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In this paper, we study the notion of approximate biprojectivity and left φ-biprojectivity of some Banach algebras, where φ is a
character. Indeed, we show that approximate biprojectivity of the hypergroup algebra L1(K) implies that K is compact. Moreover,
we investigate left φ-biprojectivity of certain hypergroup algebras, namely, abstract Segal algebras. As a main result, we conclude
that (with some mild conditions) the abstract Segal algebra B is left φ-biprojective if and only if K is compact, where K is a
hypergroup. We also study the approximate biflatness and left φ-biflatness of hypergroup algebras in terms of amenability of their
related hypergroups.

1. Introduction and Preliminaries

Hypergroups are a suitable generalization of classical locally
compact groups. In classical setting, the convolution of two
point mass measures is a point mass measure, while in
hypergroup structure, the convolution of two point mass
measures is a probability measure with compact support.
)e study of hypergroups was initiated in the 1970s by
Dunkl [1], Jewwet [2], and Spector [3], each of them in
various axioms. However, in this paper, we will base our
work on Jewett’s axioms in [2].

Biprojectivity is an important homological notion that
arises naturally in Helemskii’s works in the 1980s; interested
readers can refer to his comprehensive book [4]. Bipro-
jectivity of some well-known Banach algebras associated to
locally compact groups, such as group algebras and measure
algebras, is studied in [4, 5]. Biprojectivity of the hypergroup
algebra L1(K) is studied in [6]. As a generalization of this
notion, Y. Zhang in [7] introduced the notion of approxi-
mate biprojectivity. Indeed, a Banach algebra A is called
approximately biprojective if there exists a net (ρα) of
continuous A-bimodule morphism from A into A∧ ⊗A such
that πA°ρα(a)⟶ a for every a ∈ A, where

πA: A∧ ⊗A⟶ A is the diagonal operator defined by
πA(a⊗ b) � ab. For recent works about this concept, refer to
[8].

)roughout the paper, Δ(A) stands for the set of all
nonzero multiplicative linear functionals on A. Kaniuth et al.
[9] introduced the notion of left φ-amenable Banach alge-
bras (φ ∈ Δ(A)) as a generalization of the notion of ame-
nable Banach algebras introduced by Johnson in [10]. A
Banach algebraA is called left φ-amenable if every derivation
D from A into X∗ is inner, for every Banach A-bimodule X

with the left module action a · x � φ(a)x for all a ∈ A and
x ∈ X.

Hu et al. in [11] defined the notion of left φ-contract-
ibility for Banach algebras. Following [12], a Banach algebra
A is called left φ-contractible, where φ ∈ Δ(A), if there exists
m ∈ A such that am � φ(a)m and φ(m) � 1, for every
a ∈ A. For a locally compact group G, it is shown that left
φ-contractibility of L1(G) (or M(G)) is equivalent to
compactness of G ()eorem 6.1 in [15]).

Motivated by these considerations, the first author de-
fined the homological notion of left φ-biprojectivity for
Banach algebras (see, e.g., [13]). Here is the definition of his
new notion. A Banach algebra A is called left φ-biprojective,
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where φ ∈ Δ(A), if there exists a bounded linear map
ρ: A⟶ A∧ ⊗A such that

ρ(ab) � a · ρ(b) � φ(b)ρ(a),

φ°πA°ρ(a) � φ(a), (a, b ∈ A).
(1)

)e right case can be similarly defined.
)e first and the second authors in [13] explained the

relation between left φ-contractibility and left φ-bipro-
jectivity. )ey proved that left φ-contractibility implies left
φ-biprojectivity, and the converse is valid if A is commu-
tative or has a left approximate identity.

