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Viscoelastic �uid �ow models have shown promising scope in modeling the behavior of many industrial materials such as
polymeric materials, micro�uidics, biological liquids, gels, plastic melts, and geomaterials. �e relaxation time in these models is
of great physical signi�cance. In this article, we study the impact of relaxation time on the viscoelastic �ow characteristics in a two-
dimensional ba�ed cavity. To the best of authors’ knowledge, relaxation time impact on the chosen �ow characteristics in the
present context has not been studied and presented in the literature before. �e constitutive theory of upper convected Maxwell
viscoelastic �ow incorporating the viscosity ad relaxation time is taken into consideration. To this account, the �ow governing
PDEs are derived, and an unsteady variational numerical approach based on classical variational setting is presented. A numerical
algorithm based on characteristic Galerkin �nite elements method is designed and implemented using the programming language
FreeFem++. Computations are carried out and drag and lift forces along with other parameters of interests are calculated. Impact
of relaxation time on these �ow characteristics are studied and analyzed. �e relaxation time Rf is assumed to be in the range of
0≤Rf ≤ 1 × 10 − 3.�e �ow simulations are carried out for large Reynolds number in the range of 200≤Re≤ 5000. In addition to
the application of FreeFem++, some new and interesting features of the �ow characteristics are presented and discussed.

1. Introduction

In nature complex �uids such as viscoelastic or micro�uidic
mixtures surround many important phenomena, and
therefore, investigation of such �uids can play an important
role in the development of many industrial processes. �ese
industrial processes range from polymeric melting processes
[1, 2], pulp �bers [3, 4], mineral processing [5], food pro-
cessing [6]; and references therein, cement pastes and cos-
metics processing [7]; and reference therein, and biophysical
processes [8–10]. Also, viscoelastic �ows are seen to be
generated in simple liquids by the vibration of nanostructures,
see for instance [8], and references present therein.

Viscoelastic behavior of �ows has been studied in the
literature so far in varying contexts. For instance, Boyang in
his PhD dissertation [11] investigated the �ow of polymeric

viscoelastic �uid in three di¡erent geometries where it was
observed that �uid relaxation in�uences the onset of tur-
bulence in shear �ows. For a review and state of the art on
the e¡ect of viscoelastic �uid �ows and their applications, a/
the reader is referred to the work of Yuan et al. [12]. For a
review and state-of-the-art research on viscoelastic �uids in
particle focusing and related particle manipulation appli-
cations, the reader is referred to the work of Chen [9].
Swimming of ciliated cells in a viscoelastic Giesekus �uid is
investigated in the work of Zhu et al. [13]. �ey observe a
decay in the �ow velocity of the �uid in the presence of
polymeric stresses. �e main characteristic of their inves-
tigation was the behavior of the Weissenberg number on the
polymeric swimmers using numerical simulation through
the �nite element method. Having applications in health and
diseases, see for instance the review article by Sebastian and
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Dittrich [14], the microfluidics which are viscoelastic in
nature are used to mimic the blood flow in the/a human
body. Also, viscoelastic transport of the female sperm is
evidenced in the work of Suarez and Pacey [15]. To un-
derstand the practical application of viscoelastic fluids in
porous media, the reader is referred to the work of Haward
et al. [16]. )e kinematics of DNA flows is quantified with
the application of viscoelastic microflows in the work of
Gulati et al. [17]. On the practical problems involving vis-
coelastic behaviour in biological dynamics, the review article
by Goldstein [18] is referred to the reader. In connection to
the clinical experimentation and microfluidics to study the
behaviour of neutrophil genomics and proteomics, the
reader is referred to the work of Kotz et al. [19]. Liu et al. [20]
used viscoelastic fluids to study the separation of Bacillus
population in microfluidics.

)e flow of these complex fluids is resolved by using a
number of numerical algorithms in the literature; in this
regard, the reader is referred to a comprehensive review
article of Alves et al. [21] on the numerical methods for
viscoelastic fluid flows.

