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A relatively new and e­cient approach based on a new iterative method and the Aboodh transform called the Aboodh transform
iterative method is proposed to solve space-time fractional di�erential equations, the fractional order is considered in the Caputo
sense. �is method is a combination of the Aboodh transform and the new iterative method and gives the solution in series form
with easily computable components.�e nonlinear term is easily handled by the new iterative method, to a­rm the simplicity and
performance of the proposed method, �ve examples were considered, and the solution plots were presented to show the e�ect of
the fractional order. �e outcome reveals that the approach is accurate and easy to implement.

1. Introduction

Fractional Calculus can be described as the �eld of math-
ematics that consists of ordinary and partial derivatives of
positive noninteger order. It is the generalization of classical
integral and di�erential equations [1, 2]. One major at-
tractive property of fractional calculus is the nonlocal
property.

Recently, various problems in Biology and Physics has
been modeled with fractional order derivative, an analytical
solution of the Fornberg–Whithan equation was presented
in [3], fractional model of the Rosenau–Hyman equation
which is a KdV-like equation was considered in [4], for
application of fractional derivative to Biology population
model see [5], the numerical study of HIV-1 infection of
CD4+ T-cell was presented in [6], Caputo–Fabrizio frac-
tional model of photocatalytic degradation of dyes was
studied in [7], a wavelet based numerical scheme for frac-
tional order SEIR epidemic of measles by using Genocchi
polynomials was presented in [8], and the investigation of
fractional order susceptible-infected-recovered epidemic

model of childhood disease was presented in [9]. �erefore,
it is extremely important to �nd an e�ective method of
solving fractional di�erential equations, as only the solutions
can give a better comprehension of the underlying problems.
Many researchers have presented di�erent methods for
solving fractional di�erential equations such as reproducing
kernel discretization method [10], Chebyshev wavelet col-
location method, [11] Tichonov regularization method [12],
Chebyshev collocation method, [13] q-homotopy analysis
Shehu transform method [14], Fractional di�erential
transform, [15] Fractional variational iterational method
[16], and iterative Laplace transform method [17].

In 2016, the new iterative method was presented by
Daftardar–Gejji and Jafari to solve functional equations [18],
but now the iterative method has been used to solve many
integral and fractional order di�erential equations.
[5, 19, 20] But most of these methods considered a single
term time-fractional order di�erential equations.

In this paper, the main objective is to extend the Aboodh
transform iterative method to solve space-time fractional
di�erential equations withmore than a single term fractional
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derivative. (e fractional derivative is considered in Caputo
sense both for time and space, when α � β � 1, the space-
time fractional differential equations becomes the classical
differential equations. (e rest of this paper is arranged as
follows: in Section 2, we gave some definitions and a pre-
liminary concept of Aboodh transform. In Section 3, we
described briefly the Aboodh transform iterative method for
space-time fractional derivative while in Section 4, a few
examples were considered to describe the efficiency of the
method. Finally, we concluded in Section 5.

2. Definitions and Preliminaries

In this section, we give some definitions and notions about
Aboodh transform.

Definition 1. Caputo time-fractional derivative of order
α> 0 for the function Q(x, t) is defined as follows [1, 2]:

D
α
t Q(x, t) �

1
Γ(n − α)

􏽚
t

0
(t − τ)

n− α−1
Q

(n)
(x, τ)dτ,

n − 1< α≤ n.

(1)

Similarly, the Caputo space fractional derivative of order
β> 0 for the function Q(x, t) is defined as follows:

D
β
xQ(x, t) �

1
Γ(n − β)

􏽚
x

0
(x − t)

n− β−1
Q

(n)
(x, t)dt,

n − 1< β≤ n.

(2)

Remark 1. Dα
t Q(x, t) � D

β
xQ(x, t) � 0, whenever Q(x, t) is

a constant.

Remark 2. Dα
t tb � (Γ(b + 1)/Γ(b − α + 1))􏼈 t

b− α
, if n − 1<

α≤ n, b> α − 1, 0, n − 1< α≤ n, b≤ α − 1.

