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With the frequent occurrence of emergency events, decision-making (DM) plays an increasingly significant role in coping with
them and has become an important and the challenging research focus recently. It is critical for decision makers to make accurate
and reasonable emergency judgments in a short period as poor decisions can result in enormous economic losses and an unstable
social order. As a consequence, this work offers a newDM approach based on novel distance and similarity measures using q-rung
linear Diophantine fuzzy (q-RLDF) information to assure that DM problems may be addressed successfully and fast. One of the
useful methods for determining the degree of similarity between the objects is the similarity measure. In this paper, we propose
some new q-rung linear Diophantine fuzzy (q-ROLDF) distances and similarity measures. +e Jaccard similarity measure,
exponential similarity measure, and cosine and cotangent function-based similarity measures are proposed for q-LDFSs. +e
defined similarity measures are applied to the logistics and supply chain management problem, and the results are discussed. A
comparison of new similarity measures is developed, and the proposed work’s advantages are discussed.

1. Introduction

Models of knowledge-based decision-making attract sub-
stantial attention in industry and academia. A significant
number of original research and thesis studies were un-
dertaken to create effective decision support systems (DSSs)
to promotemanagerial decision. DSS is classified as a specific
class of electronic data system which supports decision-
making (DM) management activities. In the early 1970s, the
DSS idea was developed by Scott Morton’s work. +e
methodology aims to evaluate strategic decisions in a
complex and poorly organized environment, providing
guidance to decision makers. DSSs have some huge benefits
in decision-making by helping decision makers in their
challenges and improve the effectiveness of the decision-
making process [1].

For the purpose of logistics support, the better selec-
tion of logistic providers (LPs) is now important with the
growth of the supply chain theories. Over the past decades,
there has been a drastic change in the course of DSS [2].
Computer and technical experts have made great efforts to
systematic processes of decision-making in the engi-
neering and manufacturing industries [3]. Zha et al. [4],
for example, developed a compromise decision-supporting
issue approach and the fuzzy synthetic decision model
(FSDM). Implementation of the DSS of multicriteria de-
cision-making (MCDM) in supply chains is a constant
challenge [5–7]. +e reliability of the decision criteria in
many decision-making problems (DMPs) is strictly de-
pendent as external weights on the stakeholders and
customer expectations. +e delivery of decisions through
solid and numerical values is difficult for clients. Fuzzy
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linguistic variables enable us to ensure judgmental
consistency.

Zadeh [8] developed the concept of fuzzy set (FS) in
1965, which addressed the membership degree (MD), and
Atanassov [9] generalized the concept of FS by including
nonmembership degree (NMD). IFS is a significant gen-
eralization of fuzzy sets that has been developed as a useful
tool for understanding uncertain data. Pattern detection,
decision-making, cluster analysis, and a variety of other
areas are all derived from the IFS. In IFS theory, an element’s
MD and NMDmust be between 0 and 1, and the number of
MD and NMDmust be between 0 and 1. As a result, in some
practical applications, the values of MD and NMD of an
element whose number of squares of MD and NMD may be
greater than one are assigned to decision makers or decision
experts. In such instances, the IFS has failed to clarify true or
uncertain facts. Yager addressed this form of vague data by
adding a new concept Pythagorean fuzzy set (PFS). Yager
increased the space of MD and NMD by requiring that the
square sum of MD and NMD lies between 0 and 1. PFSs [10]
have found the complicated and indeterminacy problems in
the assessment detail. Similar to the IFS, the PFS considered
the function of MD u and NMD v, but with the condition
that the square sum ofMD andNMDmust lie between 0 and
1. +is means that the PFs are more generalized and
comprehensive than the IFS, making them more useful to
decision makers. If an expert assigns MD 0.7 and NMD 0.6
to an object, this information does not satisfy the IFS
condition, but it is clear that these data can only be conveyed
using PFS. As a result, IF decision-making and SMs are
distinct from PF decision-making and SMs. Finally, this
shows that PFS can covenant more effectively than IFS.
Many researchers and investigators have evolved various
decision-making methods and techniques [11–15]. Verma
[16] defined generalized SMs for PFSs and their applications
to MADM.+e extended version of the PF-TOPSIS method
was studied and applied to MCDM by Zhang and Xu [17].
Peng and Yang [18] introduced the new operations of
subtraction and division and studied their fundamental
properties. Reformat and Yager built a recommender
framework based on collaboration under PFS information in
[19]. PFSs are studied by various authors, who introduced
various models for group decision-making problems
[20–23]. In [24–28], various aggregation operators based on
Bonferroni mean (BM) operators, BM with geometric mean,
and other aggregation operators were described. Du [29]
defined Minkowski-type distance measures for generalized
orthopair fuzzy sets. Ejegwa [30] developed a modified
Zhang and Xu’s distance measure for PFSs and its appli-
cation to pattern recognition problems.

Due to the restrictions on the MD and NMD in the IFS
and PFS, the information for an object does not clarify, and
both concepts have failed to convey the information about
an object in certain cases. As a result, in [31], Yager in-
troduced a new concept called q-rung orthopair fuzzy set (q-
ROFS), which expands the MD and MND space by relaxing
the condition to sum of the qth power of MD u and NMD v,
i.e., (u)q + (v)q ≤ 1, where q is equal to or less than 1. +is
means that if q � 1, then q-ROFS will be reduced to the IFS,

and if q � 2, q-ROFS will be reduced to the PFS. Clearly, q-
ROFS is a more generalized framework than the IFS and PFS
for explaining unclear and ambiguous details. Liu andWang
described the algebraic sum and product operation for q-
ROFSs in [32] and studied their application in MCDM. In
[33], aggregation operators for q-ROFSs based onMaclaurin
symmetric mean (MSM) were created. Heronian mean
operator [34], partitioned Bonferroni mean operator [35],
and power Bonferroni mean operator [36] were developed
by the investigator and studied. Liu and Xu developed an
MCDM technique for green supplier selection problems
under q-ROFSs in [37].

+e similarity measure (SM) is a powerful method for
determining the degree of similarity and dissimilarity be-
tween two items in multicriteria decision-making (MCDM)
theory and pattern recognition. For the last few decades, the
theory and implementations of SMs have been studied. +e
authors of [38–41] predicted a wide range of SMs for two
IFSs. Liu and Cheng’s SMs were modified by Mitchel [42]
and also applied to MCDM. Park et al. [43] evaluated the
generalized form of fuzzy Hamming distance measure
(HDsM), developed IFHDM, and proposed various SMs to
apply to the MCDM problem. Torra and Narukawa created
some new SMs based on Hausdorff distance and discussed
some applications in [44]. Using geometric aggregation
operators, Xia and Xu defined the concept of distance
measure (DsM) and SM and applied them to the MCDM
problem in [45]. Ye [46] developed IF cosine SMs using the
cosine feature and applied them to the MCDM problem.
Hung [47] specified the likelihood-based SM for the IFS and
applied it to medical diagnosis. Shi and Ye provided a
modified form of CSMs in [48]. Maoying defined the co-
tangent SM between two IFSs for MD [49]. Rajarajeswari
and Uma described a modified version of cotangent SMs
[50], in which they considered MD, NMD, and indeter-
minacy degrees designated in the IFS. Szmidt introduced the
distance measure of IFSs and also developed SMs. In
[51–54], some different and generalized distance measures
and SMs of IFSs were found. Li and Lu [55] defined some
novel similarity and distance measures of PFSs and their
applications. Verma and Merigo [56] proposed generalized
SMs for PFSs and their applications to MADM. Zeng et al.
[57] proposed q-rung orthopair fuzzy weighted induced
logarithmic distance measures and their application in
MADM. Akram et al. [58] defined a novel MCGDM analysis
under m-polar fuzzy soft expert sets. Akram et al. [59]
proposed attribute reduction algorithms for m-polar fuzzy
relation decision systems. Ali and Sarwar [60] developed a
novel technique for group DM under the fuzzy parame-
terized-rung orthopair fuzzy soft expert framework. Ali and
Akram [61] proposed a DM method based on fuzzy N-soft
expert sets.

