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Let α be an automorphism of a given group G; then, CG(α) � g ∈ G|α(g) � g􏼈 􏼉 is called the autocentralizer of α in G. In this work,
we study finite groups G, which can be written as the union of autocentralizers of some automorphisms of G. In particular, if a
group G is 5-A-centralizers, then we determine the absolute central quotient G/L(G) of G, where A � Aut(G). Finally, it is shown
that autocommutative property of a group is equivalent to the one, in which every A-centralizer of its nontrivial elements
is abelian.

1. Introduction

Let A � Aut(G) be the group of all automorphisms of a
given group G and α ∈ A. (e autocentralizer or A-cen-
tralizer of α in G is the subgroup of G consisting of all
elements of G which are fixed by α and denoted by CG(α),
i.e.,

CG(α) � g ∈ G|g
α

� α(g) � g􏼈 􏼉. (1)

Also, we denote the set of all such autocentralizes in G by
CG(A). Note that, if CG(α) � e{ }, where e is the identity
element of G, then α is called fixed-point-free automor-
phism. We remark that, for the identity automorphism id. of
A, we have G � CG(id), and hence, G ∈ CG(A).

For any element g ∈ G and α ∈ A, the element,

[g, α] � g
− 1

g
α

� g
− 1α(g), (2)

is the autocommutator of g and α. Clearly, if α � ϕx is the
inner automorphism induced by the element x of G, then the
autocommutator [g, ϕx] coincides with the ordinary com-
mutator [g, x]. (e set L(G), consisting of all elements g in

G which are fixed by every automorphism of G, is a central
characteristic subgroup of G, which is called absolute centre
or the autocentre of G (see [1–5], for more information).
Hence, we may write

L(G) � g ∈ G: [g, α] � 1,∀α ∈ A􏼈 􏼉 � ∩
α∈A

CG(α). (3)

We denote the number of distinct autocentralizers of
automorphisms in G by |CG(A)|, and now a question arises
that “how many distinct autocentralizers can a group have?”

(is article is motivated by providing some answers to
the above question.

2. Preliminary Results

It is clear that, in a given group G, there may exist an element
x, which is not fixed by none of nontrivial automorphisms of
G. For example, consider cyclic groups of order p, for odd
prime p.

In the present article, we consider all finite groups which
do not have the above property, so the following result is
obvious.
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Lemma 1. A group G is the union of autocentralizers of all
nontrivial automorphisms of A in G, L(G), i.e.,
G � ∪ id≠α∈ACG, L(G)(α).

Proof. Clearly, ∪ id≠α∈ACG, L(G)(α)⊆G. Now, if
x ∈ G, L(G), then, by the above assumption, there exists
α ∈ A, such that x ∈ CG, L(G)(α). (erefore,
G⊆∪ id≠α∈ACG, L(G)(α), which completes the proof. □

Remark 1. Note that if |CG(A)| � 1, then (3) implies that
L(G) � G, so [x, α] � 1, for all x ∈ G and α ∈ A. Hence,
A � id{ }, and consequently, G � 〈1〉 or Z2. Clearly, the
converse is also true. (erefore, |CG(A)| � 1 if and only if
G � 〈1〉 or Z2.

Lemma 2. Let G be a nontrivial group except Z2; then,
|CG(A)|≥ 4.

Proof. By Remark 1, |CG(A)|≠ 1. If |CG(A)| � 2, then G is
the proper subgroup of itself, which is impossible. Suppose
that |CG(A)| � 3; then, CG(A) � G, CG(α1), CG(α2)􏼈 􏼉, for
some automorphisms α1 and α2 ∈ A, where CG(α1) and
CG(α2) are proper subgroups of G. (erefore,
G � CG(α1)∪CG(α2), which is impossible, since a group
cannot be written as the union of two proper subgroups.
(us, |CG(A)|≥ 4. □

A group G is called n-A-centralizer if |CG(A)| � n (see
also [6]).

Example 1

(i) Consider D8 � 〈x, y|x4 � y2 � 1, xy � x− 1〉, the
Dihedral group of order 8; then, clearly, the set of all
automorphisms of D8 is

αij :
x↦x

i
, i � 1, 3,

y↦x
j
y, j � 1, 2, 3, 4.

