Research Article

Convergence for a Fixed Point of Evolution Families in Banach Space via Iterative Process

Musharaf Shah, Gul Rahmat, Syed Inayat Ali Shah, Ebenezer Bonyah, Zahir Shah, and Meshal Shutaywi

1Department of Mathematics, Islamia College University Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
2Department of Mathematics Education, University of Education Winneba Kumasi-(Kumascampus), Kumasi 00233, Ghana
3Department of Mathematical Sciences, University of Lakki Marwat, Lakki Marwat 28420, KPK, Pakistan
4Department of Mathematics College of Science & Arts, King Abdul-Aziz University, Rabigh 21911, Saudi Arabia

Correspondence should be addressed to Ebenezer Bonyah; ebbonya@gmail.com

Received 26 April 2022; Revised 6 July 2022; Accepted 21 July 2022; Published 26 August 2022

Academic Editor: Ji Gao

Copyright © 2022 Musharaf Shah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Let \mathcal{R} be a Banach space and B be a nonempty, bounded, closed, and convex subset of \mathcal{R}. Let us consider a pointwise Lipschitzian evaluation family of nonlinear mappings, that is, a family of mappings $\Phi(\xi, \lambda): B \to B$ satisfying the conditions $\Phi(\xi, \lambda)\mu = \mu, \Phi(\xi, \lambda)\phi(\lambda, \xi)\mu = \Phi(\xi, \lambda)\mu, \lambda \to \Phi(\xi, \lambda)x$ is strongly continuous for every $x \in B$, and each $\Phi(\xi, \lambda)$ is pointwise Lipschitzian. The latter means that there exists a family of functions $\alpha_i: B \to [0, \infty)$ such that $\|\Phi(\xi, \lambda)\mu - \Phi(\xi, \lambda)v\| \leq \alpha_i(\mu - v)$. The existence of common fixed points for function of contraction and nonexpansive mappings have been investigated since the early 1960s, see Bruck[1, 2] Lim [3], Browder [4], Demarr [5], Belluce and Kirk [6, 7]. The asymptotic approach for finding common points of semigroups of Lipschitzian (but not pointwise Lipschitzian) mappings has been also investigated for some time, see Xu and Tan [8] and the references there in. Kirk and Xu [4] proved the existence of fixed points for asymptotic pointwise contraction and asymptotic pointwise nonexpansive mappings in Banach space, and latter on, Khamsi and Hussain extend these results to metric spaces [9], and Kozłowski and Khamsi to modular function spaces [10, 11]. The generalization of known iterative fixed point construction process of pointwise asymptotically nonexpansive mapping has been studied by several authors, such as the Mann process [12, 13] or the Ishikawa process for detail see [14]. The iterative fixed point construction process for asymptotically nonexpansive mapping exists in Hilbert space, Banach space, and Metric spaces, see for further detail [8, 9, 15–28] and the works referred there in. The modified Mann iterative process for a fixed point of asymptotically nonexpansive mappings in uniformly convex Banach space \mathcal{R} which possess the Opial property of the weak convergence and the strong convergence for asymptotically nonexpansive mapping has been proved by Schu [20]. Xu and Tan [19] proved for weak convergence of the modified Ishikawa and modified Mann iterative process for asymptotically nonexpansive mapping on Banach space \mathcal{R} that satisfy the Opial property. The generalized Ishikawa and Mann process weakly converges to a common fixed point of a pointwise nonexpansive mapping $\Phi(\xi, \lambda): B \to B (B$ is a nonempty, bounded, closed, and convex subset of a Banach space \mathcal{R}) has been proved by Kozłowski in [29] which satisfying the Opial conditions.