Although many important applications [1–10] are re-
alizing the investigation of viscoelastic flows, the effect of
fluid relaxation time in these models has been rarely in-
vestigated. Among the existing literature only few studies are
dealing with the study of fluid relaxation time but in dif-
ferent contexts. For instance, Mahapatra and Bando-
padhyaya [22] observed the effect of fluid relaxation time
and retardation time over a nonuniformly charged surface in
the electroosmosis of a viscoelastic fluid. In an annular
domain, Dey [23] observed that the fluid relaxation time
affects the hydromagnetic viscoelastic flow maximum at the
center portion of the geometry. Eldesoky [24] analyzed
various effects of relaxation time in a compressible Max-
wellian peristaltic slip flow, but in one-dimensional settings.
)e influence of relaxation time on the locomotion of the
microorganisms is analyzed by Josef [25] where it was
observed that the fluid relaxation time can increase the speed
and thus the efficiency of a swimmer swimming freely in a
viscoelastic fluid medium. Looking towards the importance
and applications of viscoelastic fluids, it is therefore believed
that to understand the behavior of complex fluids and
microfluidic mixtures having viscoelastic like structure, the
study of relaxation time needs further attention.

)e aim of this article is to present an investigation of
fluid relaxation time on the evolution of viscoelastic flow
dynamics where different parameters of study are taken into
consideration. )e governing flow equations are modeled,
and the variational framework based on the characteristic
Galerkin method is developed and implemented using

FreeFem++ [26]. Numerical simulations are performed, and
some important features of the flow dynamics are observed
and discussed. )e rest of the paper is organized as follows:
)e flow governing equations of viscoelastic fluid are in-
troduced in Section 2, and a time relaxation mathematical
model is presented. In Section 3, classical variational for-
mulation of the flow governing equations is constructed. In
Section 4, numerical simulations are shown, and results are
presented and discussed. Finally, conclusions are drawn in
section 5.

2. Viscoelastic Relaxation-Time
Mathematical Model

One of the widely appreciated models to describe the vis-
coelastic fluids is the upper convected Maxwell (UCM)
model that incorporates viscosity and relaxation time with
the following constitutive equation:

λ∇τ + τ � − 2ηd(v), (1)

where λ and η are the fluid characteristic relaxation time and
the fluid viscosity, respectively. )e deformation strain
tensor d(v) in (1) is defined as

d(V) �
1
2
∇v +(∇])

T
􏼐 􏼑. (2)

∇
τ being the upper convected derivative is defined as

∇
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zτ
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+ ].∇τ − (∇]).τ − τ.(∇])
T
. (3)

Here, λ and η are assumed to be constant, whereas in
general, they may depend on the local shear rate, pressure,
and temperature, see for instance [21]. After following [27],
the governing equation of motion for the unsteady in-
compressible flow is stated as

ρ
z]
zt

+ ].∇]􏼠 􏼡 + ∇p + ∇.τ � b, (4)

together with the mass conservation within the medium

∇.] � 0. (5)

Consider a two-dimensional unsteady incompressible
viscoelastic flow confined in a lid-driven baffled cavity as
depicted in Figure 1. In the absence of body forces b, the
momentum balance and continuity equations in (4) and (5)
read in the component form as
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Let us introduce the following transformations to obtain
the dimensionless forms of the set of PDEs in (7) and (8)
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,

(9)

where L is the width of the cavity. )e dimensionless forms
of the x-momentum in equation (7) and ymomentum in (8)
along with the continuity equation thus read as
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In (11) and (12), the nondimensional parameters Re
represent Reynolds number, and Rf is the fluid relaxation
time, respectively, defined by

Re �
ρLu0

μ
,

Re �
λu0

L
.

(13)

183

Figure 1: Computational meshes (from left to right): coarser, refined, and finer.
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3. Numerical Strategy and Classical
Weak Formulation

In order to solve the above strong form of the PDEs in
(10)–(12), we use the finite element method where the weak
formulation of the time discretizedmodel is presented in this
section. Let us discretize the time domain by a time step
length Δt > 0 in n subintervals with tn � nΔt. To obtain a
time discretized variational formulation, we use the method
of characteristics whereby defining the characteristic tra-
jectory at any time t through x as

zX
zτ

(x, t, τ) � v(X(x, t, τ), τ), (14)

where X|τ�t � x.
We define the total derivative by assuming a function

ϕ(x, t) by

D

Dt
(x, t) �

zϕ
zt

+ v.∇ϕ􏼠 􏼡(x, t) �
z

zt
(ϕ(X(x, t, τ), τ))|τ�t.

