Case

*ere is a 1-to-1 connection between strictly local optimum
and maximal cliques (2-cliques or 1, 2{ }-cliques) in
1, 2{ }-graphs.

Theorem 3. A subset C of vertices in H is a maximum clique
of a 1, 2{ }-hypergraph H if and only if its characteristic vector
x
→C is a global maximum of optimization problem (4).

Proof. One direction is immediate from*eorem 2. For the
other direction, suppose that x

→C is a global maximum of
optimization problem (4). From (4),
λ′(H, x

→C
) � λ′(H, x

→U
), where U is a maximum clique in

H. Let |C| � c and |S| � s. From*eorem 2, λ′(H, x
→C

)≤ 2 −

(1/c) and λ′(xU) � 2 − (1/u). However, λ′(H, x
→C

) �

λ′(H, x
→U

) only if 2 − (1/u) � 2 − (1/c). *is implies c � s.
So C must be a clique from*eorem 2 and C is a maximum
clique. □

Proposition 1. Let C be a subset of k vertices of a
1, 2{ }-hypergraph H. 3en C is a maximal clique of H if and
only if its characteristic vector x

→C satisfies

zλ′(H, x
→

)

zxj

�

�
3k − 2

k
, if j ∈ C,

≤
3k − 2

k
, if j ∉ C.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

Proof. Suppose that C is a maximal clique. From the
definition of maximal clique

zλ′ H, x
→C

􏼒 􏼓

zxj

� 1 + 2 􏽘
ij∈E2(C)

x
C
i � 1 + 2

k − 1
k

�
3k − 2

k
,

(6)

for all j ∈ C; and

zλ′ H, x
→C

􏼒 􏼓

zxj

� 2 􏽘
ij∈E2(C)

xixj ≤
3k − 2

k
(7)

for all j ∉ C. Hence x
→C satisfies (5).

For the other direction, ifC is not a clique, then, for some
vertex j ∈ C, there exists a vertex i ∈ C satisfying i≠ j and
ij ∉ E2(C) or i ∉ E1(C). Hence,

zλ′ H, x
→C

􏼒 􏼓

zxj

< 1 + 2 􏽘
ij∈E2(C)

x
C
i �

3k − 2
k

. (8)
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*is contradicts zλ′(H, x
→C

)/zxj � (3k − 2)/k for all
j ∈ C. So C must be a clique. If C is not a maximal clique,
then there must exist a clique C′C. Let j ∈ C′∖C. *en

zλ′ H, x
→C

􏼒 􏼓

zxj

� 1 + 2 􏽘
ij∈E2(C)

x
C
i � 3>

3k − 2
k

. (9)

*is contradicts zλ′(H, x
→C

)/zxj ≤ (3k − 2)/k for
j ∉ C. □

Lemma 1 (KKT necessary condition, [25]). If feasible
weighting x

→
� (x1, x2, . . . , xn) is a local solution of opti-

mization problem (4), then there exists θ ∈ R such that, for all
j ∈ [n],

zλ′(H, x
→

)

zxi

�
� θ, if j ∈ σ( x

→
),

≤ θ, if j ∉ σ( x
→

).

⎧⎪⎨

⎪⎩
(10)

*e following corollary follows from Proposition 1
immediately.

Corollary 1. If C is a maximal clique of a 1, 2{ }-hypergraph
H, then xC satisfies the first-order KKT necessarily.

Definition 3. For a 1, 2{ }-hypergraph H, a maximal clique C

is said to be strictly maximal if, for all i ∈ (V\C)∩E1, the
number of 2-edges crossing i and C is less than |C| − 1.

Note that, for C to be a maximal clique, it suffices that the
number of edges crossing i andC be nomore than |C| − 1 for
all i ∈ (V\C)∩E1. However, for C to be a strictly maximal
clique, this number needs to be strictly less than |C| − 1.