We give some brief backgrounds on hypergroups and
their related algebras and establish our notation; for details,
see [14]. Let K be a locally compact Hausdorff space and
M(K) denote the set of all bounded complex Radon
measures on K, where the norm of each measure μ ∈M(K)

is the total variation |μ|. Also, we denote by C(K) the set of
all nonempty compact subsets of K and equipped this space
with the Michael topology, that is, the topology generated by
the sets

UV,W ≔ L ∈ C(K): L∩V≠∅, L⊆W{ }, (2)

for open subsets V and W in K.
)e space K is called a hypergroup if there is a con-

volution ∗: M(K) × M(K)⟶M(K), an involution x↦x

on K, and an element e ∈ K (called the identity element)
such that the following holds:

(i) (M(K), ∗ ) is a Banach algebra.
(ii) δx ∗ δy is a probability measure with compact

support.
(iii) )e map (x, y)↦δx ∗ δy is continuous from K × K

into M(K) equipped with the weak ∗ topology.
(iv) )e map (x, y)↦supp(δx ∗ δy) is continuous from

K × K into C(K).
(v) For each x ∈ K, δx ∗ δe � δe ∗ δx � δx.
(vi) )e mapping x↦x is a homeomorphism on K of

period 2 and (δx ∗ δy)− � δy ∗ δx and
e ∈ supp(δx ∗ δy) if and only if x � y for each
x, y ∈ K. Here, the measure μ− is given by μ−(E) �

μ(E) for all Borel subsets E⊆K.

A hypergroup K is called commutative if
δx ∗ δy � δy ∗ δx for all x, y ∈ K. In [2, 3], it is proved that
every commutative or compact hypergroup has a unique
(left) Haar measure. )e existence and the uniqueness of left
Haar measure on a general locally compact hypergroup were
proved recently by Chapovsky in [15]. )roughout this
paper, we assume that K is a hypergroup with a unique Haar
measure ωK. )at is,


k
f(x∗y)dωk(y) � 

K
f(y)dωK(y), (x ∈ K), (3)

for every Borel measurable function f on K. )en,
(L1(K), ‖ · ‖1) with the involution f∗(x) � f(x) and the
convolution

f∗g(x) � 
K

f(y)g(y∗x)dωK(y), (4)

is a Banach ∗ -algebra, where f(x∗y) � 
K

fd(δx ∗ δy) for
every x, y ∈ K. A nonzero bounded continuous function
χ: K⟶ C is called a character on K if χ(x∗y) � χ(x)χ(y)

for every x, y ∈ K. )e set of all characters on K will be
denoted by Υb(K), i.e.,

Υb(K) � χ ∈ Cb(K): χ ≠ 0, χ(x∗y) � χ(x)χ(y) (x, y ∈ K) .

(5)

For χ ∈ Υb(K), define φχ on L1(K) via

φχ(f) � 
K
χ(s)f(s)dωK(s). (6)

It may be observed that φχ ∈ Δ(L1(K)), and note that
there is at least one character on L1(K), namely, the aug-
mentation character φ1. Further, if K is commutative, it is
well-known that there is no other character on L1(K); that is,
Δ(L1(K)) � φχ: χ ∈ Υb(K) . For more details, see Section
2.2 in [3].

In the present paper, we show that approximate
biprojectivity of hypergroup algebra L1(K) implies that K is
compact. After that, we study left φ-biprojectivity of general
abstract Segal algebras with respect to the hypergroup al-
gebra L1(K). As a result (with a mild condition), we con-
clude that the abstract Segal algebra B is left φ-biprojective if
and only if K is compact. We also study approximate
biflatness and left ϕ-biflatness of some hypergroup algebras
in terms of amenability of their related hypergroups.

2. Approximate Biprojectivity and Left
φ-Biprojectivity of Hypergroup Algebras

Recall that ifA is a Banach algebra and I is a closed two-sided
ideal inA, then for each φ ∈ Δ(A) such that I⊆kerφ, the map
φ(a + I) � φ(a) is a character on (A/I).

Proposition 1. Let A be a Banach algebra, φ ∈ Δ(A), and let
I⊆kerφ be a closed two-sided ideal of A such that AI � I. If A

is left φ-biprojective, then (A/I) is left φ-biprojective.