(15)

Now, since x � X(x, tn+1, tn+1 ) x, it is therefore the total
derivative of ϕ becomes

Dϕ
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􏼠 􏼡
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ϕn+1

(x) − ϕn Xn
(x)( 􏼁

Δt
, (16)

where Xn(x) approximates the X(x, tn+1, tn+1). For detail
description of this method, the reader is referred to the work
by Pironneau and Tezduyar [28]. Define the functional space
􏽐Ω � v ∈ H1

0(Ω),∇.v � 0􏼈 􏼉 as space of divergence-free
functions. )e time incremental variational formulation
thus reads.
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(18)

subjected to the following boundary and initial conditions

U
n+1

(x, y) � 0,∀(x, y) ∈ zΩ(x, y � 0.5);

− 0.5≤ x≤ 0.5; and − 0.5≤y≤ 0.5,
(19)

V
n+1

(x, y) � 0,

∀(x, y) ∈ zΩ,
(20)

U
n
(t � nΔt, x, y � 0.5) � 1.0; (x, y � 0.5),

− 0.5≤ x≤ 0.5.
(21)

4. Numerical Results and Discussion

)e set of governing (17) and (18) along with the associated
boundary and initial conditions in (19), (20), and (21) are
implemented through FreeFem++ [26]. )e numerical re-
sults presented and tests are carried out with Reynolds
number Re ranging between 200≤Re≤ 5000. )e relaxation
time Rf is assumed to be in the range of 0≤Rf ≤ 1 × 10− 3.
)ese numerical values for the relaxation times are taken
phenomenological. However, exact values can be calculated
by using the novel device [29] which is capable of measuring
relaxation times of complex fluids. )e parameters of
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interests in these simulations are the drag force Fd,mass flow
rate Mflowrate, maximum and minimum stream function
values ψmax and ψmin, respectively. Among the other pa-
rameters are the kinetic energy and flow field velocities. )e
finite element meshes in Figure 1 are used in these simu-
lations. )e mesh on the left is having 730 elements, 397
vertices, and 1523 number of degrees of freedom. )e mesh
in middle is having 5746 number of triangular elements,
2965 number of vertices, and 11675 number of degrees of
freedom. )e mesh on the right is having 10078 number of
triangular elements, 5161 number of triangular elements,
and 20399 number of degrees of freedom. In Figure 2, the
stream function is plotted. In Figure 3, velocity magnitudes
are shown for the varying value of fluid relaxation times in
the case of Re � 5000. In the right-sided figure, a relaxation
time Rf � 1 × 10− 4, whereas in the left, Rf � 0 is used for
the simulations. In Figure 4, the time evolution of mass flow
rates for different simulations cases is shown. Four different
test cases with Re � 500, 1000, 2000, and 5000 are computed,
and the graphs of mass flow rates are calculated for varying
values of fluid relaxation time. It is noted that the mass flow
rates get fluctuations in time and reaches to a steady state
after longer time evolve in the case of large Reynolds
numbers as compared to small Reynolds numbers. It is also
observed that the mass flow rate is increasing when the
Re≤ 1000 and decreasing when Re ≥ 2000 by increasing the
fluid relaxation time Rf. )is shows that in laminar regime
of flow, the relaxation time aids the mass flow rate to rise,
whereas in the transitional flow regime, relaxation time
drops the mass flow rate.