Definition 2. One parameter Mittag-Leffler function is given
as follows [5]:

Eα(z) � 􏽘

∞

k�0

z
k

Γ(1 + kα)
, α, z ∈ CRe(α)≥ 0. (3)

Definition 3. (e Aboodh transform of Q(t) is defined as
follows [5]:

A[Q(t)] �
1
v

􏽚
∞

0
Q(t)e

−vtdt � A(v), t≥ 0. (4)

(e inverse Aboodh transform of function Q(t) if
A[Q(t)] � A(v) is defined as follows:

Q(t) � A
−1

[A(v)]. (5)

Remark 3. (e Aboodh transform of the function Q(t)

satisfy the linearity property [5].

Definition 4. (e Aboodh transform for Caputo time-
fractional derivative of order β is given as follows [5]:

A D
β
t Q(x, t); v􏽨 􏽩 � v

β
A[Q(x, t)] − 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−β+k

,

m − 1< β≤m.

(6)

3. Basic Idea of the Proposed Method

Consider the space-time fractional partial differential
equation of the form.

D
α
t Q(x,t) �Φ Q(x,t),D

β
xQ(x,t),D

2β
x Q(x,t),D

3β
x Q(x,t)􏼐 􏼑,

0<α,β≤1,

(7)

with the initial conditions

Q
(k)

(x, 0) � hk, k � 0, 1, . . . , m − 1, (8)

Q(x, t) is the unknown function to be determine and
Φ(Q(x, t), D

β
xQ(x, t), D

2β
x Q(x, t), D

3β
x Q(x, t)) can be linear

or nonlinear operator of Q(x, t), D
β
xQ(x, t), D

2β
x Q(x, t), and

D
3β
x Q(x, t) For convenience we represent Q(x, t) with Q, so

by applying the Aboodh transform to both sides of equation
(7) we have the following equation:

A[Q(x, t)]

�
1
v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A Φ Q, D
β
xQ, D

2β
x Q, D

3β
x Q􏼐 􏼑􏽨 􏽩⎛⎝ ⎞⎠,

(9)

taking the inverse Aboodh transform, we get the following
equation:

Q(x,t)

�A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x,0)

v
2−α+k

+A Φ Q,D
β
xQ,D

2β
x Q,D

3β
x Q􏼐 􏼑􏽨 􏽩⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(10)

(e Aboodh transform iterative method gives the so-
lution in form of an infinite series.

Q(x, t) � 􏽘
∞

i�0
Qi. (11)

Since Φ(Q, D
β
xQ, D

2β
x Q, D

3β
x Q) is either a linear or

nonlinear operator which can be decomposed as follows:
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Φ Q, D
β
xQ, D

2β
x Q, D

3β
x Q􏼐 􏼑 � Φ Q0, D

β
xQ0, D

2β
x Q0, D

3β
x Q0􏼐 􏼑

+ 􏽘
∞

i�0
Φ 􏽘

i

k�0
Qk, D

β
xQk, D

2β
x Qk, D

3β
x Q􏼐 􏼑⎛⎝ ⎞⎠ −Φ 􏽘

i−1

k�1
Qk, D

β
xQk, D

2β
x Qk, D

3β
x Q􏼐 􏼑⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭.
(12)

Substituting equations (12) and (11) into equation (10)
we obtain the following equation:

􏽘

∞

i�0
Qi(x, t) � A

−1 1
v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A Φ Q0, D
β
xQ0, D

2β
x Q0, D

3β
x Q0􏼐 􏼑􏽨 􏽩⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

+ A
−1 1

v
α A 􏽘

∞

i�0
Φ 􏽘

i

k�0
Qk, D

β
xQk, D

2β
x Qk, D

3β
x Qk􏼐 􏼑⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− A
−1 1

v
α A Φ 􏽘

i−1

k�1
Qk, D

β
xQk, D

2β
x Qk, D

3β
x Qk􏼐 􏼑⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(13)

Now, recursively, we compute the terms.