Proof. Since A is left φ-biprojective, there is a bounded
linear map ρ: A⟶ A∧ ⊗A such that
a · ρ(b) � ρ(ab) � φ(b)ρ(a) and φ°πA°ρ(a) � φ(a) for every
a ∈ A. Consider the quotient map q: A⟶ (A/I). It may be
noted that

idA ⊗ q( °ρ(at) � idA ⊗ q(φ(t)ρ(a)) � 0 (a ∈ A, t ∈ I).
(7)

By the assumption AI � I, we have (idA ⊗ q)°ρ|I � 0.
)us, (idA ⊗ q)°ρ can be dropped on (A/I). Define
η: (A/I)⟶ (A/I)∧ ⊗ (A/I) by
η � (q⊗ id(A/I))°(idA ⊗ q)°ρ. It may be observed that

φ°π(A/I)°η(a + I) � φ(a) � φ(a + I) (a ∈ A). (8)
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Moreover,

η((a + I)(b + I)) � q⊗ id(A/I) ° idA ⊗ q( °ρ(ab)

� q⊗ id(A/I) ° idA ⊗ q( °(a · ρ(b))

� a · q⊗ id(A/I) ° idA ⊗ q( °ρ(b)

� (a + I) · η(b + I),

(9)

and also

η((a + I)(b + I)) � q⊗ id(A/I) ° idA ⊗ q( °ρ(ab)

� q⊗ id(A/I) ° idA ⊗ q( °(φ(b)ρ(a))

� a · q⊗ id(A/I) ° idA ⊗ q( °ρ(a)

� φ(b + I)η(a + I).

(10)

Hence, (A/I) is left φ-biprojective.

Corollary 1. Let A be a Banach algebra with a left ap-
proximate identity and φ ∈ Δ(A). If I⊆kerφ is a closed two-
sided ideal of A and A is left φ-biprojective, then (A/I) is left
φ-biprojective.

In the group case, it is well-known that the group algebra
L1(K) is biprojective if and only if G is compact (see, for
example, [4]). In the similar way, in )eorem 3.1 in [6], it is
shown that if the hypergroup algebra L1(K) is biprojective,
then K is compact. In the following, we give a generalization
of this result and characterize approximate biprojectivity of
the hypergroup algebra L1(K).

Theorem 1. Let K be a locally compact hypergroup. If the
hypergroup algebra L1(K) is approximately biprojective, then
K is compact.

Proof. Let L1(K) be approximately biprojective. Since
L1(K) has a bounded approximate identity ()eorem 1.6.15
in [3]), the hypergroup algebra L1(K) is left φ-contractible
for every φ ∈ Δ(L1(K)) ()eorem 3.9 in [20]). Consider the
augmentation character on L1(K) via

φ1(f) � 
K

fdωK. (11)

So, there exists m ∈ L1(K) satisfying f∗m � φ1(f)m
and φ1(m) � 1 for every f ∈ L1(K). Choose f ∈ L1(K) such
that φ1(f) � 1. It is worth noting that

δx ∗m � φ1(f)δx ∗m,

� δx ∗ φ1(f)m( ,

� δx ∗ (f∗m),

� δx ∗f( ∗m,

� φ1 δx ∗f( m.

(12)

Since δx ∗ωK � ωK, we have φ1(δx ∗f) � φ1(f). )us,
δx ∗m � m. It follows that m is a constant function.
)erefore, Tex translation failed. )e latter implies that K is
compact (page 40 in [3]).

We study left ϕ-biprojectivity of abstract Segal algebras.
So, we start with definition of abstract Segal algebras.

Definition 1. Let A be a Banach algebra with norm ‖ · ‖A. We
say that a Banach algebra B with norm ‖ · ‖B is an abstract
Segal algebra with respect to A if

(i) B is a dense left ideal in A
(ii) )ere exists M> 0 such that ‖b‖A ≤M‖b‖B for every

b ∈ B

(iii) )ere exists C> 0 such that ‖ab‖B ≤C‖a‖A‖b‖B for
every a ∈ A and b ∈ B

Moreover, we say that B is a symmetric abstract Segal
algebras if B is a two-sided ideal of A and there exists C> 0
such that ‖ba‖B ≤C‖a‖A‖b‖B for every a ∈ A and b ∈ B.