Lemma 2. Consider a 1, 2{ }-hypergraph H which contains
two cliques C and D of equal cardinality |C| � |D| � k. Let
m � |C\D| � |D\C| � m≤ k. 3en, for every α1, α2 ≥ 0 sat-
isfying α1 + α2 � 1, we have the following:

(a) If H has exactly m(m − 1) edges crossing C\D and
D\C, then λ′(H, α1 x

→C
+ α1 x

→D
) � λ′(H, x

→C
)

(b) If H has fewer than m(m − 1) edges crossing C\D and
D\C, then λ′(H, α1 x

→C
+ α1 x

→D
)< λ′(H, x

→C
)

3e proof of this lemma is similar to the proof of 3eorem
6 in [15]. So we omit the details here.

Lemma 3. Let x
→ be a strict local maximum of optimization

problem (4); then, ∀i, j ∈ σ( x
→

), there exists an edge e ∈ E(H)

such that i, j􏼈 􏼉⊆ e.

Proof. Suppose, for a contradiction, that there exist i and j

in σ( x
→

) such that i, j􏼈 􏼉⊈e for any e ∈ E(H). We define new
weighting y

→ for H as follows. Let δ < xj be an arbitrarily
small positive constant. Let yl � xl for l≠ i, j, yi � xi + δ,
and yj � xj − δ; then y

→ is clearly legal weighting for H, and

λ′(H, y
→

) − λ′(H, x
→

) � xj

zλ′(H, x
→

)

zxi

−
zλ′(H, x

→
)

zxj

􏼠 􏼡

− x
2
j

z
2λ′(H, x

→
)

zxizxj

� 0.

(11)

*is contradicts x
→ being a strict local maximum of

optimization problem (4). Hence Lemma 3 holds.
Now we are ready to prove the main result of this

section. □

Theorem 4. Let C be a subset of k vertices of a
1, 2{ }-hypergraph H.

(a) If E1 ∩C≠φ, thenC is a strict maximal 1, 2{ }-clique of
H if and only if x

→C is a strict local maximum of
optimization problem (4)

(b) If E1 ∩C � φ, then C is a strict maximal {2}-clique of
H if and only if x

→C is a strict local maximum of
optimization problem (4)

Proof. (a) Suppose that x
→C is a strict local maximum of

optimization problem (4); then the KKTconditions (10) hold
for some θ. We will show that θ � ((3k − 2)/k), where
k � |C|. *en, by Proposition 1, C is a maximal clique.
Suppose that θ≠ ((3k − 2)/k) for a contradiction. For every
two vertices i, j in C, ij ∈ E2 by Lemma 3. We will show that
all the vertices in C are contained in E1. *en C is a clique
and θ≠ ((3k − 2)/k). Assume that there exist some vertices
in C not contained in E1. Since E1 ∩C≠φ, there must exist a
vertex i ∈ C contained in E1. Assume that j ∈ C but it is not
contained in E1; then

zλ′(H, x
→

)

zxi

� 1 + 2 ·
k − 1

k
,

zλ′(H, x
→

)

zxj

� 2 ·
k − 1

k
.

(12)

*is contradicts (zλ′(H, x
→

)/zxi) � (zλ′(H, x
→

)/zxj) by
Lemma 1 Hence, all the vertices in C are contained in E1.

To see C as a strictly maximal clique, suppose to the
contrary that j ∈ E1\C adjacent to exactly k − 1 vertex in C,
and let i denote the only vertex in C not adjacent to j. *en
set D � j∪ (C\ i{ }) as a clique of the same cardinality as C.
Because m � |C\D| � |D\C| � 1, there are no edges crossing
CD and D\C, since i, j are nonadjacent. From Lemma 2, for
all α ∈ [0, 1], we have λ′(H, x

→C
) � λ′(H, α1 x

→C
+ α1 x

→D
)

which contradicts the hypothesis that x
→C is a strict maxi-

mum of optimization problem (4). *is proves the first part
of the theorem.