Q0(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

⎡⎣ ⎤⎦,

Q1(x, t) � A
−1 1

v
α A Φ Q0, D

β
xQ0, D

2β
x Q0, D

3β
x Q0􏼐 􏼑􏽨 􏽩􏼐 􏼑􏼔 􏼕,

⋮

Qm+1(x, t) � A
−1 1

v
α A 􏽘

∞

i�0
Φ 􏽘

i

k�0
Qk, D

β
xQk, D

2β
x Qk, D

3β
x Qk􏼐 􏼑⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

− A
−1 1

v
α A 􏽘

∞

i�0
Φ 􏽘

i−1

k�1
Qk, D

β
xQk, D

2β
x Qk, D

3β
x Qk􏼐 􏼑⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎢⎣ ⎤⎥⎥⎦⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, m � 1, 2, . . . .

(14)

(e series converges rapidly, for convergence see
[18, 21]. So the m-term analytically approximate solution of
equation (7) is given by the following equation:

Q(x, t) ≈ 􏽘
m−1

i�0
Qi. (15)

4. Application

Here, the Aboodh transform iterative method is applied to
solve five distinct space-time fractional differential equations
with suitable initial conditions.

Example 1. Consider the fractional Airy’s-like equation with
an additional term [22].

D
α
t Q(x, t) � D

β
xQ + Q, 0< α, β≤ 1. (16)

With the initial condition,
Q(x, 0) � x

3
. (17)

Applying the Aboodh transform on both sides of
equation (16), we obtain the following equation:

A[Q(x, t)] �
1
v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A D
β
xQ + Q􏽨 􏽩⎛⎝ ⎞⎠, (18)

taking the inverse Aboodh transform on equation (18), we
have the following equation:

Q(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A D
β
xQ + Q􏽨 􏽩⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦. (19)
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Using the Aboodh transform iterative procedure, we
obtain the following equation:

Q0(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� A
−1 Q(x, 0)

v
2􏼢 􏼣

� x
3
,

Q1(x, t) � A
−1 1

v
α A D

β
xQ0 + Q0􏽨 􏽩􏼐 􏼑􏼔 􏼕

� A
−1 Γ(4)x

3− β

v
2+αΓ(4 − β)

+
x
3

v
2+α􏼢 􏼣

�
Γ(4)x

3− β
t
α

Γ(α + 1)Γ(4 − β)
+

x
3
t
α

Γ(α + 1)
,

Q2(x, t) � A
−1 1

v
α A D

β
x Q0 + Q1( 􏼁 + Q0 + Q1( 􏼁􏽨 􏽩􏼐 􏼑􏼔 􏼕 − A

−1 1
v
α A D

β
xQ0 + Q0􏽨 􏽩􏼐 􏼑􏼔 􏼕

� A
−1 Γ(4)x

3− β

v
2+αΓ(4 − β)

+
Γ(4)x

3− 2β

v
2+2αΓ(4 − 2β)

+
2Γ(4)x

3− β

v
2+2αΓ(4 − β)

+
x
3

v
2+α +

x
3

v
2+2α􏼢 􏼣 − A

− 1 Γ(4)x
3− β

v
2+αΓ(4 − β)

+
x
3

v
2+α􏼢 􏼣

�
Γ(4)x

3− 2β
t
2α

Γ(2α + 1)Γ(4 − 2β)
+

2Γ(4)x
3− β

t
2α

Γ(4 − β)Γ(2α + 1)
+

x
3
t
2α

Γ(2α + 1)
,

⋮

(20)

and so on. (e series solution is given by the following
equation:

Q(x, t) � Q0 + Q1 + Q2 + · · · . (21)

Figure 1 represent the solution plots of equation (16)
when α � β � .02, .04, .06, .08, 2, .4, .6, .8 at x � 1 and t� 1,
respectively. While the remaining are the surface plots.

Example 2. Consider the nonlinear space-time fractional
Fokker–Planck equation [23].

D
α
t Q(x, t) � D

β
x

xQ

3
􏼒 􏼓 −

4
x

Q
2

􏼒 􏼓
x

+ Q
2

􏼐 􏼑
xx

, 0< α, β≤ 1.