In [30], Kozłowski and Braily Sims examine the convergence of generalized Mann and Ishikawa iteration process for $T(t): B \to B$. In this paper, we proved more
2. Definitions and Preliminary Results

Definition 1. A family \mathcal{U} on B is pointwise Lipschitzian if there exists a family of mappings $\alpha(t)$: $[0, \infty) \to [0, \infty)$ such that
\[
\|\Phi(\zeta, \xi)\mu - \Phi(\zeta, \xi)\nu \| \leq \alpha(t)\|\mu - \nu\| \text{ for all } \zeta, \xi \in B. \quad (1)
\]

If $\alpha(t) \leq 1$ for each t, then the family is said to be a pointwise contraction family. If $\alpha(t) \leq 1$ for all t, then the family is called nonexpansive pointwise evolution family.

Definition 2. A pointwise Lipschitzian evolution family denoted by \mathcal{U} and defined as $\mathcal{U} = \{\Phi(\zeta, \xi) ; \zeta \geq \xi \geq 0\}$ is said to be pointwise nonexpansive if $\sup \lim_{n \to \infty} \alpha_n(t) \leq 1$ for each $t \in B$. By letting $a_0 = 1$ and $a_n(t) = \max(\alpha_n(t), 1)$ for $n > 0$, we say that $\Phi(\zeta, \xi)$ is asymptotically nonexpansive if
\[
\|\Phi(\zeta, \xi)\mu - \Phi(\zeta, \xi)\nu \| \leq \alpha_n(t)\|\mu - \nu\| \text{ for all } \mu, \nu \in B, n \in N. \quad (2)
\]

where
\[
\lim_{n \to \infty} \alpha_n(t) = 1, \quad \alpha_n(t) \geq 1 \text{ where } t \in B, n \in N.
\]

By defining $\beta_n(t) = \alpha_n(t) - 1$, we have
\[
\lim_{n \to \infty} \beta_n(t) = 0. \quad (4)
\]

Definition 3. By $\mathcal{D}(B)$, we will represent the class of all asymptotic pointwise nonexpansive evolution families on B such that $M_n = \sup \{\alpha_n(s); s \in B\} < \infty, \forall n \in N,$
\[
\lim_{n \to \infty} \sup M_n = 1. \quad (5)
\]

Lemma 1 (see [31]). Let \mathcal{R} be a uniformly convex Banach space and \mathcal{U} be an asymptotically nonexpansive pointwise Lipschitzian evolution family on B. Then, the set $F(\mathcal{U})$ of common fixed points is closed and convex.

$$\sum_{j=1}^{m-1} \sup \{\alpha_n(\mu) ; \mu \in B\} \leq M,$$

$$\|\Phi(m\zeta, 0)\mu_n - \mu_n\| = \|\Phi(m\zeta, 0)\mu_n - \Phi([m-1] \zeta, 0) + \Phi([m-1] \zeta, 0)

- \Phi([m-2] \zeta, 0) + \Phi([m-2] \zeta, 0) - \cdots - \Phi(2 \zeta, 0)\mu_n + \Phi(2 \zeta, 0)\mu_n - \Phi(\zeta, 0)\mu_n + \Phi(\zeta, 0)\mu_n - \mu_n\|

\leq \|\Phi(m\zeta, 0)\mu_n - \Phi([m-1] \zeta, 0)\| + \|\Phi([m-1] \zeta, 0) - \Phi([m-2] \zeta, 0)\| + \cdots + \|\Phi(\zeta, 0)\mu_n - \mu_n\|. \quad (9)$$

Then, by using the inequality, we have

Lemma 2 (see [15]). Assume $\{r_k\}$ be a bounded sequence of real numbers and $\{d_{kn}\}$ be double index sequence of real number satisfying
\[
\lim_{k \to \infty} \sup \lim_{n \to \infty} \sup d_{kn} \leq 0, \quad (6)
\]
and $r_{k,n} \leq r_k + d_{kn}$ for each $k, n \geq 1$. Then, the sequence $\{r_k\}$ converged to r, where $r \in \mathbb{R}$.

Definition 4. A subset $A \subset N$ is said to be a generating set for N if for each $u \in N$, $u > 0$ there exists $m \in N$, and $\zeta, r \in A$ such that $u = m\zeta + r$.