⎧⎨

⎩ (4)

(us, one can calculate that

CD8
α11( 􏼁 � CD8

α12( 􏼁 � CD8
α13( 􏼁 � 〈x〉,

CD8
α31( 􏼁 � CD8

α33( 􏼁 � 1, x
2

􏽮 􏽯,

CD8
α14( 􏼁 � D8,

CD8
α32( 􏼁 � 1, x

2
, xy, x

3
y􏽮 􏽯,

CD8
α34( 􏼁 � 1, x

2
, y, x

2
y􏽮 􏽯.

(5)

(erefore, D8 is 4-A-centralizer, as CD8
(α31) and

CD8
(α32) are not distinct.

Similarly, one can easily see that |CQ8
(A)| � 4.

(ii) Consider S3 � 〈x, y|x3 � y2 � 1, xy � x− 1〉, the
symmetric group of order 6; then, one can calculate
that S3 has 5 A-centralizers as follows:

S3, 1, y􏼈 􏼉, 1, x, x
2

􏽮 􏽯, 1, x
2
y􏽮 􏽯, 1, xy􏼈 􏼉. (6)

3. Counting A-Centalizers in Groups

For an arbitrary element x of a given group G, the set
CG(x) � y ∈ G: [y, x] � [y, ϕx] � 1􏼈 􏼉, where ϕx is the inner
automorphism ofG, is called the centralizer of x inG.(e set
of all such centralizers inG is denoted by Cent(G). Clearly,G
is abelian if and only if |Cent(G)| � 1.

Many authors have studied the influence of the number
of centralizers of a finite group G on the structure of the
group. In 1994, Belcastro and Sherman [7] proved that
|Cent(G)|≥ 4, for any nonabelian finite group G. (ey also
showed that G has 4 centralizers if and only if G/Z(G) �

C2 × C2 and G has 5 centralizers if and only if G/Z(G) �

C3 × C3 or S3. In [8], Ashrafi proved that if G has 6 cen-
tralizers, then G/Z(G) � D8, A4, C2 × C2 × C2 or
C2 × C2 × C2 × C2, where A4 is the alternating group of
degree 4.

In this section, we compute |CG(A)| under certain
conditions on the group G.

Proposition 1. Let D2n be the Dihedral group of order 2n;
then,

CD2n
(A)|

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 �

n + 2, n is odd,

n

2
+ 2, n is even.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(7)

Proof. Clearly, for n≥ 3, the group D2n has the following
presentation:

D2n �〈x, y|x
n

� y
2

� 1, x
y

� x
− 1〉

� 1, x, . . . , x
n− 1

, y, xy, . . . , x
n− 1

y􏽮 􏽯.
(8)

(en, A � αij :
x↦x

i

y↦x
j
y

􏼨

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
gcd(i, n) � 1, 0≤ j≤ n − 1􏼨 􏼩,

so CD2n
(α10) � D2n. Assume that n is odd; then, we have the

following A-centralizers:

(i) CD2n
(α1j) � 〈x〉, as [xk, α1j] � x− kxk � 1,

[y, α1j] � y− 1xjy � x− j ≠ 1, and
[xky, α1j] � y− 1x− kxkxjy � x− j ≠ 1, for every
0< k≤ n − 1.

(ii) CD2n
(αi0) � 1, y􏼈 􏼉, as [xk, αi0] � x− kxik ≠ 1,

[y, αi0] � y− 1y � 1, and
[xky, αi0] � y− 1x− kxiky � xk− ik ≠ 1, for every
0< k≤ n − 1 and even i.

(iii) CD2n
(α21) � 1, xn− 1y􏼈 􏼉, as [xk, α21] � x− kx2k ≠ 1,

for every 0< k≤ n − 1, [y, α21] � y− 1xy � x− 1 ≠ 1,
and [xsy, α21] � y− 1x− sx2sxy � xs+1 � 1, when
s � n − 1.
By similar argument, one has CD2n

(α22) � 1,{

xn− 2y}, CD2n
(α23) � 1, xn− 3y􏼈 􏼉, . . . , CD2n

(α2(n−1))

� 1, xy􏼈 􏼉, so |CD2n
(A)| � n + 2 if n is odd.

Now, assume that n is even; then, we have the
following cases
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(iv) CD2n
(α1j) � 〈x〉, as [xk, α1j] � x− kxk � 1,

[y, α1j] � y− 1xjy � x− j ≠ 1, and
[xky, α1j] � y− 1x− kxkxjy � x− j ≠ 1, for every
0< k≤ n − 1.