Wang et al. [62] defined the SMs for two q-ROFSs and
applied them to pattern recognition and MCDM problems.
Peng and Liu established distance, information, and simi-
larity measures, as well as their relationships, in [63]. +e
Minkowski-type DM, which includes HM, ED, and Che-
byshev DsM, was developed and debated in MCDM by Du
[29]. Ali addressed two other methods in [64], developing
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the notions of possibility and confidence, as well as credi-
bility and certainty, in q-ROFSs. +e proposed work’s key
motivation is to analyze each extension of the fuzzy set (FS)
in detail; in intuitionistic fuzzy sets, the two memberships
explain the object’s ambiguity, but the IFS fails to explain the
described real-life problem. Consider a real-world problem
where the MD and NMD values are greater than 0.5, i.e., 0.6
and 0.7; then, 0.6 + 0.7> 1, in this case, using the Pythag-
orean fuzzy sets to describe the real-world problem. When
the PFS fails to define some information in a real-world
problem, it does not explain the unknown information. As a
result, it is failing to clarify uncertainty by using the q-rung
orthopair fuzzy sets. As a result, the definition of a linear
Diophantine fuzzy set (LDFS) was created to cover the
importance of membership and nonmembership functions.
Raiz and Hashmi introduced the principle of the linear
Diophantine fuzzy set (LDFS) in [65], and they demon-
strated that it is more generalized than IFS, PFS, and q-
ROFSs. +e IFS, PFS, and q-ROFSs are less descriptive and
efficient than the LDFS. +e key benefit of the LDFS is the
availability of comparable parameters (RPs). +e MD and
NMD have more space than the IFS, PFS, and q-ROFSs due
to these RPs.

+e RPs in the LDFS are constrained and bounded to a
finite space, i.e., the number of RPs must be less than or
equal to 1. We work on distance and similarity measures of
q-rung linear Diophantine fuzzy sets to extend the theory
and applications of q-RLDFS. +e distance measure for q-
RLDFNs will be constructed, and their relations with the
similarity measure will be studied. We continue to develop
different types of similarity measures and define the Jaccard
similarity measure (JMS) of the q-RLDFS, which tells us
whether the information about the two q-RLDFSs is similar
or different. For two q-RLDFSs, we also expand the JSM to
weighted and generalized weighted JSM. Also, for two q-
RLDFSs, the exponential similarity measure (ESM) was
developed and extended for weighted and generalized
weighted ESM. +e proposed similarity study’s applications
are discussed at the end of the article. +e proposed simi-
larity measure was used to solve the logistics and supply
chain management problem. At the conclusion of the paper,
we use the suggested similarity measures to solve a real-
world problem of supply chain management. We solve the
logistic provider supply chain management problem and
show that the proposed SMs are superior to other SMs,
currently in use.

+e layout is structured as follows: some basic concepts
of FS, IFS, q-ROFS, and LDFS are offered in Section 2. In
Section 3, we define the novel distance measure of q-rung
linear Diophantine fuzzy sets and the Hamming DM. In
Section 4, we introduce a similarity measure of q-rung linear
Diophantine fuzzy sets and different types of similarity
measure such as Jaccard SM and exponential SM. In Section
5, we present the cosine similarity measure for q-RLDFSs
and cotangent function similarity measure for q-RLDFSs. In
Section 6, we address the decision frames, a case study for q-
RLFSs, and a numerical example given to demonstrate the
application of the proposed method by using the proposed
algorithms. In Section 7, we discuss the comparison between

the existing methods and proposed method. In Section 8,
this work is eventually outlined.

2. Basic Concepts

+e basic concept of fuzzy sets and their extensions are
offered in the current section.

Definition 1 (see [8]). Let X be an arbitrary nonempty set. A
fuzzy set (FS) L is defined as

L � x, uL(x)( 
x ∈ X, (1)

where the function uL is a mapping from X⟶ [0, 1], and
for every x ∈ X, 0≤ uL(x)≤ 1, and the function uL(x) is said
to be the MD of x in X.

Definition 2 (see [9]). Let X be an arbitrary nonempty set.
An IFS B in X is defined as

B � x, uB(x), vB(x)( 
x ∈ X, (2)

where uB⟶ [0, 1] and vB⟶ [0, 1] are called, respec-
tively, MD and NMD functions such that ∀x ∈ X: 0≤
uB(x) + vB(x)≤ 1. Indeterminacy degree can be defined as

πB(x) � 1 − uB(x) − vB(x),∀x ∈ X. (3)

Definition 3 (see [10]). Let X be an arbitrary nonempty set.
A q-ROFS is denoted by BP and mathematically defined as

B � x, uB(x), vB(x)( 
x ∈ X, (4)

where uB(x) and vB(x) are MD and NMD functions
: X⟶ [0, 1] with subject to (uB(x)q) + (vB(x)q) ≤ 1. +e
hesitancy MD is denoted by

πB(x) �

�������������������

1 − uB( ( x)
q)

− vB( ( x)
q)



. (5)

q-ROFSs also have certain restrictions on MDs and
NMDs.

Definition 4 (see [65]). Let X be an arbitrary nonempty set.
A LDFS is denoted by GD and mathematically defined as

G � x, 〈uG(x), vG(x)〉, 〈a, b〉): x ∈ X , (6)

where uG(x), vG(x), a, b ∈ [0, 1] are MD, NMD, and
RPs, respectively, and satisfy the condition 0≤ auG(x)+

bvG(x)≤ 1,∀x ∈ X with 0≤ a + b≤ 1. +e following is the
hesitancy degree:

πG(x) � 1 − (a)uG(x) − (b)vG(x). (7)

Definition 5 (see [66]). Let X be an arbitrary nonempty set.
+en, the q-rung linear Diophantine fuzzy set (q-RLDFS) is
represented by T and mathematically defined as

T � x, 〈uT(x), vT(x)〉, 〈a, b〉): x ∈ X , (8)
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where uT, vT, a, b ∈ [0, 1] are MD, NMD, and reference
parameters (RPs), respectively. +ese functions fulfill the
restriction 0≤ (a)quT + (b)qvT ≤ 1,∀x ∈ X, q⩾1, with 0≤ aq

+ bq ≤ 1, q≥ 1. +e percentage of hesitation can be measured
as follows:

πT �

����������������������

1 − a
q)

 uT(x) + b
q)

 vT(x)),
q


(9)

and q-rung linear Diophantine fuzzy number (q-RLDFN) is
defined as

T � 〈uT, vT〉, 〈a, b〉 . (10)

3. Distance Measure of q-Rung Linear
Diophantine Fuzzy Sets

In this section, we describe the distance measure (DsM)
between two q-RLDFSs, as well as their basic properties and
their relation.