The next lemmas will be used in the proof of our main result.

Lemma 3 (see [20, 32]). If \mathcal{R} is uniformly convex Banach space, let $\{c_n\} \subset (0, 1)$ be bounded away from 0 to 1, and $\{u_n\}, \{v_n\} \subset \mathcal{R}$ be such that
\[
\lim_{n \to \infty} \sup \|u_n\| \leq a, \lim_{n \to \infty} \sup \|v_n\| \leq a, \quad (7)
\]
and $\lim_{n \to \infty} \|c_n u_n + (1 - c_n)v_n\| = a$, then $\lim_{n \to \infty} \|u_n - v_n\| = 0$.

3. Main Result

A sequence $\{c_n\} \subset (0, 1)$ is called bounded away from 0 if exists a number $a \in (0, 1)$ such that $c_n > a$, for all natural n. Similarly, $\{c_n\} \subset (0, 1)$ is called bounded away from 1 if exists a number $b \in (0, 1)$ such that $c_n < b$ for every natural number of n.

Lemma 4. Let $\mathcal{L} = \{\Phi(\zeta, 0) ; \zeta \geq 0\}$ be a subset of an evolution family \mathcal{U} on a Banach space \mathcal{R}. If for each $m \in N$, there exists $\alpha_n(m)$ such that
\[
\|\Phi(m\zeta, 0)\mu_n - \Phi([m-1] \zeta, 0)\| \leq \alpha_n(m)\|\mu - \nu\| \text{ for all } \zeta \geq 0. \quad (8)
\]

Let $\|\Phi(\zeta, 0)\mu_n - \mu_n\| \to 0$, then $\|\Phi(m\zeta, 0)\mu_n - \mu_n\| \to 0$ for all $m \in N$.

Proof 1. It follows from the fact that every α_n is a bounded function that there exists a finite number $M > 0$, such that
\[\| \Phi (m\zeta, 0)\mu_n - \mu_n \| \leq \alpha_{m-1}\| \Phi (\zeta, 0)\mu_n - \mu_n \| + \alpha_{m-2}\| \Phi (\zeta, 0)\mu_n - \mu_n \| + \cdots + \alpha_2\| \Phi (\zeta, 0)\mu_n - \mu_n \| \\
+ \alpha_1\| \Phi (\zeta, 0)\mu_n - \mu_n \| + 1\| \Phi (\zeta, 0)\mu_n - \mu_n \|. \] (10)

or

\[\| \Phi (m\zeta, 0)\mu_n - \mu_n \| \leq \left[\alpha_{m-1} + \alpha_{m-2} + \cdots + \alpha_1 + 1 \right] \| \Phi (\zeta, 0)\mu_n - \mu_n \| \\
= \sum_{j=1}^{m-1} (\alpha_{j+1}) \| \Phi (\zeta, 0)\mu_n - \mu_n \| \leq (M + 1)\| \Phi (\zeta, 0)\mu_n - \mu_n \| \longrightarrow 0, \] (11)

\[\lim_{n \to \infty} \| \Phi (m\zeta, 0)\mu_n - \mu_n \| = 0. \]

This completes the proof. \(\square \)

Lemma 5. If \(B \) be a nonempty, bounded, closed, and convex subset of a Banach space \(\mathcal{R} \) and \(\{ \mu_n \} \subset B \) be an approximate fixed point sequence of \(L \) for each \(n \in A \), then the sequence \(\{ \mu_n \} \) is an approximate fixed point sequence of \(\Phi (m\zeta + r, 0) \).