(22)

With the initial condition,

Q(x, 0) � x
2
. (23)

Applying the Aboodh transform on equation (22), we
obtain the following equation:

A[Q(x, t)] �
1
v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A D
β
x

x

3
Q􏼒 􏼓 −

4
x

Q
2

􏼒 􏼓
x

+ Q
2

􏼐 􏼑
xx

􏼔 􏼕⎛⎝ ⎞⎠, (24)

taking the inverse Aboodh transform, we have the following
equation:
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Q(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A D
β
x

x

3
Q􏼒 􏼓 −

4
x

Q
2

􏼒 􏼓
x

+ Q
2

􏼐 􏼑
xx

􏼔 􏼕⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦. (25)

Using the Aboodh transform iterative method proce-
dure, we obtain the following equation:
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Figure 1: Comparison of the solution at various values of alpha and beta.
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Q0(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� A
−1 Q(x, 0)

v
2􏼢 􏼣

� x
2
,

Q1(x, t) � A
−1 1

v
α A D

β
x

x

3
Q0􏼒 􏼓 −

4
x

Q
2
0􏼒 􏼓

x
+ Q

2
0􏼐 􏼑

xx
􏼔 􏼕􏼒 􏼓􏼔 􏼕

� A
−1 2x

3− β

Γ(4 − β)v
2+α􏼢 􏼣

�
2x

3− β
t
α

Γ(4 − β)Γ(α + 1)
,

Q2(x, t) � A
−1 1

v
α A D

β
x

x

3
Q0 + Q1( 􏼁􏼒 􏼓 −

4
x

Q0 + Q1( 􏼁
2

􏼒 􏼓
x

+ Q0 + Q1( 􏼁
2
xx􏼔 􏼕􏼒 􏼓􏼔 􏼕

− A
−1 1

v
α A D

β
x

x

3
Q0􏼒 􏼓 −

4
x

Q
2
0􏼒 􏼓

x
+ Q

2
0􏼐 􏼑

xx
􏼔 􏼕􏼒 􏼓􏼔 􏼕

� A
−1 2x

3− β

Γ(4 − β)v
2+α +

2Γ(3 − β)x
4− 2β

3Γ(4 − β)Γ(3 − 2β)v
2+2α −

(4 − β)16x
3− β

Γ(4 − β)v
2+2α􏼢 􏼣

− A
−1 (5 − 2β)16x

4− 2β

[Γ(4 − β)Γ(α + 1)]
2
v
2+3α +

4(5 − β)(4 − β)x
3− β

Γ(4 − β)v
2+2α􏼢 􏼣

+ A
−1 4(6 − 2β)(5 − 2β)Γ(2α + 1)x

4− 2β

[Γ(4 − β)Γ(α + 1)]
2
v
2+3α −

2x
3− β

Γ(4 − β)v
2+α􏼢 􏼣

�
2Γ(5 − β)x

4− 2β
t
2α

3Γ(4 − β)Γ(5 − 2β)Γ(2α + 1)
+

(4 − 4β)(4 − β)x
3− β

t
2α

Γ(4 − β)Γ(2α + 1)
+

(8 − 8β)(5 − 2β)Γ(2α + 1)x
4− 2β

t
3α

[Γ(4 − β)Γ(α + 1)]
2Γ(3α + 1)

,

⋮

(26)

and so on. (e series solution is obtained as follows:

Q(x, t) � Q0 + Q1 + Q2 + · · ·

� x
2

+
2x

3− β
t
α

Γ(4 − β)Γ(α + 1)

+
2Γ(5 − β)x

4− 2β
t
2α

3Γ(4 − β)Γ(5 − 2β)Γ(2α + 1)

+
(4 − 4β)(4 − β)x

3− β
t
2α

Γ(4 − β)Γ(2α + 1)

+
(8 − 8β)(5 − 2β)Γ(2α + 1)x

4− 2β
t
3α

[Γ(4 − β)Γ(α + 1)]
2Γ(3α + 1)

+ · · · .

(27)

Setting β � 1 in equation (27), we obtain the following
equation:

Q(x, t) � x
2 1 +

t
α

Γ(α + 1)
+

t
2α

Γ(2α + 1)
+ · · ·􏼠 􏼡

� x
2

􏽘

∞

i�0

t
iα

Γ(iα + 1)
.