Definition 6. Consider a family of q-RLDFSs. +en, a
mapping d(Υ1,Υ2): q − RL DF(Υ) × q − RL DF(Υ) ⟶
[0, 1] is said to be distance measure (DM), where Υ1,Υ2,
Υ3 ∈ q − RL DF(Υ), if the following conditions hold:

(1) 0≤ d(Υ1,Υ2)≤ 1.
(2) d(Υ1,Υ2)≤ d(Υ2,Υ1).
(3) d(Υ1,Υ2) � 1⇔Υ1 � Υ2.
(4) d(Υ1,Υ2)

c � 1⇔Υ1 is a crisp set.
(5) Let Υ1 ⊆Υ2 ⊆Υ3. +en, d(Υ1,Υ3)≤ d(Υ1,Υ2) +

d(Υ2,Υ3).

Now, we define normalized Hamming distance and
normalized Euclidean distance measure between two q-
RLDFSs Υ1 and Υ2 in the following.

Definition 7. Consider two nonempty q-RLDFNs Υ1 �

(〈uΥ1(xi), vΥ1(xi)〉, 〈ai, bi〉) and Υ2 � (〈uΥ2(xi), vΥ2 (xi)〉,

〈ci, di〉) on the discrete nonempty set ℘ � (ρ1, ρ2, . . . , ρn).
+en, the normalized Hamming distance measure is
denoted by NHD(Υ1,Υ2) and given as

NHD Υ1,Υ2(  �
1
4n



n

i�1

u
q

Υ1 xi(  − u
q

Υ2 xi( 




+v
q

Υ1 xi(  − v
q

Υ2 xi( 




+a
q
i − c

q
i


 + b

q
i − d

q
i




⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (11)

Definition 8. Consider two nonempty q-RLDFNs Υ1 �

(〈uΥ1(xi), vΥ1(xi)〉, 〈ai, bi〉) and Υ2 � (〈uΥ2(xi), vΥ2(xi)〉,

〈ci, di〉) on the discrete nonempty set ℘ � (ρ1, ρ2, . . . , ρn).
+en, the normalized Euclidean distance is denoted by
NED(Υ1,Υ2) and given as

NED Υ1,Υ2(  �

�����

1
4n



n

i�1




u
q

Υ1 xi(  − u
q

Υ2 xi(  
2

+ v
q

Υ1 xi(  − v
q

Υ2 xi(  
2

+ a
q
i − c

q
i( 

2
+ b

q
i − d

q
i( 

2
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⎫⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

.

(12)

We further generalize the HDM and EDM for two q-
RLDFSs Υ1 and Υ2 using a parameter λ≥ 1 into equations
(13) and (14), respectively. +e generalized distance measure
(GDsM) of two q-RLDFSs Υ1 and Υ2 is given as

GDM Υ1,Υ2(  �
1
4n



n

i�1

u
q

Υ1 xi(  − u
q

Υ2 xi( 



λ

+ v
q

Υ1 xi(  − v
q

Υ2 xi( 



λ

+ a
q
i − c

q
i



λ

+ b
q
i − d

q
i



λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

1/λ

.

(13)

Remark 1. If we put λ � 1, then GDM(Υ1,Υ2) is reduced to
HD(Υ1,Υ2).

Remark 2. If we put λ � 2, then GDM(Υ1,Υ2) is reduced to
HD(Υ1,Υ2).

Next, we use the weight of each xi with the weight vector
w � (w1, . . . , wn) subject to wi ∈ [0, 1] such that 

n
i�1 wi � 1.

+en, we propose a new DsM, so called the generalized
weighted distance measure (GWDsM) of Υ1 and Υ2 which is
denoted by GWDM(Υ1,Υ2) and defined as

GWDM Υ1,Υ2(  � 
n

i�1
wi

u
q

Υ1 xi(  − u
q

Υ2 xi( 



λ

+ v
q

Υ1 xi(  − v
q

Υ2 xi( 



λ

+ a
q
i − c

q
i



λ

+ b
q
i − d

q
i



λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

1/λ

.

(14)

4. Similarity Measure of q-Rung Linear
Diophantine Fuzzy Sets

In this section, we define different types of similarity
measure (SM) of q-RLDFS and also discuss the basic
properties of the proposed SMs.We will use the notion of the
Jaccard, exponential, cosine, and cotangent functions and
develop the similarity measures between q-RLDFSs.

First, we give the definition of similarity measures be-
tween two q-RLDFSs.

Definition 9. Consider a family of q-RLDFNs. +en, a
mapping SM(Υ1,Υ2): q − RLDF(Υ) × q − RLDF(Υ)⟶
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[0, 1] is said to be a similarity measure (SM), where
Υ1,Υ2,Υ3 ∈ q − RLDF(Υ), if the following conditions hold:

(1) 0≤ SM(Υ1,Υ2)≤ 1.
(2) SM(Υ1,Υ2)≤ SM(Υ2,Υ1).
(3) SM(Υ1,Υ2) � 1⇔Υ1 � Υ2.
(4) SM(Υ1,Υ2)

c � 1⇔Υ1 is a crisp set.
(5) Let Υ1 ⊆Υ2 ⊆Υ3. +en, SM(Υ1,Υ3)≤min SM(Υ1,

Υ2)+ SM(Υ2,Υ3)}.

4.1. Jaccard Similarity Measure of q-RLDFSs. +is section
consists of a novel SM between q-RLDFSs which is called the
Jaccard similarity measure (JSM) between two q-RLDFSs.
+e JSM tells us the information whether the two q-RLDFSs
are similar or distinct. +e JSM provides information of
similarity from 0 to 1 for the two q-RLDFSs. If the

information of similarity of two q-RLDFSs is near to 1, then
both are similar to each other, and if the information of
similarity is near to close to 0, then both are dissimilar from
each other. +e JSM is very informative for similarity and
dissimilarity for q-RLDFSs, so the JSM is useful in the de-
cision-making problem and pattern recognition.

(1) 0≤ JSM(Υ1,Υ2)≤ 1
(2) JSM(Υ1,Υ2) � JSM(Υ2,Υ1)
(3) JSM(Υ1,Υ2) � 1 iff Υ1 � Υ2

Definition 10. Consider two nonempty q-RLDFNs Υ1 �

(〈uΥ1(xi), vΥ1(xi)〉, 〈ai, bi〉) and Υ2 � (〈uΥ2(xi), vΥ2 (xi)〉,

〈ci, di〉) on the discrete nonempty set ℘ � (ρ1, ρ2, . . . , ρn).
+en, the Jaccard similarity measure (JSM) is denoted by
JSM(Υ1,Υ2) and given as

JSM Υ1,Υ2(  �
1
n



n

i�1

u
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Υ1(x)u
q

Υ2 xi(  + v
q
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q
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q
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q
i d

q
i
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q

Υ1 xi(  
2

+ v
q

Υ1 xi(  
2

+ a
q
i( 

2
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q
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2
 

+ u
q

Υ2 xi(  
2

+ v
q

Υ2 xi(  
2

+ b
q
i( 
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+ d
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2
 

− u
q

Υ1 xi( u
q

Υ2 xi(  + v
q

Υ1 xi( v
q

Υ2 xi(  + a
q
i c

q
i + b

q
i d

q
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(15)

Theorem 1. Consider two nonempty q-RLDFNs Υ1 � (〈uΥ1
(xi), vΥ1

(xi)〉, 〈ai, bi〉) and Υ2 � (〈uΥ2
(xi), vΥ2

(xi)〉, 〈ci,

di〉) on the discrete nonempty set ℘ � (ρ1, ρ2, . . . , ρn). ;en,
JSM(Υ1,Υ2) defined in equation (11) satisfies the following
conditions:

Proof

(1) As Υ1,Υ2 are two q-RLDFNs and we know that
x2 + y2 ≥ 2xy,
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≥ 0.