Proof 2. Consider

\[\| \Phi (m\zeta + r, 0)\mu_n - \mu_n \| \leq \| \Phi (m\zeta + r, 0)\mu_n - \Phi [(m-1)\zeta, 0]\mu_n + \Phi [(m-1)\zeta, 0]\mu_n - \mu_n \| \\
\leq \| \Phi (m\zeta + r, 0)\mu_n - \Phi [(m-1)\zeta, 0]\mu_n \| + \| \Phi [(m-1)\zeta, 0]\mu_n - \mu_n \| \longrightarrow 0. \] (12)

implies that

\[\| \Phi (m\zeta + r, 0)\mu_n - \mu_n \| \leq \alpha (\mu)\| \Phi (\zeta, 0)\mu_n - \mu_n \| + \| \Phi [(m-1)\zeta, 0]\mu_n - \mu_n \| \longrightarrow 0. \] (13)

\[\lim_{n \to \infty} \sup \| \mu_n - \mu \| < \lim_{n \to \infty} \sup \| \mu_n - \eta \|. \] (15)

The result follows by lemma 4 and the boundedness of \(\alpha (t) \).

Let us recall the definition of the Opial property which will play an important role in our paper. \(\square \)

Definition 5. A Banach space \(\mathcal{R} \) is said to have the Opial property if for every sequence \(\{ \mu_n \} \subset \mathcal{R} \) weakly converging to a point \(\mu \in \mathcal{R} \) (denoted by \(\mu_n \rightharpoonup \mu \)) and for each \(\nu \in \mathcal{R} \) such that \(\mu \neq \nu \) there holds

\[\lim_{n \to \infty} \inf \| \mu_n - \mu \| < \lim_{n \to \infty} \inf \| \mu_n - \nu \|. \] (14)

or equivalently

\[\| \Phi (m\zeta, 0)\mu_n - \mu_n \| \leq \| \Phi (m\zeta, 0)\mu_n - \Phi [(m-1)\zeta, 0]\mu_n \| + \| \Phi [(m-1)\zeta, 0]\mu_n - \mu_n \| + \| \mu_n - \mu \| \\
\leq [\alpha_{m-1} + \alpha_{m-2} + \cdots + \alpha_1 + 1] \| \Phi (\zeta, 0)\mu_n - \mu_n \| + \| \mu_n - \mu \| \\
\leq \left(\sum_{j=1}^{m-1} \alpha_{j+1} \right) \| \Phi (\zeta, 0)\mu_n - \mu_n \| + \| \mu_n - \mu \| \leq (M + 1)\| \Phi (\zeta, 0)\mu_n - \mu_n \| + \| \mu_n - \mu \|. \] (16)

Since all functions \(\alpha_i \) are bounded and hence \(\| \Phi (\zeta, 0)\mu_n - \mu_n \| \longrightarrow 0 \), it follows that

\[\lim_{n \to \infty} \sup \| \Phi (m\zeta, 0)\mu_n - \mu_n \| \leq \lim_{n \to \infty} \sup \| \mu_n - \mu \| \]

\[= \phi (\mu). \] (17)

By Lemma 4, we have

\[\phi (\mu) \leq \lim_{n \to \infty} \sup \| \mu_n - \Phi (m\zeta, 0)\mu_n \| \\
+ \lim_{n \to \infty} \sup \| \Phi (m\zeta, 0)\mu_n - \mu \| \]

\[= \lim_{n \to \infty} \sup \| \Phi (m\zeta, 0)\mu_n - \mu \|. \] (18)

Hence,
\[
\phi(\mu) = \lim_{n \to \infty} \sup_{\mu_n} \| \Phi(m\xi, 0)\mu_n - \mu \|.
\]

(19)

Since \(\Phi(\xi, 0) \) is asymptotic pointwise nonexpansive, therefore,
\[
\phi(\Phi(m\xi, 0)\mu) \leq a_{m\xi}(\mu)\phi(\mu),
\]

(20)

for each \(\mu \in B \). By applying this to \(w \) and passing with \(m \to \infty \), we have
\[
\lim_{m \to \infty} \phi(\Phi(m\xi, 0)\mu) \leq \phi(w), (A).
\]

(21)

Since \(\mu_n \to w \), for \(\mu, w \in \mathcal{R} \) with \(\mu \neq w \), then by Opial property of \(\mathcal{R} \), we have
\[
\phi(w) \equiv \lim_{n \to \infty} \sup_{\mu_n} \| \mu_n - w \| < \lim_{n \to \infty} \sup_{\mu_n} \| \mu_n - \mu \| = \phi(\mu).
\]