For the other part, suppose that C is a strictly maximal
clique. To prove that xC is a strict local maximum of op-
timization problem (4), we apply the second-order suffi-
ciency conditions for constrained optimization. First, from
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Corollary 1, xC satisfies the KKT conditions. Note that, in
this case, the Lagrange multipliers μi’s are given by

μi �
3k − 2

k
− 1i∈E1 − 􏽘

ij∈E2

xj. (13)

It remains to be shown that the Hessian of the La-
grangian associated with the optimization in (4) is negative
definite on the subspace

M � y
→∈ R

n
, 􏽘

n

i�1
yi � 0 andyi � 0, for all i ∈ I

⎧⎨

⎩

⎫⎬

⎭ (14)

where I � i: xc
i � 0 and μi > 0􏼈 􏼉. Since C is a strict maximal

clique, we have

􏽘
ij∈E2

xj <
3k − 2

k
, (15)

for all i ∉ C. Now, let y
→∈M\ 0{ }; then

λ′(H, y
→

) � 􏽘
i∈E1

yj + 􏽘
ij∈E2

yiyj � 􏽘
i∈C

yi 􏽘
j∈C

yj − yi
⎛⎝ ⎞⎠

� − 􏽘
i∈C

y
2
i < 0.

(16)

*is completes the proof. (b)*is is similar to that in (a).
We omit the details here. □

4. The Parametrization Lagrangian and
Cliques in 1, 2{ }-Graphs

Definition 4. For a hypergraph HT
n with HT

n and a vector
x
→

� (x1, . . . , xn) ∈ Rn, define

λ′ H
T
n , x

→
􏼐 􏼑 � 􏽘

r∈T
r! 􏽘

i1i2···ir∈E Hr( )

xi1
xi2

. . . xir
⎛⎝ ⎞⎠. (17)

Let PS � x
→

� (x1, x2, . . . , xn): 􏽐
n
i�1 xi � 1, 􏽐

n
i�1 x2

i �􏼈

1/s, xi ≥ 0 for i � 1, 2, . . . , n}, where s is a real number be-
tween [1, n]. *e parametrization Lagrangian of HT

n ,
denoted by λs

′(HT
n ), is defined as

λs
′ H

T
n􏼐 􏼑 ≔ max λ′ H

T
n , x

→
􏼐 􏼑: x

→∈ PS􏽮 􏽯. (18)

*e value xi is called the weight of vertex i. A vector
y
→∈ PS is called optimal weighting for H if
λs
′(H, y

→
) � λs
′(H).

Let

X(s, C) ≔ x
→

| x
→∈ PS and xu � 0∀u ∉ C􏼈 􏼉. (19)

*e following is easy to see.

Lemma 4. 3e set X(s, C) is nonempty if and only if
1≤ s≤ |C|. For s � |C|, X(s, C) consists simply of the char-
acter vector of C.

Theorem 5. LetH be a 1, 2{ }-hypergraph with clique number
ω. 3en

(a) λs
′(H) � 2 − (1/s) for 1≤ s≤ω

(b) λs
′(H)≤ 2 − (1/ω)< 2 − (1/s) for ω≤ s≤ n

(c) λs
′(H) � 2 − (1/s) if and only if s≤ω

(d) λ′(H) � max1≤s≤nλs
′(H) � 2 − (1/ω)

(e) For s≤ω, the set of global optimal solutions of (18) is
given by

∪ (Xs, C)|C is a clique, s≤ |􏼈 (20)

(f ) 3e set of global optimal solutions of λω′(H) is (1C/ω),
where C is an (optimal) 1, 2{ }-clique of order ω.
Hence, there is a one-to-one correspondence between
the global optimal solutions of λω′(H) and the optimal
cliques in H.