(28)

(e solution obtained in equation (28) converges to the
exact solution in a closed form as i⟶∞,

Q(x, t) � x
2 lim

i⟶∞
􏽘

∞

i�0

t
iα

Γ(iα + 1)

� x
2
Eα t

α
( 􏼁.

(29)
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So, by setting α � 1, we obtain the following equation:

Q(x, t) � x
2
e

t
. (30)

Which is the same solution obtained in [23]. Figure 2
represents the solution plots of equation (22) when α � β �

.02, .04, .06, .08, .2, .6, .8 at x � 1 and t� 1 respectively. While
the remaining are the surface plots.

Example 3. Consider the one-dimensional space-time dif-
fusion equation [24].

D
α
t � D

2β
x Q + D

β
x(xQ), 0< α, β≤ 1. (31)

With the initial condition,

Q(x, 0) � 1. (32)

Applying the Aboodh transform on equation (31), we
obtain the following equation:

A[Q(x, t)] �
1
v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A D
2β
x Q + D

β
x(xQ)􏽨 􏽩⎛⎝ ⎞⎠.

(33)

Taking the Aboodh transform inverse of equation (33),
we obtain the following equation:

Q(x,t) �A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x,0)

v
2−α+k

+A D
2β
x Q + D

β
x(xQ)􏽨 􏽩⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦.

(34)

Using the Aboodh transform iterative procedure, we
obtain the following equation:

Q0(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� A
−1 Q(x, 0)

v
2􏼢 􏼣

� 1,

Q1(x, t) � A
−1 1

v
α A D

2β
x Q0 + D

β
x xQ0( 􏼁􏽨 􏽩􏼐 􏼑􏼔 􏼕

� A
−1 x

1− β

v
2+αΓ(2 − β)

􏼢 􏼣

�
x
1− β

t
α

Γ(α + 1)Γ(2 − β)
,

Q2(x, t) � A
−1 1

v
α A D

2β
x Q0 + Q1( 􏼁 + D

β
x x Q0 + Q1( 􏼁( 􏼁􏽨 􏽩􏼐 􏼑􏼔 􏼕 − A

−1 1
v
α A D

2β
x Q0 + D

β
x xQ0( 􏼁􏽨 􏽩􏼐 􏼑􏼔 􏼕

� A
−1 x

1− β

Γ(2 − β)v
2+α +

Γ(3 − β)x
2− 2β

Γ(3 − 2β)Γ(2 − β)v
2+2α􏼢 􏼣 − A

−1 x
1− β

Γ(2 − β)v
2+α􏼢 􏼣

�
(2 − β)x

2− 2β
t
2α

Γ(3 − 2β)Γ(2α + 1)
.

(35)

(e series solution is obtained as follows:

Q(x, t) � Q0 + Q1 + Q2 + · · ·

� 1 +
x
1− β

t
α

Γ(2 − β)Γ(α + 1)

+
(2 − β)x

2− 2β
t
α

Γ(3 − 2β)Γ(2α + 1)
+ · · · .

(36)

Setting β � 1 in equation (36), we obtain the following
equation:

Q(x, t) � 1 +
t
α

Γ(α + 1)
+

t
2α

Γ(2α + 1)
+ · · ·

� 􏽘
∞

i�0

t
iα

Γ(iα + 1)
.

(37)
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(e solution obtained in equation (37) converges to the
exact solution in a closed form as i⟶∞,

Q(x, t) � lim
i⟶∞

􏽘

∞

i�0

t
iα

Γ(iα + 1)

� Eα t
α

( 􏼁.

(38)

So, by setting α � (1/2), we obtain the following
equation:

Q(x, t) � E(1/2) t
(1/2)

􏼐 􏼑. (39)

Which is the solution obtained in [24] using the natural
transform method. Figure 3 represents the solution plots of
equation (31) when α � β � .02, .04, .06, .08, .2, .4, .6, .8 at

x � 1 and t� 1, respectively. While the remaining are the
surface plots.

Example 4. Consider the space-time fractional Airy’s partial
differential equations [22].