(17)

+us, JSM(Υ1,Υ2)≥ 0, and summing up to n and
normalizing, we have JSM(Υ1,Υ2)≤ 1. Hence, 0≤
JSM (Υ1,Υ2)≤ 1.

(2) +e proof of JSM(Υ1,Υ2) � JSM(Υ2,Υ1) is trivial.
(3) Suppose that Υ1 � Υ2; then, u

q
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Υ2(xi), v
q
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Υ2(xi), a
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i . +en, equation (11)

becomes
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(18)

Conversely, the proof is easy.
Next, we use the weight of each xi with the weight vector

w � (w1, w2, . . . , wn)T subject to wi ∈ [0, 1] such that


n
i�1 wi � 1. +en, we propose a new SM, called weighted

Jaccard similarity measure of Υ1 and Υ2 which is denoted by
JSM(Υ1,Υ2) and defined in the following equation:
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(19)

+e proposedWJSM(Υ1,Υ2) also satisfies the conditions
of +eorem 1. □

4.2. Exponential Similarity Measure of q-RLDFSs. In this
section, the exponential function with Euclidean and
Hamming distances between two q-RLDFSs Υ1 and Υ2 is
used to provide a new similarity measure between the two q-
RLDFSs. Shepard predicted a universal law regarding dis-
tance and similarity measures in 1987. Both are related to an
exponential function, and using the similarity measure based
on the expansion function, the exponential distance measure
is defined as

ESMd Υ1,Υ2(  � E
− d Υ1 ,Υ2( ). (20)

Now, we will talk about the properties of the distance
measure, also known as axioms. Every distance measure
must satisfy the following axioms:

(1) Equality: d(Υ1,Υ2) � d(Υ2,Υ1) for every Υ1 and Υ2.
+us, ESMd(Υ1,Υ2) � ESMd(Υ2,Υ1) for every Υ1
and Υ2.

(2) Minimality: d(Υ1,Υ2)>d(Υ1,Υ1) for every Υ1≠Υ2.
+us, ESMd(Υ1,Υ2)<ESMd(Υ1,Υ1) for every Υ1≠
Υ2.

(3) Symmetry: d(Υ1,Υ2) � d(Υ2,Υ1) for every Υ1 and
Υ2. +us, ESMd(Υ1,Υ2) � ESMd(Υ2,Υ1) for every
Υ1 and Υ2.

(4) Triangle inequality: d(Υ1,Υ2) + d(Υ2,Υ3)≥ d(Υ1,
Υ3) for all Υ1,Υ2 and Υ3. +us, we can say that the
dissimilarities of any three q-RLDFSs satisfy the
above properties. We can also say that if Υ1 is similar
to Υ2 and Υ2 is similar to Υ3, then Υ1 should be
similar to Υ3.

Now, in equation (20), we use the normalized Hamming
distance (NHD) of two q-RLDFSs to get a new kind of SM
based on NHD.

(1) 0≤ESMNHD(Υ1,Υ2)≤ 1
(2) ESMNHD(Υ1,Υ2) � ESMNHD(Υ1,Υ2)
(3) ESMNHD(Υ1,Υ2) � 1 iff Υ1 � Υ2
(1) 0≤ESMNED(Υ1,Υ2)≤ 1
(2) ESMNED(Υ1,Υ2) � ESMNED(Υ1,Υ2)
(3) ESMNED(Υ1,Υ2) � 1 iff Υ1 � Υ2

Definition 11. Consider two nonempty q-RLDFNs Υ1 �

(〈uΥ1 (xi), vΥ1(xi)〉, 〈ai, bi〉) and Υ2 � (〈uΥ2 (xi), vΥ2(xi)〉,

〈ci, di〉) on the discrete nonempty set ℘ � (ρ1, ρ2, . . . , ρn).
+en, ESM based on NHD is generated by using equation
(20) and given as
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. (21)

Theorem 2. Consider two nonempty q-RLDFNs Υ1 �

(〈uΥ1
(xi), vΥ1

(xi)〉, 〈ai, bi〉) and Υ2 � (〈uΥ2
(xi), vΥ2

(xi)〉,

〈ci, di〉) on the discrete nonempty set ℘ � (ρ1, ρ2, . . . , ρn).
;en, ESMNHD(Υ1,Υ2) defined in equation (21) satisfies the
following conditions:

Proof.

(1) We know from the definition of q-RLDFS that 0≤
uΥ1(xi) + vΥ1(xi) + ai + bi ≤ 1 and 0≤ uΥ2(xi)+

vΥ2(xi) + ai + bi ≤ 1. +us, we can write as
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and
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 ≤ 0. (23)

We know about the exponential properties that the
zero power of e is equal to 1, and the value of the

negative power of e is less than 1. In this case, we
have

0≤ e

− (1/4n) 
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≤ 1.
(24)

+us, we obtained that 0≤ESMNHD(Υ1,Υ2)≤ 1.
(2) +e proof of this property is trivial.

(3) Suppose that Υ1 � Υ2; then, u
q

Υ1(xi) � u
q

Υ2(xi),

v
q

Υ1(xi) � v
q

Υ2(xi), a
q
i � c

q
i , b

q
i � d

q
i . +us, equation

(14) becomes
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(25)

Hence, ESMNH D(Υ1,Υ2) � 1.
Next, using the normalized Euclidean distance (NED) of

two q-RLDFSs in equation (21), we will get the new type of
SM based on ED. □

Definition 12. Consider two nonempty q-RLDFNs Υ1 �

(〈uΥ1 (xi), vΥ1(xi)〉, 〈ai, bi〉) and Υ2 � (〈uΥ2(xi), vΥ2(xi)〉,

〈ci, di〉) on the discrete nonempty set ℘ � (ρ1, ρ2, . . . , ρn).
+en, ESM based on NED is generated. So, the ESM based
on NED is given in the following equation:
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Theorem 12. Consider two nonempty q-RLDFNs Υ1 �

(〈uΥ1
(xi), vΥ1

(xi)〉, 〈ai, bi〉) and Υ2 � (〈uΥ2
(xi), vΥ2

(xi)〉,

〈ci, di〉) on the discrete nonempty set ℘ � (ρ1, ρ2, . . . , ρn).
;en, ESMNED(Υ1,Υ2) defined in equation (26) satisfies the
following conditions:

Proof

(1) Given that Υ1 and Υ2 are the two q-RLDFNs and as
0≤ uΥ1(xi) + vΥ1(xi) + ai + bi ≤ 1 and 0≤ uΥ2(xi)

+vΥ2(xi) + ai + bi ≤ 1, it implies that
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We also know about the exponential properties that
the zero power of e is equal to 1, and the value of the
negative power of e is less than 1. +en, we have
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Hence, ESMED(Υ1,Υ2) � 1.
(2) +e proof of this property is followed by using the

symmetric property of NED. So, we omit the proof
here.