(22)

By applying on both sides \(\lim_{n \to \infty} \sup \) and \(\phi(w) = \inf \{ \phi(\mu); \mu \in B \} \), we get
\[
\phi(w)^2 \leq \frac{1}{2} \phi(w)^2 + \frac{1}{2} \phi(\Phi(m\xi, 0)\mu)^2
\]
\[
- \frac{1}{4} \psi(\| \Phi(m\xi, 0)\mu - w \|),
\]

(26)

\[
\Rightarrow \psi(\| \Phi(m\xi, 0)\mu - w \|)
\]
\[
\leq 2\phi(\Phi(m\xi, 0)\mu)^2 - 2\phi(w)^2.
\]

Let \(n \to \infty \), we get that
\[
\lim_{n \to \infty} \psi(\| \Phi(m\xi, 0)\mu - w \|) = 0.
\]

(27)

Due to the property of \(\psi \), \(\Phi(m\xi, 0)\mu \to w \) for each fix \(k \in N \) using the same argument, we have
\[
\Phi(k\xi, k\xi)U(m\xi, 0)w \to U(k\xi, 0)w,
\]

(28)

or
\[
w \in F(\Phi(k\xi, 0)].
\]

(29)

\[
\Rightarrow \phi(w) = \inf \{ \phi(\mu); \mu \in B \}
\] comparing this with (A) give us
\[
\lim_{n \to \infty} \phi(\Phi(m\xi, 0)\mu) = \phi(w).
\]

By Theorem 2, [33] and Proposition 3.4, [4] for every \(d > 0 \), there exists a continuous map
\[
\psi: \mathbb{R}^+ \to \mathbb{R}^+.
\]

(23)

such that \(\psi(n) = 0 \) if and only if \(n = 0 \). This yields
\[
\| \alpha \mu + (1 - \alpha)\nu \| \leq \alpha\| \mu \| + (1 - \alpha)\| \psi(\| \mu - \nu \|),
\]

(24)

for each \(\alpha \in \mathbb{R}^+ \), for every \(\mu, \nu \in \mathcal{R} \) such that \(\| \mu \| \leq d, \| \nu \| \leq d \).

Put \(\mu = \mu_n - w, \nu = \mu_n - \Phi(m\xi, 0)\mu \)

and \(\alpha = 1/2 \), we get
\[
\Rightarrow \phi(w) = \inf \{ \phi(\mu); \mu \in B \}
\] evolution family \(\mathcal{F} \), the iterative formula is defined by the following:
\[
\mu_{k+1} = c_k\Phi(\xi_k, 0)\mu_k + (1 - c_k)\mu_k,
\]

(30)

where \(\mu_k \in B \) is chosen arbitrarily, (i) \(\{ c_k \} \) is bounded in 0 and 1. (ii) \(\lim_{k \to \infty} \xi_k = 0 \). (iii) \(\sum_{n=1}^{\infty} b_n c_n < \infty \) for all \(\mu \in B \).

\[
\text{Definition 7. If } \lim_{k \to \infty} \sup_{\mu} c_k = 1, \text{ then the above process }
\]

\[
\text{GKM} (\mathcal{L}, \{ c_k \}, \{ t_k \}) \text{ is well defined.}
\]

(31)

The following lemmas are important for the Mann convergence theorems.

\[
\text{Lemma 6. Let } B \text{ is a closed, bounded, and convex subset of a Banach space } \mathcal{R}. \text{ Let } w \in F(\mathcal{L}), \text{ and } \{ \mu_k \} \text{ be a sequence generated by GKM} (\mathcal{L}, \{ c_k \}, \{ t_k \}). \text{ Then, } \exists \text{ an element } r \in \mathcal{R} \text{ such that } \lim_{k \to \infty} \| \mu_k - w \| = r.
\]

\[
\text{Proof 4. Let } w \in F(\Phi(\xi, 0)). \text{ Then,}
\]
\[
\| \mu_{k+1} - w \| = c_k\Phi(\xi_k, 0)\mu_k + (1 - c_k)\| \mu_k - w \|
\]
\[
= c_k\Phi(\xi_k, 0)\mu_k + (1 - c_k)\mu_k - c_k w + c_k w - w.
\]