D
α
t Q(x, t) � D

3β
x Q, 0< α, β≤ 1. (40)

With the initial condition,

Q(x, 0) �
1
6
x
3
. (41)

Applying the Aboodh transform on equation (40), we get
the following equation:
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Figure 2: Comparison of the solution at various values of alpha and beta.
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A[Q(x, t)] �
1
v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A D
3β
x Q􏽨 􏽩⎛⎝ ⎞⎠, (42)

taking the inverse Aboodh transform of equation (42), we
get the following equation:

Q(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A D
3β
x Q􏽨 􏽩⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦. (43)

Using the Aboodh transform iterative method proce-
dure, we obtain the following equation:

Q0(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� A
−1 Q(x, 0)

v
2􏼢 􏼣

�
1
6
x
3
,

Q1(x, t) � A
−1 1

v
α A D

3β
x Q0􏽨 􏽩􏼐 􏼑􏼔 􏼕

� A
−1 x

3− 3β

Γ(4 − 3β)v
2+α􏼢 􏼣

�
x
3− 3β

t
α

Γ(4 − 3β)Γ(α + 1)
,

Q2(x, t) � A
−1 1

v
α A D

3β
x Q1 + Q0( 􏼁􏽨 􏽩􏼐 􏼑􏼔 􏼕 − A

−1 1
v
α A D

3β
x Q0􏽨 􏽩􏼐 􏼑􏼔 􏼕

� A
−1 Γ(4)x

3− 3β

6Γ(4 − 3β)v
2+α􏼢 􏼣 − A

− 1 x
3− 3β

Γ(4 − 3β)v
2+α􏼢 􏼣

� 0,

⋮

(44)

and so on. (e series solution is obtained as follows:

Q(x, t) � Q0 + Q1 + Q2 + · · ·

�
1
6
x
3

+
x
3− 3β

t
α

Γ(4 − 3β)Γ(α + 1)
+ 0 + · · · ,

(45)

for all i> 1, Qi(x, t) � 0. Setting β � 1 in equation (45), we
obtain the following equation:

Q(x, t) �
1
6
x
3

+
t
α

Γ(α + 1)
+ 0 + 0 + · · ·

�
1
6
x
3

+
t
α

Γ(α + 1)
.

(46)

We obtain the exact solution when α � 1,

Q(x, t) �
1
6
x
3

+ t, (47)

which is the solution obtained in [22]. Figure 4 represents
the solution plots of equation (40) when
α � β � .02, .04, .06, .08, .2, .4, .6, .8 at x � 1 and t� 1 re-
spectively. While Figure 5 is the surface plots.

Example 5. Consider the nonlinear space-time fractional
Fokker–Planck equation which consists of a single term
time-fractional order and three terms of space fractional
order [23].

D
α
t Q(x,t) � D

β
x

xQ

3
􏼒 􏼓 − D

β
x

4Q
2

x
􏼠 􏼡 + D

2β
x Q

2
􏼐 􏼑, 0<α,β≤1.

(48)

Subject to the initial condition,

Q(x, 0) � x
2
. (49)

Applying the Aboodh transform on equation (48), we
obtain the following equation:

A[Q(x, t)] �
1
v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A D
β
x

xQ

3
􏼒 􏼓 − D

β
x

4Q
2

x
􏼠 􏼡 + D

2β
x Q

2
􏼐 􏼑􏼢 􏼣⎛⎝ ⎞⎠, (50)
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taking the inverse Aboodh transform, we get the following
equation:

Q(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

+ A D
β
x

xQ

3
􏼒 􏼓 − D

β
x

4Q
2

x
􏼠 􏼡 + D

2β
x Q

2
􏼐 􏼑􏼢 􏼣⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦. (51)

Using Aboodh transform iterative procedure, we get the
following equation:
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Figure 3: Comparison of the solution at various values of alpha and beta.

10 Journal of Mathematics



0.6

0.4

0.2

0.0
0.0

0.5

1.0 0.0

0.5
t

1.0 1.0

0.5

0.0
0.0

0.5

1.0 0.0

0.5

1.0

t

x x

Figure 5: Comparison of the solution at various values of alpha and beta. (a) Early strength. (b) Early strength loss rate.