(3) Suppose that Υ1 � Υ2; then, u
q
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(26) becomes
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Hence, ESMNED(Υ1,Υ2) � 1.
Next, we use the weight of each xi with the weight vector w

� (w1,w2, . .. ,wn)T subject to wi ∈ [0,1] such that 
n
i�1 wi � 1.

+en, we propose a new ESM, called the weighted exponential
similarity measure (WESM) of Υ1 and Υ2 which is denoted by
WESMNHD(Υ1,Υ2) andWESMNED(Υ1,Υ2), respectively. □
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Definition 13. Consider two nonempty q-RLDFNs Υ1 �

(〈uΥ1(xi), vΥ1(xi)〉, 〈ai, bi〉) and Υ2 � (〈uΥ2(xi), vΥ2 (xi)〉,

〈ci, di〉) on the discrete nonempty set ℘ � (ρ1, ρ2, . . . , ρn).

+en, ESM based on NHD and NED is denoted by
WESMNHD(Υ1,Υ2) and WESMNED(Υ1,Υ2), given in
equations (31) and (32), respectively.
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+e weighted ESM based on NED is given as
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5. Similarity Measure of q-RLDFS Based on
Cosine and Cotangent Functions

+is section is used for the SM based on cosine and co-
tangent functions for q-RLDFSs. +e proposed SM is also
known as a cosine similarity measure (CSM) and cotangent
similarity measure (cotSM) between two q-RLDFSs Υ1 and
Υ2. +e CSM is generated by using the cosine function, and
cotSM is generated by using the cotangent function. +is
section has two sections: one is for CSM and another is for
cotSM.

5.1. Cosine Similarity Measure of q-RLDFSs. In this section,
the authors use the cosine function to develop a CSM for two
q-RLDFSs Υ1 andΥ2. We also develop the weighted CSM for
two q-RLDFSs Υ1 and Υ2 and also prove some properties of
the CSM and WCSM with the distance measure.

Definition 14. Consider two nonempty q-RLDFNs Υ1 �

(〈uΥ1(xi), vΥ1(xi)〉, 〈ai, bi〉) and Υ2 � (〈uΥ2(xi), vΥ2 (xi)〉,

〈ci, di〉) on the discrete nonempty set ℘ � (ρ1, ρ2, . . . , ρn).
+en, the cosine similarity measure is denoted by CSM
(Υ1,Υ2) and given as
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+e CSM of three q-RLDFSs Υ1,Υ2, and Υ3 satisfied the
following properties:

(1) 0≤CSM(Υ1,Υ2)≤ 1.
(2) CSM(Υ1,Υ2)≤CSM(Υ2,Υ1).
(3) CSM(Υ1,Υ2) � 1⇔Υ1 � Υ2.
(4) Let Υ1 ⊆Υ2 ⊆Υ3. +en, CSM(Υ1,Υ3)≤CSM(Υ1,Υ2)

and CSM(Υ1,Υ3)≤CSM(Υ2,Υ3).

Proof. +e first two properties are obvious, so we omit the
proof here and prove the last two properties.

(3): assume that Υ1 � Υ2; then, u
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(34)

(4): now, to prove the last property, let Υ1 ⊆Υ2 ⊆Υ3, so
the angle of Υ1,Υ3 is larger than the angle of Υ1,Υ2 and
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Υ1,Υ3. +us, from the fact, we can write as CSM(Υ1, Υ3)≤
CSM (Υ1, Υ2) and CSM(Υ1,Υ3)≤CSM(Υ2,Υ3).

In the following, we present a relation between the
distance measure (DsM) and CSM. We explore the DsM
between two q-RLDFSs using the CSM. □

Definition 15. Consider two nonempty q-RLDFNs Υ1 �

(〈uΥ1(xi), vΥ1(xi)〉, 〈ai, bi〉) and Υ2 � (〈uΥ2(xi), vΥ2 (xi)〉,

〈ci, di〉) on the discrete nonempty ℘ � (ρ1, ρ2, . . . , ρn).+en,
the DsM between two q-RLDFSs is given by the following
equation:

d Υ1,Υ2(  � cos− 1
CSM Υ1,Υ2( ( . (35)

Now, we will prove that equation (35) satisfies the
conditions of the DsM:

(1) 0≤CSM(Υ1,Υ2)≤ 1; then, d(Υ1,Υ2)≥ 0

(2) CSM(Υ1,Υ2) � CSM(Υ2,Υ1); then, d(Υ1,Υ2) � d

(Υ2,Υ1)
(3) CSM(Υ1,Υ2) � 1; if Υ1 � Υ2, then d(Υ1,Υ2) � 0
(4) If Υ1 ⊆Υ2 ⊆Υ3, then

d(Υ1,Υ3)≤d(Υ1,Υ2) + (Υ2,Υ3)

Proof. +e first three properties of DsM are obvious; we
only prove the last property of equation (35); consider
Υ1,Υ2, and Υ3 such that Υ1 ⊆Υ2 ⊆Υ3. +en, DsM of Υ1,Υ2,
and Υ3 is given as

d Υ1,Υ2(  � cos− 1 CSM Υ1,Υ2( ( ,

d Υ2,Υ3(  � cos− 1 CSM Υ2,Υ3( ( ,

d Υ1,Υ3(  � cos− 1 CSM Υ1,Υ3( ( .

(36)

+erefore, we can write the following equations from the
above equations as
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Now, consider weight wi for each xi with the weight
vector for all values of xi. +en, we propose the weighted
CSM for two q-RLDFSs. □

Definition 16. Consider two nonempty q-RLDFNs Υ1 �

(〈uΥ1(xi), vΥ1(xi)〉, 〈ai, bi〉) and Υ2 � (〈uΥ2(xi), vΥ2 (xi)〉,

〈ci, di〉) on the discrete nonempty set ℘ � (ρ1, ρ2, . . . , ρn).
+en, the weighted cosine similarity measure is denoted by
WCSM(Υ1,Υ2) and given as
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(40)

wherew � (w1, w2, . . . , wn)T is a weight vector of each xi such
that wi ∈ [0, 1] and 

n
i�1 wi � 1. If we take wi � 1/n, then

equation (40) becomes equation (33). +e WCSM is a gen-
eralized form of the CSM. +e WCSM is also satisfied for two
q-RLDFSs.

+e CSM of three q-RLDFNs Υ1,Υ2, and Υ3 satisfied the
following properties:

(1) 0≤WCSM(Υ1,Υ2)≤ 1
(2) WCSM(Υ1,Υ2)≤WCSM(Υ2,Υ1)
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(3) WCSM(Υ1,Υ2) � 1⇔Υ1 � Υ2

Proof. +e proof follows from the proof of the properties of
equation (35).

Now, we will use the cosine function to propose new SMs
and WSMs based on the cosine function. +e similarity
measure based on the cosine function is given in equations
(41) and (42). □

Definition 17. +e SMs based on the cosine function for two
q-RLDFNs Υ1 and Υ2 are denoted by SMcos(Υ1,Υ2) and
defined by the following equation:
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(42)

Also, we prove the following properties for equations
(41) and (42):

(1) 0≤ SMcos1,2(Υ1,Υ2)≤ 1
(2) SMcos1,2(Υ1,Υ2) � SMcos1,2(Υ2,Υ1)
(3) SMcos1,2(Υ1,Υ2) � 1 iff Υ1 � Υ2
(4) If Υ1 ⊆Υ2 ⊆Υ3, then SMcos1,2(Υ1,Υ3)≤ SMcos1,2

(Υ1,Υ2) and SMcos1,2(Υ1,Υ3)≤ SMcos1,2(Υ2,Υ3)

Proof.