In Figure 5, the time evolution of drag forces for different
Reynolds numbers are shown with varying values of the
relaxation time. It can be seen that the drag force fluctuates
in time once the flow enters in the transitional regime,
whereas in the laminar regime, the drag force fluctuations
are not observed. Moreover, higher the Reynolds numbers in
the transitional regime, larger are the fluctuations in the drag
at the bottom surface of the cavity. )e drag force at the
bottom surface decreases as the relaxation time is increased
in both the laminar and transitional regimes. )e drag force
is influenced by the particle velocities at the bottom surface
as the moving particle near the bottom surface observes
resistance in motion with the increasing value of the fluid
relaxation time; therefore, the drag force is decreased as the
fluid relaxation time is increased. In Figure 6, the drag forces
are computed at the lid surface and are graphically presented
over time for varying values of the Reynolds numbers Re and
relaxation time Rf; it is observed that the drag force gets
fluctuations in the transitional regime, whereas in the
laminar regime of the flow, these fluctuations are not
present. Also, these fluctuations in the drag force disappear
and become negligibly small once the time is evolved, and
the flow gets developed. )e drag force has a nonmonotone
behavior in the regime of small Reynolds numbers at the lid
surface and decrease by increasing the relaxation time when
the flow gets near the transitional regime. Once it enters the
transitional regime, then the drag force get increased by

increasing the relaxation time. )is behavior of the drag
force is due to the eddies produced in the regime of high
Reynolds numbers which affect the evolution of the drag
force at the lid of the cavity. In Tables 1 and 2, the horizontal
and vertical velocities along the width and height of the
cavity are studied with varying values of the relaxation time.
)e horizontal velocities near the top lid and near the
bottom of the cavity increase in both the test cases by in-
creasing the fluid relaxation time. It is observed that by
increasing the relaxation time, the horizontal velocities are
increasing over a larger depth of the cavity from the top lid in
case of small Reynolds number as compared to the case of
large Reynolds number whereas these flow velocities are
increasing over a larger depth upward from the bottom
surface of the cavity in case of large Reynolds number as
compared to small Reynolds number by increasing the fluid
relaxation time. However, in case of the small Reynolds
number, the vertical velocities decrease by increasing the
relaxation time, and this decrease in velocities is observed
over a larger depth from the right end boundary of the cavity
as compared to the case of the large Reynolds number.

Nevertheless, in case of large Reynolds number, vertical
velocities attain increasing trend over a larger depth from the
left end boundary of the cavity as compared to the case of
small Reynolds number.

In Table 3, the kinetic energies are calculated in different
presented test cases for varying values of the relaxation time
Rf. It is observed that for increasing value of relaxation time,
the kinetic energies of the system of particles are increasing.
)is shows that the relaxation time influences the magnitude
of the fluid velocities of the system particles in the flow, and
the translational motions of the particles get increased by
increasing the fluid relaxation time. In Table 4, different
parameters of interests are computed and presented for two
different test cases, i.e., for Re � 200 and Re � 1000, with
varying values of the relaxation time Rf. It can be observed
that the minimum stream value ψmin decreases with an
increasing value of the relaxation time. )e maximum
stream value ψmax increases with increasing relaxation time
monotonically in the case of Re � 200, whereas this relation
is nonmonotone in the case of Re � 1000. )e maximum
value of ψmax for chosen relaxation times in the case of Re �

1000 is corresponding to Rf � 2.0x10− 3. )e mass flow rate
is increased by increasing the relaxation time.)e drag force
at the lid is increased by increasing relaxation time in the
case of Re � 200, whereas in the case of R � 1000, a non-
monotone behavior is observed. )is behavior of non-
monotonicity in the case of large Reynolds numbers is due to
vortex nature of the flow field. In conjunction to this, the
drag force at the bottom of the cavity surface is increasing for
both the test cases by increasing the relaxation times. Based
on the minimum values of the flow field velocities u and v, it
can be observed that these velocities are increasing and
decreasing, respectively, by increasing the relaxation time.
However, the maximum values of the vertical velocity are
increasing for both the test cases by increasing the value of
relaxation time.

Journal of Mathematics 5



5.5e-02

0.0500

0.0450

0.0400

0.0300

0.0200

0.0100

0.0150

0.00500

-2.4e-03

0.0250

Y

Z X

0.0350

(a)

–0.015063
–0.012149
–0.00923505
–0.00632107
–0.0034071
–0.00049312
0.00242086
0.00533483
0.00824881
0.0111628
0.0140768
0.0169907

0.0228187
0.0257327
0.0286466
0.0315606
0.0344746
0.0373886
0.0403025
0.0432165
0.0461305
0.0490445
0.0519584
0.0548724

0.0199047

Iso Value

(b)

Figure 2: Stream velocity plot (a) and iso-lines of velocity magnitude (b) at two different time iteration levels.