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

Q
 (x

, t
)

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t
Q

 (x
, t

)
α = β = .02
α = β = .04
α = β = .06
α = β = .08

α = β = .2
α = β = .4
α = β = .6
α = β = .8

α = β = .02
α = β = .04
α = β = .06
α = β = .08

α = β = .2
α = β = .4
α = β = .6
α = β = .8

Figure 4: Comparison of the solution at various values of alpha and beta.

Journal of Mathematics 11



Q0(x, t) � A
−1 1

v
α 􏽘

m−1

k�0

Q
(k)

(x, 0)

v
2−α+k

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� A
−1 Q(x, 0)

v
2􏼢 􏼣

� x
2
,

Q1(x, t) � A
−1 1

v
α A D

β
x

xQ0

3
􏼒 􏼓 − D

β
x

4Q
2
0

x
􏼠 􏼡 + D

2β
x Q

2
0􏼐 􏼑􏼢 􏼣􏼠 􏼡􏼢 􏼣

� A
−1 24x

4− 2β

Γ(5 − 2β)v
2+α −

22x
3− β

Γ(4 − β)v
2+α􏼢 􏼣

�
24x

4− 2β
t
α

Γ(5 − 2β)Γ(α + 1)
−

22x
3− β

t
α

Γ(4 − β)Γ(α + 1)
,

Q2(x, t) � A
−1 1

v
α A D

β
x

x Q0 + Q1( 􏼁

3
􏼠 􏼡 − D

β
x

4 Q0 + Q1( 􏼁
2

x
􏼠 􏼡 + D

2β
x Q0 + Q1( 􏼁

2
􏼢 􏼣􏼠 􏼡􏼢 􏼣

− A
−1 1

v
α A D

β
x

xQ0

3
􏼒 􏼓 − D

β
x

4Q
2
0

x
􏼠 􏼡 + D

2β
x Q

2
0􏼐 􏼑􏼢 􏼣􏼠 􏼡􏼢 􏼣

� A
−1 8Γ(6 − 2β)x

5− 3β

Γ(5 − 2β)Γ(6 − 3β)v
2+2α −

22Γ(5 − β)x
4− 2β

3Γ(4 − β)Γ(5 − 2β)v
2+2α +

Γ(4)x
3− β

3Γ(4 − β)v
2+α􏼢 􏼣

+ A
−1 −1152Γ(8 − 4β)Γ(2α + 1)x

7− 5β

[Γ(5 − 2β)Γ(α + 1)]
2Γ(8 − 5β)v

2+3α −
192Γ(6 − 2β)x

5− 3β

Γ(5 − 2β)Γ(6 − 3β)v
2+2α􏼢 􏼣

+ A
−1 −1936Γ(6 − 2β)Γ(2α + 1)x

5− 3β

[Γ(4 − β)Γ(α + 1)]
2Γ(6 − 3β)v

2+3α +
4, 224Γ(7 − 3β)Γ(2α + 1)x

6− 4β

Γ(5 − 2β)Γ(α + 1)
2Γ(4 − β)Γ(7 − 4β)v

2+3α􏼢 􏼣

+ A
−1 176Γ(5 − β)x

4− 2β

Γ(4 − β)Γ(5 − 2β)v
2+2α −

4Γ(4)x
3− β

Γ(4 − β)v
2+α +

576Γ(9 − 4β)Γ(2α + 1)x
8− 6β

[Γ(5 − 2β)Γ(α + 1)]
2Γ(9 − 6β)v

2+3α􏼢 􏼣

+ A
−1 −1056Γ(8 − 3β)Γ(2α + 1)x

7− 5β

[Γ(5 − 2β)Γ(α + 1)]
2Γ(4 − β)Γ(8 − 5β)v

2+3α +
48Γ(7 − 2β)x

6− 4β

Γ(5 − 2β)Γ(7 − 4β)v
2+2α􏼢 􏼣

+ A
−1 484Γ(7 − 2β)Γ(2α + 1)x

6− 4β

[Γ(4 − β)Γ(α + 1)]
2Γ(7 − 4β)v

2+3α +
44Γ(6 − β)x

5− 3β

Γ(4 − β)Γ(6 − 3β)v
2+2α +

24x
4− 2β

Γ(5 − 2β)v
2+α􏼢 􏼣

− A
−1 24x

4− 2β

Γ(5 − 2β)v
2+α −

22x
3− β

Γ(4 − β)v
2+α􏼢 􏼣

�
8Γ(6 − 2β)x

5− 3β
t
2α

Γ(5 − 2β)Γ(6 − 3β)Γ(2α + 1)
−

1152Γ(8 − 4β)Γ(2α + 1)x
7− 5β

t
3α

[Γ(5 − 2β)Γ(α + 1)]
2Γ(8 − 5β)Γ(3α + 1)