(1) Since the cosine function values lie between the
closed interval 0 and 1 and based on the cosine
function, the q-RLDF cosine similarity measures are
also within [0, 1]. +us, the values of SMcos1,2(Υ1,Υ2)
must lie between 0 and 1.

(2) +is is easily proven that SMcos1,2(Υ1,Υ2) �

SMcos1,2(Υ2,Υ1).
(3) +is is easily proven such that SMcos1,2(Υ1,Υ2) � 1.
(4) Consider three q-RLDFNs, such as Υ1 ⊆Υ2 ⊆Υ3;

then,
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We know that the cosine function is a decreasing
function in [0, π/2]. +us, SMcos1,2(Υ1,Υ3)≤ SMcos1,2(Υ1,Υ2)
and SMcos1,2(Υ1,Υ3)≤ SMcos1,2(Υ2,Υ3).

Now, consider weight wi for each xi with the weight
vector for all values of xi. +en, we propose the weighted SM
for two q-RLDFNs based on the cosine function. □

Definition 18. Consider two nonempty q-RLDFNs Υ1 �

(〈uΥ1(xi), vΥ1(xi)〉, 〈ai, bi〉) and Υ2 � (〈uΥ2(xi), vΥ2(xi)〉,

〈ci, di〉) on the discrete nonempty set ℘ � (ρ1, ρ2, . . . , ρn).
+en, the weighted cosine similarity measure based on the
cosine function is denoted byWSMcos1,2(Υ1,Υ2) and given as
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(46)

where w � (w1, w2, . . . , wn)T is a weight vector of each xi

such that wi ∈ [0, 1] and 
n
i�1 wi � 1. If we take wi � 1/n,

then equations (45) and (46) become equations (41) and
(42). +e WCSM is a generalized form of the CSM. +e
WCSM is also satisfied for two q-RLDFNs.

+e WCSM of three q-RLDFNs Υ1,Υ2, and Υ3 satisfied
the following properties:

(1) 0≤WSMcos1,2(Υ1,Υ2)≤ 1
(2) WSMcos1,2(Υ1,Υ2) � WSMcos1,2(Υ2,Υ1)
(3) WSMcos1,2(Υ1,Υ2) � 1⇔Υ1 � Υ2
(4) If Υ1 ⊆Υ2 ⊆Υ3, then WSMcos1,2(Υ1,Υ3)≤WSMcos1,2

(Υ1,Υ2) and WSMcos1,2(Υ1,Υ3)≤WSMcos1,2(Υ2,Υ3)

5.2. Cotangent Function Similarity Measure of q-RLDFSs.
In this section, we use the cotangent function to develop a
cotangent similarity measure (cotSM) for two q-RLDFNs Υ1
and Υ2. We also develop the weighted cotSM for two q-
RLDFNsΥ1 andΥ2 and also prove some properties of the cot
SM and WcotSM with distance measures.
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Definition 19. Consider two nonempty q-RLDFNs Υ1 �

(〈uΥ1(xi), vΥ1(xi)〉, 〈ai, bi〉) and Υ2 � (〈uΥ2(xi), vΥ2(xi)〉,

〈ci, di〉) on the discrete nonempty set ℘ � (ρ1, ρ2, . . . , ρn).

+e SMs based on the cotangent function for two q-RLDFNs
Υ1 and Υ2 are denoted by SMcot(Υ1,Υ2) and defined by the
following equation:
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Equations (46) and (48) satisfied the following
properties:

(1) 0≤ SMcot1,2(Υ1,Υ2)≤ 1
(2) SMcot1,2(Υ1,Υ2) � SMcot1,2(Υ2,Υ1)
(3) SMcot1,2(Υ1,Υ2) � 1 iff Υ1 � Υ2
(4) If Υ1 ⊆Υ2 ⊆Υ3, then

SMcot1,2(Υ1,Υ3)≤ SMcot1,2(Υ1,Υ2) and
SMcot1,2(Υ1,Υ3)≤ SMcot1,2(Υ2,Υ3)

Proof.

(1) Since the cosine function values lie between the
closed interval 0 and 1 and based on the cosine
function, the q-RLDFN cosine similarity measures
are also within [0, 1]. +us, the values of
SMcot1,2(Υ1,Υ2) must lie between 0 and 1.

(2) +is is easily proven such that SMcot1,2(Υ1,Υ2) �

SMcot1,2(Υ2,Υ1).
(3) +is is easily proven such that SMcot1,2(Υ1,Υ2) � 1.
(4) Consider three q-RLDFNs, such as Υ1 ⊆Υ2 ⊆Υ3.
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We know that the cotangent function is a decreasing
function in [0, π/4]. +us, SMcot1,2(Υ1,Υ3)≤ SMcot1,2(Υ1,Υ2)
and SMcot1,2(Υ1,Υ3)≤ SMcot1,2(Υ2,Υ3).

Now, consider weight wi for each xi, with the weight
vector for all values of xi. +en, we propose the weighted SM
for two q-RLDFSs based on the cotangent function. □

Definition 20. Consider two nonempty q-RLDFNs Υ1 �

(〈uΥ1(xi), vΥ1(xi)〉, 〈ai, bi〉) and Υ2 � (〈uΥ2(xi), vΥ2(xi)〉,

〈ci, di〉) on the discrete nonempty set ℘ � (ρ1, ρ2, . . . , ρn).
+en, the weighted cosine similarity measure based on the
cotangent function is denoted by WSMcot1,2(Υ1,Υ2) and
given as
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12 Journal of Mathematics



WSMcot2 Υ1,Υ2(  � 

n

i�1
wi cot

π
4

+
π
4

u
q

Υ1 xi(  − u
q

Υ2 xi( 




+v
q

Υ1 xi(  − v
q

Υ2 xi( 




+a
q
i − c

q
i


 + b

q
i − d

q
i




⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (52)

where w � (w1, w2, . . . , wn)T is a weight vector of each xi

such that wi ∈ [0, 1] and 
n
i�1 wi � 1. If we take wi � 1/n,

then equations (51) and (52) become equations (47) and
(48). +e WcotSM is a generalized form of cotSM. +e
WcotSM is also satisfied for two q-RLDFNs.

+eWcotSM of three q-RLDFNs Υ1,Υ2, and Υ3 satisfied
the following properties:

(1) 0≤WSMcot1,2(Υ1,Υ2)≤ 1
(2) WSMcot1,2(Υ1,Υ2) � WSMcot1,2(Υ2,Υ1)
(3) WSMcot1,2(Υ1,Υ2) � 1 iff Υ1 � Υ2
(4) If Υ1 ⊆Υ2 ⊆Υ3, then WSMcot1,2(Υ1,Υ3)≤WSMcot1,2

(Υ1,Υ2) and WSMcot1,2(Υ1,Υ3)≤WSMcot1,2(Υ2,Υ3)

6. Applications of Proposed
Similarity Measures

In the literature, some similarity measures of different fuzzy
sets have been developed in different fields, i.e., decision-
making, clustering analysis, data mining, pattern recogni-
tion, and supply chain management. +is section provides
the detailed description of applications of the proposed SM
of the present paper. We are going to develop general
multicriteria decision support systems for logistics and
supply chain management. In case of logistics and provider
selection, the detailed description of the algorithm is given in
the following steps.