9.4e-01

Ve
lo

ci
ty

 m
ag

ni
tu

de

0.8

0.7

0.6

0.3

0.2

0.1
Y

Z X 8.4e-07

0.4

0.5

(a)

Ve
lo

ci
ty

 m
ag

ni
tu

de

9.4e-01

0.8

0.7

0.6

0.3

0.2

Y

Z X

0.1

7.5e-07

0.4

0.5

(b)

Figure 3: Velocity magnitudes in case of Re � 5000 and for Rf � 0 (a), Rf � 1 × 10− 4 (b).

6 Journal of Mathematics



9

8

7

6

5 8

7.5

7

M
flo

w
 ra

te

M
flo

w
 ra

te

2 2.5 3 3.5 4 4.5 51.5

4

3

2

1
0 1 1.5 2 2.5 3 4 4.5 53.5

t
0.5

8.5

For Rf = 0.0
For Rf = 1.0×10-3

For Rf = 3.0×10-3

For Rf = 5.0×10-3

(a)

8

6

M
flo

w
 ra

te

14

16

10

12

15

15.5

16

M
flo

w
 ra

te

4

2

3 6 754

4 6 8 10 12

210
t

For Rf = 0.0
For Rf = 2.0×10-3

For Rf = 3.0×10-3

For Rf = 4.0×10-3

(b)

Figure 4: Continued.

Journal of Mathematics 7



M
flo

w
 ra

te

30

31

5 10 15
29

M
flo

w
 ra

te
30

25

20

15

10

5

5 10 150
0

t

For Rf = 0.0
For Rf = 0.001 For Rf = 0.002

For Rf = 0.0015

(c)

M
flo

w
 ra

te

10

15

20

5

0 2 4 6 8
t

10
17

18

19

15 20

10 1614 1812

For Rf = 0.0
For Rf = 1.0×10-4

For Rf = 2.0×10-4

(d)

Figure 4: Mass flow rate with baffled length “L”� 0.25 for varying values of relaxation time ’Rt. (a) For Re� 500. (b) For Re� 1000. (c) For
Re� 2000. (d) For Re� 5000.

8 Journal of Mathematics



3.5 ×10-35

×10-35

3

2

1.5

F d
 at

 b
ot

to
m

 su
rfa

ce

F d
 at

 b
ot

to
m

 su
rfa

ce

1

0.5

0
0 0.5 1 1.5 2 2.5

t
3 3.5 4 4.5 5

2.5

3.1

3.15

3.05

1.5 2 3 3.5 4 4.5 52.5

For Rf = 0.0
For Rf = 1.0×10-3

For Rf = 3.0×10-3

For Rf = 5.0×10-3

(a)

F d
 at

 b
ot

to
m

 su
rfa

ce

F d
 at

 b
ot

to
m

 su
rfa

ce

2

1.5

1

0.5

0
2 4 6 10 128 

t
0

2.5

2.4

2.2

2.1

2
2 3 4 6 7 85

2.3

2.5

×10-35

×10-35

For Rf = 0.0
For Rf = 2.0×10-3

For Rf = 3.0×10-3

For Rf = 4.0×10-3

(b)

Figure 5: Continued.

Journal of Mathematics 9



F d
 at

 b
ot

to
m

 su
rfa

ce
1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
0 5

t
10 15

×10-35

For Rf = 0.0
For Rf = 1.0×10-3

For Rf = 1.5×10-3

For Rf = 2.0×10-3

(c)

F d
 at

 b
ot

to
m

 su
rfa

ce

F d
 at

 b
ot

to
m

 su
rfa

ce

4.5

4

3.5
3

2.5
2

1.5

1

0.5
0

-0.5

4.417

4.418

4.419

0 2 4 6 8 10

t

12 14 16 18

2524.9524.924.8524.824.75

20

×10-36

×10-36

For Rf = 0.0
For Rf = 1.0×10-4

For Rf = 2.0×10-4

(d)
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Table 1: Horizontal velocity component “u” for Re� 200 and Re� 1000 with varying values of the fluid relaxation parameter.