−
22Γ(5 − β)x

4− 2β
t
2α

3Γ(4 − β)Γ(5 − 2β)Γ(2α + 1)
+

4224Γ(7 − 3β)Γ(2α + 1)x
6− 4β

t
3α

Γ(5 − 2β)Γ(α + 1)
2Γ(4 − β)Γ(7 − 4β)Γ(3α + 1)

−
1436Γ(6 − 2β)Γ(2α + 1)x

5− 3β
t
3α

[Γ(4 − β)Γ(α + 1)]
2Γ(6 − 3β)Γ(3α + 1)

−
192Γ(6 − 2β)x

5− 3β
t
2α

Γ(5 − 2β)Γ(6 − 3β)Γ(2α + 1)

+
176Γ(5 − β)x

4− 2β
x
4− 2β

t
2α

Γ(4 − β)Γ(5 − 2β)Γ(2α + 1)
+

576Γ(9 − 4β)Γ(2α + 1)x
8− 6β

t
3α

[Γ(5 − 2β)Γ(α + 1)]
2Γ(9 − 6β)Γ(3α + 1)

−
1056Γ(8 − 3β)Γ(2α + 1)x

7− 5β
t
3α

[Γ(5 − 2β)Γ(α + 1)]
2Γ(4 − β)Γ(8 − 5β)Γ(3α + 1)

+
48Γ(7 − 2β)x

6− 4β
t
2α

Γ(5 − 2β)Γ(7 − 4β)Γ(2α + 1)

+
484Γ(7 − 2β)Γ(2α + 1)x

6− 4β
t
3α

[Γ(4 − β)Γ(α + 1)]
2Γ(7 − 4β)Γ(3α + 1)

+
44Γ(6 − β)x

5− 3β
t
2α

Γ(4 − β)Γ(6 − 3β)Γ(2α + 1)
,

⋮

(52)
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and so on. (e series solution is obtained as follows:

Q(x, t) � Q0 + Q1 + Q2 + · · · . (53)

Setting α � β � 1 we get the following equation:

Q(x, t) � x
2

+ x
2
t +

x
2
t
2

2
+ · · ·

� x
2 1 + t +

t
2

2
+ · · ·􏼠 􏼡.

(54)

Hence,

Q(x, t) � x
2

􏽘

∞

i�0

t
i

i!

� x
2
e

t
,

(55)

which agrees with the exact solution obtained in [23], also it
is similar to the solution obtained in Example 2. (e reason
being that in Example 2, only one space fractional derivative
term was considered while here three terms of space frac-
tional derivative was considered.

5. Conclusion and Future Work

We proposed the Aboodh transform iterative method for
the solution of space-time fractional differential equation
with fractional order derivative in more than one term.
(e proposed method is efficient and effective, the method
combined the Aboodh transform which is a modification
of the Laplace transform with the new iterative method.
To the best of our knowledge, no attempt has been
recorded regarding the approximate analytical solution of
space-time fractional differential equations using the
Aboodh transform iterative method which is the novelty
of this study.

(e new iterative method decomposes the linear and
nonlinear term. Some examples were considered, if α � β �

1 the fractional differential equations becomes the classical
differential equations. Aboodh transforms iterative method
yields closed form solutions in this study and exact solu-
tions in some cases. Also, the effect of the fractional orders
α and β are displayed in Figures 1 to 5, this is left for the
readers in different fields of study to transcribe for different
applications.

In the future, we hope to extend the Aboodh transform
iterative method to solve boundary value problems with
consideration for other fractional order differential equa-
tions which till date have not been solved either analytically
or numerically.
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