Let A � (A1, A2, . . . , Am) be the collection of m alter-
natives and C � (C1, C2, . . . , Cn) be the set of criteria. +e
criteria Cj(j � 1, 2, . . . , n) weight vector is w � (w1, w2, . . . ,

wn)T, satisfying that wj ∈ [0, 1] and 
n
j�1 wj � 1, for

j � 1, 2, . . . , n. Suppose that E � (E1, E2, . . . , Ep) is the set of
experts; every expert gives their assessment in the positive
and negative grade to each criterion Cj(j � 1, 2, . . . , n) on
the alternative Ai(i � 1, 2, . . . , m), respectively. So, we
construct the decision matrix in the form of q-RLDFNs.

+en, the following steps are used to solve the MCDM
problems, applying the cosine and cotangent similarity
measures of q-RLDFNs.

Step 1: in this step, we construct a committee of the
experts
Step 2: in this step, we collect information in the form of
q-RLDFNs and make a decision matrix of the
alternatives
Step 3: the proposed similarity measures are used to
find the collective values of the decision matrix
Step 4: the alternatives are ranked according to the
highest value of the alternatives, and the best one is
chosen

6.1. Logistics Providers (LPs) and Supply Chain Management
Problem. In this section, we have addressed a case study for
selecting logistics providers (LPs). In our decision and
ranking of alternatives, we use the proposed similarity
measures. We connect our results with certain previous
methods.

6.1.1. Case Study with the Numerical Approach. For the
purpose of logistics support, the better selection of logistics
providers (LPs) is now important to the growth and ad-
vancement of the supply chain theories. Over the past de-
cades, there has been a drastic change in the course of
decision support systems.

A supply chain is considered as a method with a full
range of activities in which raw materials are converted into
finally completed goods and then distributed by distribution,
logistics, and retail to customers. As a supply chain man-
agement system, all interfunctional processes such as or-
dering, distribution, product delivery, and reverse logistics
are taken into account [67–69].

Such systems allow experts in the supply chain to
promote information flow, highly qualified decisions, and
through internal coordination to increase the demand for
goods and services [70]. In order to control the cost of the
products in a textile factory, a DSS has aided decisionmakers
in choosing effective ways to minimize overall cost of
production.

Supply chain management can be considered sustainable
when extended to all related aspects of the supply chain:
energy conservation, final goods assurance, after-sales ser-
vice, ethical job problems, reuse, and reverse logistics. In this
way, arguing consumer expectations and then translating
them into the supply chain considerations in this work may
not only shift the supply chain towards a global and sus-
tainable appearance but also strengthen the relevance of
customer-based analysis. In the current group decision
model, the task is to develop an alternative LP ranking based
on the proposed similarity measures. +e proposed method
steps include a window for implementing costumer-driven
weighting procedure for the criteria of decision. +is factor
allows for the decision process to satisfy external stake-
holders and customers. We considered four decision makers
to send us their opinions on the above logistics providers
regarding the related factors for constructing a decision
system. First, the necessary and the corresponding technical
criteria for determining the logistics providers (LPs) of third
parties are defined and implemented. +e alternatives are
true logistics and transport companies operating in France
and Europe as a whole.

How to control the flow of our information? Where
should our houses be located? What a framework should be
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introduced for transport and logistic? A managed and
flexible supply chain is of paramount importance not only
because of communication between all departments of the
business (marketing, logistics, procurement, etc.) but also
because of the extension of communication beyond its
boundaries (suppliers, subcontractors, LPs, etc.).

Multiactivities of over 400 businesses, a network of
almost 1500 members, ASLOG is now the leading French
network of supply chain professionals. Its objectives
include providing forward-looking goals, developing
standards and qualifications, measuring and assessing
logistic output, and eventually producing research dis-
tribution in collaboration with the benchmarking of best
practices.

Step 1: Mathez, Bansard, Gefco, and Schneider are
chosen to be four logistics provider companies, i.e., alter-
natives Am, and examined by the suggested methods.

A1: Mathez group’s main activities can be expanded
from air, sea, and road freight, also packaging, supply
and distribution management and optimizing, port
agent, cargo, and cruise ship management. +e main
activities of the Mathez group can be expanded from
air, sea, and road freight, packaging, deliver and dis-
tribution processing, port controller, and transport of
goods.
A2: Bansard International offers a comprehensive
platform for transport by sea, air, and road via
agreements with leading airports to meet our clients’
needs. +us, Bansard International serves the main
ports and airports. Moreover, this firm offers door-to-
door support services to promote custom activities.
+ey provide services such as air, marine, and road
transport, logistics, and construction plants.
A3: Gefco offers effective logistics solutions worldwide
for its industrial clients. +e company is able to fulfil all
criteria for the supply chain optimization process, land
transport, distribution, shipment planning, and air
flows.
A4: the company Schneider prepares and manages the
transport of all kinds of goods between Europe and
Switzerland. +is company provides a type of daily
activities for transport by air, sea, and road, reverse
transportation, vegetables transportation, etc.

+is case study focuses on applying the decision support
model in the supply chain which aims to demonstrate how it
can choose a third party LP as a partner from the pool of
potential suppliers. +e model’s goal is to include the in-
terests of consumers and stakeholders in the decision
process so as to provide a global and detailed framework.
Suppose the six technical factors denote technical require-
ments (decision criteria C1, C2, . . . , C6) which satisfy the
four alternative LPs. On the contrary, the following criteria
with weight vector w � (0.11, 0.31, 0.15, 0.17, 0.14, 0.12)T

are listed for LP evaluation as follows:

C1: financial stability
C2: quality system

C3: delivery condition
C4: services
C5: flexibility of the system
C6: company stability

Step 1: in this step, we invite a team of experts to give
their assessments
Step 2: now, every expert gives their assessments about
the alternatives in the form of q-RLDFNs based on the
six criteria given in Table 1
Step 3: now, we used the proposed similarity measures
to find the collective values of the decision matrix, as
given in Table 2

Based on the estimated results in Table 2, the degree of
similarity between A2 and A is the highest, as determined by
the other eight similarity measures.+is indicates that all ten
similarity measures think the alternative A2 is closest to be
the best alternative A based on the principle of maximum
similarity between q-rung linear Diophantine fuzzy sets (q-
RLDFSs). In other words, A2 is the best alternative.

In Figure 1, we graphically show the ranking of the
alternative given in Table 2.

In practical DM problems, it is important to take the
weights of elements into account if we take weights of
criteria as w � (0.11, 0.31, 0.15, 0.17, 0.14, 0.12)T, respec-
tively. +en, the weighted similarity measures proposed in
this paper have been utilized to compute the similarity, and
the results are listed in Table 3 (suppose q � 3).

Based on the results in Table 3, the degree of similarity
between A2 and A is the highest, as determined by the other
eight similarity measures. +is shows that, in all eight
similarity measures, the alternative A2 is closest to be the
best alternative A based on the principle of maximum
similarity between q-RLDFNs. +us, A2 is the best
alternative.

In Figure 2, we graphically show the ranking of the
alternative given in Table 3.