Re� 200 Re� 1000
Rf 0.0 5.0e-03 1.0e-02 0.0 2.0e-03 3.0e-03 4.0e-03
u(0.0;− 0.4375) − 0.0137483 − 0.01343 − 0.01307 0.022477 0.022992 0.023175 0.0232
u(0.0;− 0.375) − 0.030435 − 0.0301 − 0.02972 0.022345 0.023369 0.024148 0.026957
u(0.0;− 0.3125) − 0.0526477 − 0.05262 − 0.05256 − 0.00262 − 0.00116 0.000669 0.009452
u(0.0;− 0.25) − 0.0814902 − 0.08209 − 0.0827 − 0.05809 − 0.05666 − 0.05352 − 0.03549
u(0.0;− 0.1875) − 0.116186 − 0.11768 − 0.11925 − 0.1454 − 0.14525 − 0.14143 − 0.11494
u(0.0;− 0.125) − 0.152827 − 0.15526 − 0.15788 − 0.24007 − 0.24252 − 0.24051 − 0.21917
u(0.0;− 0.0625) − 0.183365 − 0.18637 − 0.18965 − 0.28028 − 0.28396 − 0.28567 − 0.28997
u(0.0; 0.0) − 0.197098 − 0.19985 − 0.20293 − 0.23835 − 0.24078 − 0.24431 − 0.26833
u(0.0;0.0625) − 0.183887 − 0.18551 − 0.18744 − 0.16095 − 0.16228 − 0.16535 − 0.18881
u(0.0;0.125) − 0.140708 − 0.14078 − 0.1411 − 0.08497 − 0.08565 − 0.08786 − 0.10514
u(0.0;0.1875) − 0.0739784 − 0.07263 − 0.07142 − 0.01022 − 0.01031 − 0.01177 − 0.02398
u(0.0;0.25) 0.00552624 0.007896 0.010288 0.069609 0.070148 0.069384 0.061863
u(0.0;0.3125) 0.0919126 0.094687 0.097687 0.156061 0.157447 0.157462 0.155224
u(0.0;0.375) 0.208309 0.21068 0.213527 0.23781 0.240472 0.241445 0.245287
u(0.0;0.4375) 0.471098 0.472924 0.475312 0.318679 0.320737 0.321571 0.329919

Table 2: Vertical velocity component “v” for Re� 200 and Re� 1000 with varying values of the fluid relaxation parameter.

Re� 200 Re� 1000
Rf 0.0 5.0e-03 1.0e-02 0.0 2.0e-03 3.0e-03 4.0e-03
v(− 0.4375;0.0625) − 0.0028463 − 0.00295 − 0.00304 − 0.00894 − 0.00892 − 0.00883 − 0.0085
v(− 0.375;0.0625) 0.00278488 0.002681 0.002603 − 0.00709 − 0.00707 − 0.00687 − 0.00528
v(− 0.3125;0.0625) 0.0223357 0.022341 0.022417 0.012148 0.012473 0.013114 0.017553
v(− 0.25;0.0625) 0.11937 0.120209 0.121301 0.15859 0.15996 0.160095 0.15937
v(− 0.1875;0.0625) 0.240211 0.243157 0.246468 0.269763 0.271332 0.269374 0.254121
v(− 0.125;0.0625) 0.245026 0.248092 0.251353 0.275032 0.276508 0.274746 0.261233
v(− 0.0625;0.0625) 0.211699 0.214401 0.217148 0.226727 0.226888 0.225338 0.215756
v(0.0; 0.0625) 0.159801 0.161952 0.164013 0.14581 0.145365 0.144234 0.137739
v(0.0625;0.0625) 0.0885403 0.089844 0.090932 0.063804 0.063391 0.062551 0.056993
v(0.125;0.0625) − 0.0018371 − 0.00158 − 0.00163 − 0.01235 − 0.01281 − 0.01355 − 0.01922
v(0.1875;0.0625) − 0.107099 − 0.10807 − 0.10939 − 0.08679 − 0.08746 − 0.08826 − 0.09491
v(0.25;0.0625) − 0.214806 − 0.21728 − 0.22007 − 0.16888 − 0.16964 − 0.17084 − 0.18173
v(0.3125;0.0625) − 0.29301 − 0.29694 − 0.30103 − 0.27401 − 0.27493 − 0.27618 − 0.28749
v(0.375;0.0625) − 0.288203 − 0.29211 − 0.29585 − 0.3625 − 0.36493 − 0.36319 − 0.34152
v(0.4375;0.0625) − 0.168197 − 0.16994 − 0.17139 − 0.21667 − 0.21569 − 0.20769 − 0.15334

Table 3: Variable of interest ϕ for Re � 200 and Re � 1000 with varying values of the fluid relaxation parameter.