(32)

This implies that
\[\| \mu_{k+1} - w \| = \| c_k \Phi (\zeta_k, 0) \mu_k - c_k \Phi (\zeta_k, 0) w + (1 - c_k) \mu_k - c_k w + c_k w - w \|
\leq \| c_k \Phi (\zeta_k, 0) \mu_k - c_k \Phi (\zeta_k, 0) w \| + \| (1 - c_k) \mu_k - c_k w + c_k w - w \|
\leq c_k (1 + b_{t_k} (w)) \| \mu_k - w \| + \| (1 - c_k) (\mu_k - w) \|
\leq c_k b_{t_k} (w) \| (\mu_k - w) \| + \| (\mu_k - w) \|
\leq b_{t_k} (w) \text{diam}(B) + \| (\mu_k - w) \| . \]

It follows for each natural number \(n \in \mathbb{N} \),
\[\| \mu_{kn} - w \| \leq c_k \| \Phi (\zeta_k, 0) \mu_k - w \| + (1 - c_k) \| \mu_k - w \|
\leq c_k (1 + b_{t_k} (w)) \| \mu_k - w \| + (1 - c_k) \| \mu_k - w \|
\leq c_k b_{t_k} \| \mu_k - w \| + \| (1 - c_k) (\mu_k - w) \|
\leq c_k b_{t_k} \text{diam}(B) + \| (\mu_k - w) \|
\leq \sum_{i=k}^{k+2} b_{t_i} \text{diam}(B) + \| (\mu_k - w) \| . \]

Now, for any \(n \in \mathbb{N} \),
\[\| \mu_{kn} - w \| \leq \| \mu_k - w \| + \text{diam}(B) \sum_{i=k}^{k+1} b_{t_i} (w) . \]

Let \(\| \mu - w \| = r_p \) for every natural number \(p \), we have
\[d_{kn} = \text{diam}(B) \sum_{i=k}^{k+1} b_{t_i} (w) . \]

We observe that \(\lim_{k \to \infty} \text{sup} \lim_{n \to \infty} d_{kn} = 0 \). By lemma 2, there exists an element \(r \in \mathbb{R} \), such that \(\lim_{k \to \infty} \| \mu_k - w \| = r \).

\[\lim_{k \to \infty} \sup_{k \to \infty} \| \Phi (\zeta_k, 0) (\mu_k) - w \| = \lim_{k \to \infty} \sup_{k \to \infty} \| \Phi (\zeta_k, 0) (\mu_k) - \Phi (\zeta_k, 0) (w) \|
\leq \lim_{k \to \infty} \sup_{k \to \infty} \| \mu_k - w \| = r . \]

We observe that
\[\lim_{k \to \infty} c_k (\Phi (\zeta_k, 0) - w) + (1 - c_k) (\mu_k - w) \]
\[= \lim_{k \to \infty} c_k v_k + (1 - c_k) u_k . \]
By Lemma 3 apply for \(\Phi (\zeta_k, 0) - w = v_k \) and \(\mu_k - w = u_k \)
\[\Rightarrow \lim_{k \to \infty} \| v_k - u_k \| = 0 , \]
\[\lim_{k \to \infty} \| \Phi (\zeta_k, 0) (\mu_k) - \mu_k + u_k \| = 0 , \]
\[\lim_{k \to \infty} \| \Phi (\zeta_k, 0) (\mu_k) - \mu_k \| = 0 . \]