(v) CD2n
(α(n−1)0) � 1, y, x(n/2), x(n/2)y􏼈 􏼉, as

[xk, α(n−1)0] � x− kxnk− k � 1, when k � n/2,
[y, α(n−1)0] � y− 1y � 1, and
[xky, α(n−1)0] � y− 1x− kxnk− ky � x2k− nk � 1, when
k � (n/2).

Using similar argument for CD2n
(α(n−1)j), when j is even,

we have the following A-centralizers CD2n
(α(n−1)2)

� 1, xy, x(n/2), x(n/2)+1y􏼈 􏼉, CD2n
(α(n−1)4)

� 1, x2y, x(n/2), x(n/2)+2y􏼈 􏼉, . . . , CD2n
(α(n−1)(n−2))

� 1, x(n/2)− 1y, x(n/2), xn− 1y􏼈 􏼉, so |CD2n
(A)| � (n/2) + 2 if n is

even. □

(e following result of [9] is useful in our further
investigations.

Theorem 1 (see Theorem 3.1 in [9]). Let G be a group with
G/L(G) � Cp × Cp, for any prime number p. 7en, G is
isomorphic to one of the following groups:

(1) Cp × Cp

(2) Cp × Cp × C2(p is odd)

(3) C4 × C2

(4) D8

(5) Q8

(6) 〈x, y: x4 � y4 � 1, xy � x− 1〉

Using the above theorem, we have the following.

Theorem 2. Let G be a group such that G/L(G) � Cp × Cp,
for any prime number p. 7en, |CG(A)| � p + 2.

Proof. Let p � 2 and G/L(G) � C2 × C2; then, Proposition 1
implies that
G � C2 × C2 � 〈x, y: x2 � 1, y2 � 1, [x, y] � 1〉. Clearly,
A � Aut(C2 × C2) � S3, and it is easily checked that
|CC2×C2

(A)| � 4.
Assume G � C4 × C2 � 〈x, y: x4 � y2 � 1, [x, y] � 1〉;

then, clearly,

Aut C4 × C2( 􏼁 � αij :
x↦x orx

3 orxy orx
3
y

y↦y orx
2
y

⎧⎨

⎩

⎧⎨

⎩

⎫⎬

⎭. (9)

Hence, one can calculate that the group C4 × C2 has the
following A-centralizers:

C4 × C2, 〈x〉, 1, x
2
, xy, x

3
y􏽮 􏽯, 1, x

2
, y, x

2
y􏽮 􏽯. (10)

In the cases G � D8 and Q8, example 1 and Proposition 1
show that G is 4-A-centralizer.

If G � 〈x, y: x4 � y4 � 1, xy � x− 1〉, then with relatively
simple and long calculations, we obtain that G has the
following A-centralizers:

G, 1, x
2
, y

2
, x

2
y
2
, x, x

3
, xy

2
, x

3
y
2

􏽮 􏽯,

1, x
2
, y

2
, x

2
y
2
, y, x

2
y, y

3
, x

2
y
3

􏽮 􏽯,

1, x
2
, y

2
, x

2
y
2
, xy, x

3
y, xy

3
, x

3
y
3

􏽮 􏽯.

(11)

Now, let G � Cp × Cp × C2 and p be an odd prime
number. (en, it is clear that |CG(α)| � 2, 2p or 2p2, for
every α ∈ A. (us, we have the following A-centralizers:

G �〈x, y, z: x
p

� y
p

� z
2

� 1, [x, y] � [x, z] � [y, z] � 1〉,

· 1, z{ },

· 1, z, x, x
2
, . . . , x

p− 1
, zx, zx

2
, . . . , zx

p− 1
􏽮 􏽯,

· 1, z, y, y
2
, . . . , y

p− 1
, zy, zy

2
, . . . , zy

p− 1
􏽮 􏽯,

· 1, z, xy
i
, xy

i
􏼐 􏼑

2
, . . . , xy

i
􏼐 􏼑

p− 1
, zxy

i
, . . . , z xy

i
􏼐 􏼑

p− 1
􏼚 􏼛,

(12)

where 1≤ i≤p − 1, so G has p + 2 distinct
A-centralizers. □

(e following theorem of [10] is needed to prove our
next result.

Theorem 3 (see Theorem 1 in [10]). A group G is the
nontrivial union of three subgroups if and only if it is ho-
momorphic to the Klein four-group.

Proposition 2. Let G be a group; then, |CG(A)| � 4 if and
only if G/L(G) � C2 × C2.