Re� 200
Rf 0.0 5.0e-03 1.0e-02
(ϕ)

Ψmin − 2.30958e-04 − 2.39755e-04 − 2.48093e-04
Ψmax 9.1456e-02 9.21415e-02 9.28754e-02
M 2.67847 2.71165 2.7487
FDL − 2.5235e-02 − 2.29625e-02 − 2.0483e-02
FDB 2.77369e-35 2.82054e-35
umin − 4.52796e-01 − 4.26949e-01 − 3.79307e-01
vmin − 7.42482e-01 − 8.45826e-01
vmax 6.21795e-01 6.7349e-01

Re� 1000
Rf 0.0 2.0e-03 3.0e-03 4.0e-03
(ϕ)

Ψmin − 3.71524e-03 − 3.91257e-03 − 4.05054e-03 − 4.64216e-03
Ψmax 8.14042e-02 8.17579e-02 8.16398e-02 8.08365e-02
M 1.55632e+01 1.57104e+01 1.57462e+01 1.56052e+01
FDL 1.65313e-01 1.68016e-01 1.67988e-01 1.61894e-01
FDB 2.39683e-35 2.38622e-35 2.35416e-35 2.14298e-35
umin − 6.10021e-01 − 5.9926e-01 − 5.66658e-01 − 5.35703e-01
vmin − 7.81665e-01 − 8.6319e-01 − 9.43754e-01 − 1.17468e-00
vmax 4.23152e-01 4.34828e-01 4.70203e-01 6.33143e-01
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5. Conclusions

)is study aims to understand the rheology of complex
liquids important to model different physical problems
arising in a wide range of industrial applications. In this
respect, a fluid relaxation time nonlinear PDE model is
presented and numerically investigated. In particular, the
effect of fluid relaxation time on the characteristics of vis-
coelastic flow dynamics is examined. As a model test
problem, a two-dimensional lid-driven baffled cavity is
chosen for the analysis. Computations are performed using
characteristic Galerkin finite elements, and a developed code
is implemented through FreeFem++. Different features of
the flow characteristics are computed and presented through
graphs and tables. Some of the main findings are summa-
rized in the following points:

(i) In the laminar regime of flow, the relaxation time
raises the mass flow rate, whereas in the transitional
flow regime, the relaxation time drops the mass flow
rate.

(ii) )e kinetic energy of the system of particles in flow
gets increased by increasing the fluid relaxation
time. )is result is in accordance with the obser-
vations of Josef et al. [17] where an increase in the
swimmer speed was observed by increasing the fluid
relaxation time.

(iii) )e drag force at the bottom surface decreases as
relaxation time is increased in both the laminar and
transitional regimes.

(iv) )e drag force shows a nonmonotone behavior in
the regime of low Reynolds numbers at the lid
surface, and it decreases by increasing the relaxation
time when flow gets near the transitional regime.

(v) )e minimum stream value ψmin decreases with the
increasing value of the relaxation time.

(vi) )e maximum stream value ψmax ψmax increases
monotonically with increasing relaxation time in
case of Re � 200, whereas this relation becomes
nonmonotone in the case of large Re� 1000.
Moreover, in the case of Re � 1000 and chosen
relaxation times, the maximum value of ψmax gets
Rf � 2.0 × 103.
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[29] J. Zilz, C. Schäfer, C. Wagner, R. J. Poole, M. A. Alves, and
A. Lindner, “Serpentine channels: micro-rheometers for fluid
relaxation times,” Lab on a Chip, vol. 14, no. 2, pp. 351–358,
2014.

Journal of Mathematics 15