Now, the construction of sequence \(\{ \mu_k \} \) is equivalent to
\[\lim_{k \to \infty} \| \mu_{k+1} - \mu_k \| = \lim_{k \to \infty} c_k (\Phi (\zeta_k, 0) \mu_k + (1 - c_k) \mu_k - \mu_k \| \to 0 , \]
\[\lim_{k \to \infty} \| c_k (\Phi (\zeta_k, 0) \mu_k - \mu_k \| \to 0 , \]
\[\Rightarrow \lim_{k \to \infty} \| \mu_{k+1} - \mu_k \| = 0 . \]

This completes the proof.
Now, we are to show the consequential lemma which proves that under the appropriate assumption of sequence, \(\{\mu_k\} \) generated by the following:

\[
\text{GKM}(\mathcal{Z}, \{c_k\}, \{\zeta_k\}).
\]

(43)

The iterative process to become an approximate fixed point sequence will give the final determination of proving the process for convergence.

Lemma 8. Let \(B \) be a convex and bounded subset of the Banach space \(\mathcal{R} \). Let the GKM \((\mathcal{Z}, \{c_k\}, \{\zeta_k\})\) is well defined, and \(A \) is a subset of \(N \) such that for all \(s \in A \) a strictly increasing sequence \(\{j_k\} \in \mathbb{N} \) with Opial property. Let the sequence \(\mu_k \) with Opial property. Let the sequence \(\mu_k \) such that for all \(s \in A \) an approximate fixed points sequence for each bounded linear operators \(\Phi (m\zeta, 0)\), for \(s \in A \) and \(m \in \mathbb{N} \), that is,

\[
\lim_{k \to \infty} \|\Phi (m\zeta, 0)\mu_k - \mu_k\| = 0.
\]

(44)

If \(A \subset N \), then

\[
\lim_{k \to \infty} \|\Phi (\zeta, 0)\mu_k - \mu_k\| = 0, \quad \zeta \in N.
\]

(45)

Proof. 6. By Lemma 4, it is sufficient to show that \(\lim_{k \to \infty} \|\Phi (m\zeta, 0)\mu_k - \mu_k\| = 0 \) for \(m = 1 \). To this end, let \(s \in A \), and noted that \(\|\mu_k - \mu_{k+1}\| \to 0 \) as \(k \to \infty \). We have

\[
\|\mu_k - \mu_{k+1}\| \leq \|\mu_k - \mu_k\| + \|\mu_k - \mu_{k+1}\| + \|\mu_{k+1} - \mu_k\| + \|\Phi (\zeta, 0)\mu_k - \mu_k\|.
\]

(46)

In view of Lemma 7, we observe that \(\mu_k - \Phi (\zeta, 0)\mu_k \to 0 \) as \(k \to \infty \). Indeed,

\[
\lim_{k \to \infty} \|\Phi (m\zeta, 0)\mu_k - \mu_k\| = 0.
\]

(47)

Also,

\[
\lim_{k \to \infty} \|\Phi (\zeta, 0)\mu_k - \mu_k\| = 0, \quad \zeta \in N.
\]

(48)

Theorem 2. If \(B \subset \mathcal{R} \) which is closed, convex, and bounded, with Opial property. Let the sequence \(\{\mu_k\} \), GKM \((\mathcal{Z}, \{c_k\}, \{\zeta_k\})\) iteration process is well defined and is an approximate fixed point sequence for each \(s \in A \subset N \), then a sequence \(\{\mu_k\} \) weakly converges to the common fixed point \(w \in F (\Phi (\zeta, 0)) \).