Proof. Proof of (a). Let s≤ω. Let x
→ be any feasible solution

of λs
′(H). *en

λs
′(H) � 􏽘

i∈E1

xi + 2 􏽘
ij∈E2

xixj

≤ 1 + x1 + x2 + · · · + xn( 􏼁
2

− 􏽘
n

i�1
x
2
i − 2 􏽘

ij∈E
2

xixj

≤ 2 −
1
s

.

(21)

On the other side, let C be a clique of size s in H for
some S≥ s (note that s is not assumed to be integral).
Since ω≥ s, X(s, C) is not empty. Now, for an arbitrary
x ∈ X(s, C),

λs
′(H) � 􏽘

i∈C
xi + 2 􏽘

ij∈C
xixj

1 + 􏽘
i ∈ C

xi
⎛⎝ ⎞⎠

2

− 􏽘
i∈C

x
2
i

2 −
1
s

.

(22)

Hence, λs
′(H) � 2 − (1/s) for 1≤ s≤ω.

Proof of (b). Let s>ω. Since any x
→ that is feasible for

λs
′(H) is also feasible for λ′(H), and since

λ′(H) � 2 − 1/ω, we have λs
′(H)< λ′(H) � 2 − 1/ω.

Proof of (c). Since 2 − (1/s) is an increasing function of
s, (a) and (b) together imply (c).
Proof of (d). Note that the feasible region of λ′(H) is
the feasible region of λs

′(H) for s in the range [1, n].
Combining with (a) and (b) implies (d).
Proof of (e). By equation (22), every x ∈ X(s, C), where
C is a clique of size at least s, satisfies

λs
′(H) � 2 −

1
s

. (23)
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On the other side, for an arbitrary x of L(s), we have

λs
′(H) � 2 −

1
s

− 􏽘

i∈E
1

xi − 2 􏽘

ij∈E
2

xixj. (24)

Hence, if λs
′(H) � 2 − 1/s, then 􏽐

i∈E
1xi + 􏽐

ij∈E
2

xixj � 0. *is happens if and only if

xi � 0,whenever i ∈ E
1
,

xixj � 0,whenever ij ∈ E
2
.

(25)

So the support σ( x
→

) of x
→ forms a clique in H. Let C be

this clique. Clearly, x
→∈ X(x, C). Lemma 4 implies that

s≤ |C|.

Proof of (f ). *e result follows from (e) and Lemma
4. □

5. Maximum Vertex-Weighted Cliques in 1, 2{ }-
Graphs

Given a nonnegative weight vector w
→

v, for any subset C of
the vertex set, wv(C) denotes the sum of the weights of
vertex in C. *e vertex-weighted clique number ω(w

→
v, H) is

the maximum of wv(C) over all cliques C of G. Note that
ω(e, H) is the usual clique number ω(H) of the hypergraph.
Given a positive weight vector w

→
v, define a set of matrices as

follows:

M w
→

v, H( 􏼁 � B|Bii �
1

wvi

∀i, Bij + Bji ≥
1

wvi

+
1

wvj

∀ij ∈E2
, Bij � 0∀ij ∈ E

2⎫⎬

⎭.
⎧⎨

⎩ (26)

For a given a matrix B ∈M(w
→

v, H), consider the fol-
lowing optimization problem:

L H, w
→

v( 􏼁 � min − 􏽘
i∈E1

x
2
i

wvi

+ 2 x
→T

B x
→

| x
→∈ S

⎧⎨

⎩

⎫⎬

⎭. (27)

Theorem 6. Let H be a 1, 2{ }-graph. 3en
ω(w

→
v, H) � (1/L(H, w

→
v)) for any positive weight vector w

→,
and B ∈M(w

→
, H).

In the Proof of *eorem 6, we will impose an additional
condition on a solution x

→
� (x1, x2, . . . , xn) to a global

optimum x
→ to problem (27): (∗) | i: xi > 0􏼈 􏼉| is minimal; that

is, if y
→ is a feasible solution for H satisfying

|i: yi > 0|< |i: xi > 0|, then L(H, y
→

)< L(H). We need the
following lemmas.