Proof. Using (eorem 1, it is enough to show that
|CG(A)| � 4, which implies G/L(G) � C2 × C2.

Suppose |CG(A)| � 4; then,
CG(A) � G, CG(α1), CG(α2), CG(α3)􏼈 􏼉, for some
α1, α2, α3 ∈ A. Hence, by Lemma 1, G � ∪ 3i�1CG(αi). Con-
sider CG(α1α2), which will be one of the A-centralizers
G, CG(α1), CG(α2), or CG(α3). If CG(α1α2) � G, then
α2(x) � α− 1(x), for all x ∈ G, so CG(α1) � CG(α2), which is
a contradiction.

Assume CG(α1α2) � CG(α1), then for any
x ∈ CG(α1α2) � CG(α1), we have α1α2(x) � α1(x) � x.
(erefore α2(x) � α−1

1 (x) � x, and hence,
CG(α1α2) � CG(α1)⊆CG(α2), which is again a contradiction.
Similarly, if CG(α1α2) � CG(α2), then we have a contra-
diction, so CG(α1α2) � CG(α2α1) must be equal with
CG(α3).

Now, (eorem 3 implies that
(G/∩ 3i�1CG(αi)) � (G/L(G)) is isomorphic with Klein four-
group. □

Theorem 4. Let G be a finite group with |CG(A)| � 5; then,
G/L(G) � S3, C3 × C3, D12, C2 × C6, C3 ⋊C4 or A4.

Proof. Assume |CG(A)| � 5 and CG(αi) is A-centralizer, for
some automorphisms α1, . . . , α4 of G. Hence, Lemma 1
implies that G � CG(α1)∪CG(α2)∪CG(α3)∪CG(α4).
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Now, consider CG(α1α2), which should be one of
G, CG(α1), CG(α2), CG(α3), or CG(α4). (us, we have the
following cases:

(a) If CG(α1α2) � G, then α2(x) � α− 1(x), for all x ∈ G,
so CG(α1) � CG(α2), which is a contradiction.

(b) If CG(α1α2) � CG(α1), then, for all
x ∈ CG(α1α2) � CG(α1), we have
α1α2(x) � α1(x) � x. (erefore,
α2(x) � α−1

1 (x) � x, and hence,
CG(α1α2) � CG(α1)⊆CG(α2) and gives a
contradiction.

Similarly, if CG(α1α2) � CG(α2), then we obtain a
contradiction, so CG(α1α2) can be equal to either CG(α3) or
CG(α4).

(i) Assume that
CG(α1), CG(α2), CG(α1α2) � CG(α1α2), and CG(α4)
are the A-centralizers of G. (en, using similar ar-
gument as in parts (a) and (b), we have CG(α1α4) �

CG(α2) and CG(α2α4) � CG(α1). On the contrary,
L(G)⊆CG(α1)∩CG(α2). (us, for all
x ∈ CG(α1)∩CG(α2), we have

α1(x) � α2α4(x) � x⇒ α−1
2 (x) � α4(x),

α2(x) � α1α4(x) � x⇒ α−1
2 (x) � x,

(13)

and hence, x ∈ CG(α4). Also, α1α2(x) � α1(x) � x

and α2α1(x) � α2(x) � x imply that
x ∈ CG(α1α2) � CG(α2α1). (erefore, x ∈ L(G) and
L(G) � CG(α1)∩CG(α2).

(ii) Assume that CG(α1), CG(α2), CG(α1α2), and
CG(α2α1) are the A-centralizers of G. (en, similar
argument as in part (i) implies that
L(G) � CG(α1)∩CG(α2).

Hence, ∩ 4i�1CG(αi) � L(G) � CG(αi)∩CG(αj)

� CG(αi)∩ CG(αj)∩CG(αk), for 1≤ i, j, k≤ 4, when
|CG(A)| � 5.