Proof. 7. Let \(\gamma, \omega \in B \), be two weak limit points of the sequence \(\{\mu_k\} \). Then, \(\exists \) two subsequences \(\{\gamma_k\} \) and \(\{\omega_k\} \) of \(\{\mu_k\} \), such that \(\gamma_k \to \gamma \) and \(\omega_k \to \omega \). For any fix \(s \in A \), and since \(\{\mu_k\} \) is approximate fixed point sequence for \(s \), it satisfies

\[
\lim_{k \to \infty} \|\Phi (\zeta, 0)\mu_k - \mu_k\| = 0.
\]

(49)

By the Demiclosedness principle theorem, we have \(\Phi (\zeta, 0)\gamma = \gamma \) and \(\Phi (\zeta, 0)\omega = \omega \). Now, by Lemma 6, the
following limits $\lim_{k \to \infty} \|\mu_k - v\| = r_1$ and $\lim_{k \to \infty} \|\mu_k - \omega\| = r_2$ exist. We claim that $v = \omega$. On the contrary base let $v \neq \omega$, then by Opial property

$$r_1 = \liminf_{k \to \infty} \|v_k - v\| < \liminf_{k \to \infty} \|v_k - \omega\| = r_2$$

$$= \liminf_{k \to \infty} \|\omega_k - \omega\| < \liminf_{k \to \infty} \|\omega_k - v\| = r_1,$$

which is an absurd hence $v = \omega$. This shows that the sequence $\{v_k\}$ has mostly one weak limit point $w \in B$. Since B is weakly sequentially compact, $\{\mu_k\}$ has only one weak limit point, that is, $\mu \in B$. Again, using the Demi-closedness principle, we get that $\Phi(\zeta,0)\mu = \mu$. Since $s \in A$ is chosen to be arbitrary and by the construction of μ does not depend on s, where $A \subset N$, we conclude that $\Phi(\zeta,0)\mu = \mu$ for each $\zeta \in J$.

Now, we can use the result for some more distinct situations. First, we start the discrete case.

Theorem 3. If $B \subset \mathcal{R}$ which is nonempty, convex, closed, and bounded with Opial property. Let \mathcal{D} be an evolution family with discrete generating set $A = \{a_1, a_2, a_3, \ldots\}$, and $GKM(\mathcal{D}, [c_k], [\zeta_k])$ iterative process with $m \leq \text{card}(A)$. If for each $n \in \mathbb{N}$, \exists a quasiperiodic strictly increasing sequence $\{j_k(m)\}$ of natural numbers with quasiperiod p_k, and for each natural number $k \in \mathbb{N}$, \exists a quasiperiodic strictly increasing sequence $\{j_k(m)\}$ of natural numbers with quasiperiod p_k.

Then, the sequence $\{\mu_k\}$ generated by $GKM(\mathcal{D}, [c_k], [\zeta_k])$ is the approximate fixed point sequence for each $s \in A \subset N$, and $\{\mu_k\}$ weakly converges to a common fixed point $w \in F(\mathcal{D})$.

Proof. To prove the result, we will verify both the conditions of Lemma 8. The condition (ii) of Lemma 8 is clearly satisfied because $\zeta_{j_k(m)} - \zeta_{j_k(m)} - a_m = 0$. To show (i) we noted by quasiperiodicity of $\{j_k(m)\}$ for each natural number k, \exists $j_k(m)$ such that $|k - j_k(m)| \leq p_k$. Assuming that $k - p_k \leq j_k(m) \leq k$. Fix $\varepsilon > 0$. Noted that by Lemma 7, $\|\mu_k - \mu_s\| < \varepsilon/p_k$ for k. Therefore, for natural number k sufficiently large, it is true that

$$\|\mu_k - \mu_s\| \leq \|\mu_k - \mu_{k-1}\| + \cdots + \|\mu_{j_k(m)+1} - \mu_{j_k(m)}\|$$

$$\leq \frac{\varepsilon}{p_k} = \varepsilon.$$

This shows that (i) is also satisfied; hence, the sequence $\{\mu_k\}$ generated by $GKM(\mathcal{D}, [c_k], [\zeta_k])$ is the approximate fixed point sequence for each $s \in A \subset N$. By Theorem 2, the sequence $\{\mu_k\}$ is weakly converges to the common fixed point $\mu \in \mathcal{D}$.

Remark 1. We noted that Theorem 1 in [29] is a special case of Theorem 3 with $A = \{1\}$.

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest regarding this work.

References