Lemma 5. Let x
→ be a global optimum of optimization

problem (27) with minimum support; then there exists an edge
e ∈ E(H) such that i, j􏼈 􏼉⊆ e∀i, j ∈ σ( x

→
).

Proof. Let x
→ be a global optimum of optimization problem

(27) with minimum support. Let f( x
→

) � − 􏽐i∈E1

x2
i /wvi

+ 2 x
→T

B x
→. Suppose, for a contradiction, that there

exist i and j in σ( x
→

) such that i, j􏼈 􏼉⊈e for any e ∈ E(H). We
define a new feasible solution y

→ to (27) as follows. Let yl �

xl for l≠ i, j, yi � xi + xj, and yj � xj − xj � 0; then y
→ is

clearly a feasible solution (27) with smaller support com-
pared to x

→. By KKT necessary condition (zf( x
→

)

/zxi) � (zf( x
→

)/zxj), and

f( y
→

) − f( x
→

) � xj

zf( x
→

)

zxi

−
zf( x

→
)

zxj

􏼠 􏼡

+ 2x
2
j Bii + Bjj − 1i∈E1

1
wvi

􏼠 − 1j∈E1
1

wvj

− Bij − Bji
⎞⎠

� 2x
2
j Bii + Bjj − 1i∈E1

1
wvi

􏼠 − 1j∈E1
1

wvj

− Bij − Bji
⎞⎠

≤ 0,

(28)

since Bij + Bji ≥ (1/wvi
) + (1/wvi

)≥Bii + Bjj − 1i∈E1(1/wvi
)

− 1j∈E1(1/wvi
). *is contradicts x

→ being a global optimum of
optimization problem (27) with minimum support. □

Claim 1. Either i ∈ E1 for all i ∈ σ( x
→

) or i ∉ E1 for all
i ∈ σ( x

→
).

Proof. Suppose that i ∈ E1 but j ∉ E1 for a contradiction. By
the KKT condition, (zf( x

→
)/zxi) � (zf( x

→
)/zxj). By

Lemma 5, ∀i, j ∈ σ( x
→

), ij ∈ E2; therefore 0 � (2xj/wvi
).

*is is a contradiction.
Now we are ready to prove *eorem 6. □

Proof. of *eorem 6. Let x
→ be a global optimum of op-

timization problem (27) with minimum support. By Lemma
5 and Claim 1, σ( x

→
) induces 1, 2{ }-clique or a 2-clique of H.

If σ( x
→

) induces a 1, 2{ }-clique, then
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f( x
→

) � − 􏽘
i∈E1

x
2
i

wvi

+ 2 x
→T

B x
→

� 􏽘

i∈σ( x
→

)

x
2
i

wvi

, (29)

and its minimum over the simplex is at

xi �
if i ∈ σ( x

→
),

0, if i ∉ σ( x
→

).

⎧⎨

⎩ (30)

for i � 1, 2, . . . , n. So the optimal value of f( x
→

) is
1/wv(σ( x

→
)). For the solution to be global optimal,

wv(σ( x
→

)) must be the maximum 1, 2{ }-clique in H.
If σ( x

→
) induces a 2-clique, then

f( x
→

) � − 􏽘
i∈E1

x
2
i

wvi

+ 2 x
→T

B x
→

� 2 􏽘

i∈σ( x
→

)

x
2
i

wvi

, (31)

and the left is similar to the case where σ( x
→

) induces
1, 2{ }-clique. □

6. Dominant Set for 1, 2{ }-Graphs

Let G � (V, E) be an edge-weighted graph with edge weight
wij > 0 for ij ∈ E. *e weighted adjacency matrix A � (aij)n

is defined as aij � wij if ij ∈ E and aij � 0 otherwise. *e
average weighted degree of i with regard to S is defined as

awdegS(i) �
1

|S|
􏽘
j∈S

aij. (32)

If j ∉ S, define

φS(i, j) � aij − awdegS(i). (33)

*e weight of i with regard to S is defined as

WS(i) �

1, if |S| � 1,

􏽘
j∈S i{ }

φS i{ }(j, i)wS i{ }(j), otherwise,

⎧⎪⎪⎨

⎪⎪⎩

W(S) � 􏽘
i∈S

wS(i).