For more details about abstract Segal algebras, see [16].
We note that there are some abstract Segal algebras which
are not symmetric. Homological and cohomological prop-
erties of abstract Segal algebras have been studied in many
papers (see, for example, [17–19]). Recall that it is known
that Δ(B) � φ|B: φ ∈ Δ(A)  (see Lemma 2.2 in [1]). It is
worthwhile to mention that Essmaili et al. in [6] studied
right φ-biprojectivity (they called it condition Q) of Banach
algebras associated with a hypergroup, especially symmetric
Segal algebras. As a main result, they showed that if K is a
commutative hypergroup and B is a symmetric abstract
Segal algebra with respect to L1(K), then B is right
φ|B-biprojective if and only if K is compact, where
φ ∈ Δ(L1(K)). In the following, using)eorem 1, we extend
the left version of (Corollary 3.11 in [6]).

Theorem 2. Let K be a locally compact hypergroup,
φχ ∈ Δ(L1(K)), and let B be an abstract Segal algebra with
respect to L1(K) which possess a left approximate identity.
>en, the following statements are equivalent:

(i) B is left φχ|B-biprojective
(ii) K is compact

Proof. Suppose that B is left φχ|B-biprojective. Applying
Proposition 1 in [18], B is left φχ|B-contractible. By Prop-
osition 2.5 in [1], L1(K) is left φχ-contractible. By similar
argument as in the proof of )eorem 1, K is compact.

Conversely, let K be compact with the normalized Haar
measure ωK (page 40 in [3]). )en, for each χ ∈ Υb(K), we
have


K

|χ(x)|dωK(x) � 
K
λdωK(x) � λ|ω(K)| � λ∞, (13)

for some λ> 0. So, χ ∈ L1(K). Putm � (χ/λ2). We claim that
f∗m � φχ(f)m and φχ(m) � 1 for every f ∈ L1(K). To see
this,

f∗ χ(x) � 
K

f(y)χ(y∗x)dωK(y)

� 
K

f(y)χ(y)χ(x)dωK(y) � φχ(f)χ(x),

(14)

and also
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φχ(χ) � 
K
χ(x)χ(x)dωK(x) � 

K
|χ(x)|

2dωK(x)

� λ2|ω(K)| � λ2.
(15)

So, L1(K) is left φχ-contractible. Using Proposition 2.5 in
[1] again, B is left φχ|B-contractible. Hence, B is left
φχ|B-biprojective (Lemma 1 in [18]).

3. Approximate Biflatness and Left
φ-Biflatness of Hypergroup Algebras

In this section, we study approximate biflatness and left
φ-biflatness of some algebras related to a hypergroup.

We remind that a Banach algebra A is called approxi-
mately biflat if there exists a net (ρα) of A-bimodule
morphisms from (A∧ ⊗A)∗ into A∗ such that
ρα°π∗A⟶W∗ OT idA∗ . Here, W∗OT stands for the weak ∗
operator topology (see [20]).

Following [21], a locally compact hypergroup K is called
left amenable if there exists a left invariant mean on
LUC(K). )at is, a bounded linear functional
μ: LUC(K)⟶ C such that μ(1) � ‖μ‖ � 1 and μ(lxf) �

μ(f) for all f ∈ LUC(K) and x ∈ K.

Proposition 2. Let K be a locally compact hypergroup and let
B be an abstract Segal algebra with respect to L1(K) which
possess a left approximate identity. If B is approximately
biflat, then K is left amenable.

Proof. Suppose that B is approximately biflat and fix a
character φ ∈ Δ(B). Since B has a left approximate identity,
by Proposition 2. 4 in [22], B is left φ-amenable. Now,
Proposition 2.3 in [1] follows that L1(K) is left φ-amenable.
Applying )eorem 3.5 in [14], we conclude that K is left
amenable.

Corollary 2. Let K be a locally compact hypergroup and let B

be an abstract Segal algebra with respect to L1(K) which
possess a left approximate identity. If B∗∗ is approximately
biflat, then K is left amenable.

Proof. Fix a character φ ∈ Δ(L1(K)). Since B has a left
approximate identity, similar to the arguments as in the
proof of ()eorem 2.2 in [23]), approximately biflatness of
B∗∗ follows that B is left φ|B-amenable. It deduces that L1(K)

is left φ-amenable. )us, by )eorem 3.5 in [14], K is left
amenable.