Now, for computing the value of |L(G)|, we show that if
CG(αi) and CG(αj) are arbitrary distinct proper A-cen-
tralizers of G, for 1≤ i≠ j≤ 4; then,

CG αi( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 CG αj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

|G|
≤ |L(G)|≤

|G|

6
· (∗). (14)

Clearly,
(|CG(αi)||CG(αj)|/|CG(αi)CG(αj)|) � |CG(αi)∩CG(αj)|. As
CG(αi)CG(αj)⊆G, we have (1/|CG(αi)CG(αj)|)≥ (1/|G|).
(erefore, |CG(αi)∩CG(αj)|≥ (|CG(αi)||CG(αj)|/|G|) im-
plies that |L(G)|≥ (|CG(αi)||CG(αj)|/|G|). On the contrary,
one observes that

|G| � CG α1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + CG α2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + CG α3( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + CG α4( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 3|L(G)|

≥ 2|L(G)| + 2|L(G)| + 2|L(G)| + 2|L(G)| − 3|L(G)| � 5|L(G)|,

(15)
and hence, (|G|/|L(G)|) ≥ 5. Assume G/|L(G) � 5; then,
(G/|L(G)|) is cyclic and (eorem 2.2 of [9] implies that G �

Z5 or Z10, which both give contradictions as Z5 has fixed-

point-free automorphism, and Z10 does not conform to the
conditions given at the beginning of the second section.
(erefore, (|G|/|L(G)|) ≥ 6.

Now, without loss of generality, we may assume that
|CG(α1)|≥ |CG(α2)|≥ |CG(α3)|≥ |CG(α4)|. Suppose
|CG(α1)|≤ (|G|/4); then, we have

|G| � CG α1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + CG α2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + CG α3( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + CG α4( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 3|L(G)|

≤
|G|

4
+

|G|

4
+

|G|

4
+

|G|

4
− 3|L(G)| � |G| − 3|L(G)|,

(16)

which is a contradiction. Hence, |CG(α1)| � (|G|/2) or
(|G|/3). If |CG(α1)| � (|G|/2), we obtain

|G| � CG α1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + CG α2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + CG α3( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + CG α4( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 3|L(G)|

�
|G|

2
+ CG α2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + CG α3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + CG α4( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 − 3|L(G)|.

(17)

One can easily calculate that

|G|

2
< CG α2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + CG α3( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 + CG α4( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌≤ 3 CG α2( 􏼁

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (18)

so (|G|/6)< |CG(α2)|.
Now, applying (3) to CG(α1) and CG(α2), we have

(|CG(α1)||CG(α2)|/|G|)≤ (|G|/6), and hence,
|CG(α2)|≤ (2|G|/6). (at is, (|G|/6)< |CG(α2)|≤ (|G|/3), so
|CG(α2)| � (|G|/5), (|G|/4) or (|G|/3). (e property
(|CG(α1)||CG(α2)|/|G|)≤ |L(G)|≤ (|G|/6) implies that
(|G|/10)≤ |L(G)|≤ (|G|/6). (erefore, the value of |L(G)|

must be one of (|G|/6), (|G|/7), (|G|/8), (|G|/9), or (|G|/10).
Now, if |L(G)| � (|G|/7), then |L(G)| divides |CG(α1)|,

and hence, 2|7 is impossible. Similarly, |L(G)|≠ (|G|/9).
Hence, we have the following cases:

|L(G)| �
|G|

6
⇒

|G|

|L(G)|
� 6⇒

G

L(G)
� C6 or S3. (19)

If (G/L(G)) � S3, then(eorem 3.5 of [9] and example 1
(iii) imply that G � S3 and |CS3

(A)| � 5. Again (eorem 2.2
of [9] implies that if (G/L(G)) � C6, then G � C12, which
does not conform to the conditions given at the beginning of
Section 2.

Let |L(G)| � (|G|/8); then, as |L(G)| divides |CG(α2)| if
|CG(α2)| � (|G|/3), then 3|8, and if |CG(α2)| � (|G|/5), then
5|8, which both give contradictions. (erefore,
|CG(α2)| � (|G|/4). On the contrary, the property
|G| � |CG(α1)| + |CG(α2)| + |CG(α3)| + |CG(α4)| − 3|L(G)|

implies that (|G|/4) � |CG(α3)| + |CG(α4)| − 3(|G|/8), and
hence, (5|G|/8) � |CG(α3)| + |CG(α4)|. As
|CG(α3)|, |CG(α4)|≤ (|G|/4), we obtain
(5|G|/8) � |CG(α3)| + |CG(α4)|≤ (|G|/2), which is again a
contradiction. So, |L(G)| cannot be equal to (|G|/8).