7. Comparison and Discussion

A comparison of our defined similarity measures with
certain existing approaches in context [29, 40, 52, 53, 62,
63, 71] has been done to illustrate the superiority of our
defined similarity measures. Table 4 shows that the existing
SMs are inaccessible when using q-ROF aggregation oper-
ators to solve the developed illustrated case of Section 6.
However, while the approaches described in [65, 66] contain
Diophantine fuzzy information, they are inaccessible for
solving the proposed information. Based on the study of
Table 4, we can see that existing SMs lack rough information,
and these approaches are unable to solve and rank the
created case. As a result, the new method is more capable
and effective than the existing approaches.

To demonstrate the effectiveness and scientific nature of
our suggested approaches, we will compare them to the
existing decision-making approaches such as [32–36, 57]
with the q-rung orthopair fuzzy aggregation operators. +e
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Table 1: +e q-RLDFNs’ information given by the expert.

C1 C2 C3 C4 C5 C6

A1
〈0.5, 0.7〉

〈0.6, 0.4〉
 

〈0.8, 0.3〉

〈0.7, 0.4〉
 

〈0.9, 0.2〉

〈0.8, 0.4〉
 

〈0.6, 0.7〉

〈0.3, 0.6〉
 

〈0.8, 0.6〉

〈0.4, 0.5〉
 

〈0.5, 0.7〉

〈0.6, 0.4〉
 

A2
〈0.8, 0.6〉

〈0.5, 0.3〉
 

〈0.9, 0.7〉

〈0.2, 0.6〉
 

〈0.3, 0.8〉

〈0.6, 0.5〉
 

〈0.8, 0.6〉

〈0.5, 0.3〉
 

〈0.3, 0.8〉

0.6, 0.5 
〈0.9, 0.4〉

〈0.5, 0.3〉
 

A3
〈0.7, 0.6〉

〈0.4, 0.5〉
 

〈0.9, 0.1〉

〈0.8, 0.3〉
 

〈0.5, 0.9〉

〈0.8, 0.2〉
 

〈0.5, 0.9〉

〈0.8, 0.2〉
 

〈0.8, 0.3〉

〈0.7, 0.4〉
 

〈0.8, 0.7〉

〈0.2, 0.6〉
 

A4
〈0.9, 0.4〉

〈0.6, 0.3〉
 

〈0.5, 0.6〉

〈0.3, 0.9〉
 

〈0.6, 0.7〉

〈0.3, 0.6〉
 

〈0.9, 0.2〉

〈0.7, 0.4〉
 

〈0.5, 0.6〉

〈0.3, 0.9〉
 

〈0.9, 0.1〉

〈0.8, 0.3〉
 

A 〈0.8, 0.5〉

〈0.7, 0.2〉
 

〈0.4, 0.8〉

〈0.6, 0.5〉
 

〈0.5, 0.8〉

〈0.7, 0.4〉
 

〈0.4, 0.7〉

〈0.6, 0.3〉
 

〈0.6, 0.5〉

〈0.7, 0.4〉
 

〈0.7, 0.2〉

〈0.4, 0.6〉
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Figure 1: +e ranking of the alternative given in Table 2.

Table 2: +e similarity measures between Ai an dA.

Similarity measure (A1, A) (A2, A) (A3, A) (A4, A)

JSM(Ai, A) 0.378 0.580 0.601 0.443
ESMNHD(Ai, A) 0.823 0.864 0.841 0.843
ESMNED(Ai, A) 0.766 0.793 0.781 0.772
CSM(Ai, A) 0.552 0.746 0.811 0.642
SMcos1(Ai, A) 0.683 0.790 0.612 0.697
SMcos2(Ai, A) 0.734 0.848 0.651 0.736
SMcot1(Ai, A) 0.572 0.624 0.532 0.560
SMcot2(Ai, A) 0.614 0.672 0.586 0.592
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aggregated results of a comparative examination of existing
methods using our example are listed in Table 5 with criteria
weight vector w � (0.11, 0.31, 0.15, 0.17, 0.14, 0.12)T.

To date, we can see that cosine and cotangent SMs with q-
ROFSs have been examined by a large number of researchers.
However, as previously indicated, some particular scenarios

Table 3: +e weighted similarity measures between Ai an dA.

Similarity measure (A1, A) (A2, A) (A3, A) (A4, A)

WJSM(Ai, A) 0.359 0.529 0.528 0.423
WESMNHD(Ai, A) 0.964 0.969 0.964 0.970
WESMNED(Ai, A) 0.892 0.900 0.886 0.895
WCSM(Ai, A) 0.522 0.797 0.733 0.622
WSMcos1(Ai, A) 0.721 0.793 0.772 0.668
WSMcos2(Ai, A) 0.761 0.849 0.813 0.709
WSMcot1(Ai, A) 0.535 0.582 0.562 0.486
WSMcot2(Ai, A) 0.580 0.635 0.599 0.540
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Figure 2: +e ranking of the alternative given in Table 3.

Table 4: Different methods and their ranking.

Methods Appraisal scores of alternatives Ranking
Du [29] Inaccessible ×

Peng and Liu [63] Inaccessible ×

Son and Phong [52] Inaccessible ×

Wu et al. [71] Inaccessible ×

Wei and Wei [53] Inaccessible ×

Wang et al. [62] Inaccessible ×

Ye [40] Inaccessible ×

Methods Remarks Parameterization

q-RLDFS [66] q − RLDFS covers this situation,

0≤ (a)
qμD(x) + (b)

q
vD(x) ≤ 1,

Yes

LDFS [65] LDFS covers this situation,

0≤ (a)μD(x) + (b)vD(x) ≤ 1,

No
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are not covered by q-ROFSs. As a result, algorithms based on
SMs with a q-ROFS are incapable of dealing with such
problems. +e cosine and cotangent similarity measures with
q-ROF information are special cases of the SMs described in
this study with q-rung linear Diophantine fuzzy information.
Because of the qth power of reference parameters, this notion
is impressive in that it covers the valuation spaces of IFSs,
PyFSs, q-ROFSs, and LDFSs. As a result, our specified SMs are
better suited and generalized to cope with the real-world
situation than the current ones.

8. Conclusion

Based on q-rung linear Diophantine fuzzy sets (q-RLDFSs), we
proposed another form of similarity measures by considering
the function of membership degree (MD), nonmembership
degree (NMD), and reference parameters (RPs) in q-RLDFSs.
+e q-RLDFS model is more effective and versatile than other
techniques due to the use of RPs. In addition, for the q-RLDFSs,
we presented a family of similarity measures such as Jaccard
SMs, exponential SMs, and cosine and cotangent SMs between
q-RLDFSs by considering MD, NMD, and RPs. +e concept of
the qth power of reference parameters will provide a more
versatile and efficient basis for fuzzy system modeling and
decision-making under uncertainty, covering the space of
existing structures as well as the space ofMD,NMD, and RPs. It
is important to note that if we increase the value of q, the
Diophantine space expands, giving the large boundary limits to
express a wider range of fuzzy data. We implemented the
proposed MCDM methods under the guidance of a case study
for the selection of the best logistics provider. We conclude that
the current DM method is appropriate and stable and can be
effectively implemented for multicriteria group decision-mak-
ing problems.

In the future, study on q-RLDFSs could focus on various
types of decision-making challenges, such as staff selection,
investment, machine selection, project selection, and pro-
duction systems.
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