Let A be a Banach algebra and φ ∈ Δ(A). )en, A is
called left φ-biflat if there exists a bounded linear map
ρ: A⟶ (A∧ ⊗A)∗∗ such that

ρ(ab) � a · ρ(b) � φ(b)ρ(a),

φ°π ∗ ∗A °ρ(a) � φ(a), (a, b ∈ A).
(16)

Here, φ: A∗∗ ⟶ C is a unique extension of ϕ which is
defined by φ(F)F(φ) for all F ∈ A∗∗. )e right case can be
defined similarly. For further information, see [24].

Theorem 3. Let K be a locally compact hypergroup, φχ ∈ Δ
(L1(K)), and let B be an abstract Segal algebra with respect to
L1(K) which possess a left approximate identity. >e fol-
lowing statements are equivalent:

(i) B is left φ-biflat
(ii) K is left amenable
(iii) B∗∗ is left φ-biflat

Proof. (i) ⇒ (ii) Let B be left φ-biflat. Since B has a left
approximate identity, by Lemma 2.1 in [21], B is left
φ-amenable. It follows that L1(K) is left φ-amenable. Now,
applying )eorem 3.5 in [14], we conclude that K is left
amenable.

(ii)⇒ (iii) Let K be a left amenable hypergroup.)en, by
)eorem 3.5 in [14], L1(K) is left φ-amenable. Now, by
Proposition 2.3 in [1], B is left φ-amenable. Using Propo-
sition 3.4 in [13], B∗∗ is left φ-amenable and then Lemma 2.3
in [25] implies that B∗∗ is left φ-biflat.

(iii) ⇒ (i) Suppose that B∗∗ is left φ-biflat. )en, by
)eorem 2.2 in [21], B is left φ-biflat.

Suppose that 1≤p<∞ and K is a locally compact
hypergroup. Set Sp(K) � L1(K)∩ Lp(K) with the norm

‖f‖S � ‖f‖1 +‖f‖p. (17)

Sp(K) becomes an abstract Segal algebra with respect to
L1(K). It is known that Sp(K) possess a left approximate
identity (see [2]).

)e following corollary is an easy consequence of
Proposition 2 and Corollary 2.

Corollary 3. Let K be a locally compact hypergroup and
1≤p<∞. If Sp(K)∗∗ (or Sp(K)) is approximately biflat, then
K is left amenable.

Example 1. In this example, we give a Banach algebra which
is left φ-biflat but it is not right φ-biflat.

Let A be a Banach space with dimA> 1 and φ ∈ A∗ be a
nonzero functional such that ‖φ‖ � 1. Define a multiplica-
tion in A via a∗ b � φ(a)b, for all a, b ∈ A. It is easy to see
that A is a Banach algebra and Δ(A) � φ . We denote the
unitization of A with A♯. It is known that A is a closed ideal
in A♯. Moreover, φ has an extension to A♯, that is,
φe: A♯ ⟶ C which is given by φe(a + λe) � φ(a) + λ for all
a ∈ A and λ ∈ C. We claim thatA♯ is left φe-biflat but it is not
right φe-biflat. To see this, we know that A is left φ-amenable,
applying Lemma 3.2 in [13], it follows that A♯ is left
φe-amenable. It gives that A♯ is left φe-biflat. Now, assume
conversely that A♯ is right φe-biflat. Since A♯ is unital,
(A♯)∗ ∗ has an element m � ρ(e) such that ma � φ(a)m and
φ°π ∗ ∗Ae

(m) � 1, for all a ∈ A. Following the similar argu-
ments as in)eorem 1.4 in [13], we have a bounded net (mα)

in Ae such that mαa − φ(a)mα⟶ 0 and φ(mα) � 1, for all
a ∈ Ae. Pick an element a0 in A such that φ(a0) � 1. Replace
(mα) with (a0mα), we may suppose that (mα) is a bounded
net in A such that mαa − φ(a)mα⟶ 0 and φ(mα) � 1, for
all a ∈ A. However,
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1a − φ(a)mα � φ mα( a − φ(a)mα � amα − φ(a)mα⟶ 0,

(18)

for all a ∈ A. Let a be any element in kerφ and put it at above
fact. It follows that kerφ � (0). So, φ is an isomorphism.
)erefore, dimA � dimC � 1 which is a contradiction.
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