(34)

Definition 5 (see [4]). A nonempty subset of vertices S⊆V

such that W(T)> 0 for any nonempty T⊆ S is said to be
dominant if

(1) WS(i)> 0 for all i ∈ S

(2) WS∗ i{ }(i)< 0 for all i ∉ S

Set the weighted characteristic vector x
→S ∈△ as follows:

x
S
i �

wS(i)

W(S)
, if i ∈ S,

0, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(35)

Pavan and Pelillo connect the dominant set to the fol-
lowing quadratic program:

maximize x
→T

A x
→

subject to ∈△,
(36)

and establish a correspondence between the global (local)
maxima of (36) and the dominant sets of a graph.

Theorem 7 (see [4]). If S is a dominant subset of vertices,
then its weighted characteristic vector x

→S is a strict local
solution of program (36). Conversely, if x

→∗ is a strict local
solution of program (36), then its support σ � σ( x

→∗
) is a

dominant set, provided that wσ∪ i{ }(i)≠ 0 for all i ∉ σ.

Here we consider the quadratic program related to edge-
weighted 1, 2{ }-graph. Let H be a 1, 2{ }-graph on vertex set
[n] with edge sets E1 ∪E2. Let u

→≥ 0 be the edge weight
vector of H1 and let A≥ 0 be the edge weight matrix of H2.

Let pi � ui if i{ } ∈ E1 and pi � 0 if i{ } ∉ E1; let qij �

aij − pi if ij ∈ E2 and qij � − pi if ij ∉ E2; that is,
aij � qij + pi. Consider the following quadratic program:

maximizef( x
→

) � p
→T

x
→

+ x
→T

Q x
→

subject to ∈△,
(37)

where p
→

� (p1, . . . , pn)T and Q � (qij)n. A vector x
→∈△

satisfies the Karush-Kuhn-Tucker (KKT) conditions for
problem (37), that is, the first-order necessary conditions for
local optimality, if there exist n + 1 real constants (Lagrange
multipliers) μ1, . . . , μn and λ with μi ≥ 0 for all i � 1, . . . , n,
such that

pi +(Q x
→

)i + θ + μi � 0, (38)

for all i � 1, . . . , n, 􏽐
n
i�1 xi � 1, and 􏽐

n
i�1 xiμi � 0. Note that

􏽐
n
i�1 xi � 1 and aij � Qij + pi. Equality (38) is equivalent to

(A x
→

)i + θ + μi � 0, (39)

for all i � 1, . . . , n, 􏽐
n
i�1 xi � 1, and 􏽐

n
i�1 xiμi � 0. So, if we

define the dominant set ofH as the dominant set ofH2, then,
by *eorem 7, we have the following.

Theorem 8. If S is a dominant subset of vertices, then its
weighted characteristic vector x

→S is a strict local solution of
program (37). Conversely, if x

→∗ is a strict local solution of
program (37), then its support σ � σ( x

→∗
) is a dominant set,

provided that wσ∪ i{ }(i)≠ 0 for all i ∉ σ.

7. Conclusion

In this paper, we study the connection between the local
maxima of a class of quadratic program and certain maximal
cliques including 2-cliques or 1, 2{ }-cliques of
1, 2{ }-hypergraphs. We also explore the connection between
edge-weighted clusters and strictly local optimum solutions
of a class of polynomials resulting from nonuniform
1, 2{ }-hypergraphs. In the future, we will try to extend these
results to general hypergraphs.
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