Finally, assume that |L(G)| � (|G|/10) and |L(G)| di-
vides |CG(α2)|. If |CG(α2)| � (|G|/3), then 3|10, and if
|CG(α2)| � (|G|/4), then 4|10, which are both impossible.
(erefore, |CG(α2)| � (|G|/5). Now, again |G| � |CG(α1)| +

|CG(α2)| + |CG(α3)| + |CG(α4)| − 3|L(G)| implies that
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|CG(α3)| + |CG(α4)| � (6|G|/10). Also,
|CG(α2)|≥ |CG(α3)|≥ |CG(α4)| implies that
(6|G|/10) � |CG(α3)| + |CG(α4)| � (2|G|/5), which is a
contradiction. Hence, |L(G)|≠ (|G|/10).

Now, assume that |CG(α1)| � (|G|/3). In this case, using

|G| � CG α1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + CG α2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + CG α3( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + CG α4( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 3|L(G)|,

(20)

we have
(2|G|/3)< |CG(α2)| + |CG(α3)| + |CG(α4)|≤ 3|CG(α2)|.
(us, |CG(α2)|> (2|G|/9). On the contrary,
|CG(α1)|≥ |CG(α2)|, so (2|G|/9)< |CG(α2)|≤ (|G|/3).
(erefore, |CG(α2)| � (|G|/3) or (|G|/4). Again applying
(∗ ) on CG(α1) and CG(α2), we obtain

CG α1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 CG α2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

|G|
≤ |L(G)|≤

|G|

6
. (21)

(us, (|G|/12)≤ |L(G)|≤ (|G|/6), and hence,
|L(G)| � (|G|/6), (|G|/7),

(|G|/8), (|G|/9), (|G|/10), (|G|/11), or (|G|/12).
Assume that |L(G)| � (|G|/7), and as |L(G)| divides

|CG(α1)|, we must have 3|7, which is impossible. Similarly,
|L(G)|≠ (|G|/8), (|G|/10), and (|G|/11). Also, assume that
|L(G)| � (|G|/6), |CG(α1)| � (|G|/3), and
|CG(α2)| � (|G|/4) or (|G|/3); then, again

|G| � CG α1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + CG α2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + CG α3( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + CG α4( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 − 3|L(G)|

(22)

implies that (11|G|/12) � |CG(α3)| + |CG(α4)|≤ (|G|/2) or
(5|G|/6) � |CG(α3)| + |CG(α4)|≤ (2|G|/3), respectively,
which are both impossible. Hence, |L(G)|≠ (|G|/6), so we
have one of the following cases:

|L(G)| �
|G|

12
⇒

|G|

|L(G)|
� 12⇒

G

L(G)
� C12, A4, D12, C3 ⋊C4, C2 × C6,

(23)

or

|L(G)| �
|G|

9
⇒

|G|

|L(G)|
� 9⇒

G

L(G)
� C9, C3 × C3. (24)

□

4. Groups with Abelian A-Centralizers

(e concept of commutative transitive groups was first
introduced and studied by Weisner [11] in 1925.

In this section, we introduce the new concept of auto-
commutative transitive groups, which is a generalized ver-
sion of commutative transitive groups. Also, we study a
groupG, in which everyA-centralizer of a nontrivial element
of G is abelian. We show that such groups are equivalent to
autocommutative transitive groups.

Definition 1. A group G is autocommutative transitive
(henceforthA − CT) if [x, α] � 1 and [α, y] � 1 imply that
[x, y] � 1, for any nontrivial elements x, y in G and every
α ∈ A.

If α runs over the inner automorphisms of G, then one
has the usual commutative transitive groups.

Lemma 3. For any group G, the following statements are
equivalent:

(i) G is A-CT group
(ii) 7e A-centralizers of nontrivial automorphisms of G

are abelian

Proof

(i)⇒ (ii) Let G be A-CT group. For any nonidentity
automorphism element α ∈ A, if x, y ∈ CG(α), we have
[x, α] � 1 and [α, y] � 1. (e definition of A-CT im-
plies that [x, y] � 1. Hence, CG(α) is abelian.
(ii)⇒ (i) Assume x, y are nontrivial elements of G,
with [x, α] � 1 and [α, y] � 1, for every α ∈ A. Obvi-
ously, x, y ∈ CG(α), by the assumption CG(α) is abe-
lian, and hence, [x, y] � 1.(us, G is autocommutative
transitive. □

Using the above lemma, we have the following.

Corollary 1. Let G be a finite A-CTgroup and x1, . . . , xr􏼈 􏼉 be
a set of pairwise noncommuting elements of G with maximal
size. 7en, |CG(A)|≥ r + 1.
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