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The representation of mathematical models via piecewise differential and integral operators for dynamic systems has this potential
to capture cross-over behaviors such as a passage from deterministic to randomness which can be exhibited by different systems.
A 3D mathematical model, similar to the prey-predator system, of tumor-immune interaction with piecewise differential and
integral operators is developed and analyzed. Three different scenarios, namely, cross-overs from deterministic to randomness,
the Mittag-Leffler law to randomness, and a cross-over behavior from fading memory to the power-law and a random process,
are considered. The existence, uniqueness, positivity, and boundedness of the solutions of the systems are proved via the linear
growth and Lipschitz conditions. The numerical approximations by Toufik, Atangana, and Araz are used for approximation of
solutions and simulation of the piecewise models in different scenarios. From the nondimensionalized version of the 3D model
representation, it is shown that the parameter values have an impact on the growth of tumor cells, and activating the
proliferation of the resting cells has negatively affected the development of tumor cells. Moreover, the dynamics of tumor-
immune interaction exhibited a cross-over behavior, and this behavior is exposed by the piecewise modeling approach used for
the representations.

1. Introduction

The classical differential equations (ordinary and partial dif-
ferential equations) were developed based on the concept of
rate of changes, and it has been used and investigated for sev-
eral decades. They have been used in developing several math-
ematical models representing real-world problems and are
effectively used to make their analysis. Nevertheless, some
drawbacks with the classical differential equations were
observed. The classical differential equations are not efficient
in replicating observed realities. For instance, some cases
require randomness and cannot be captured by the classical

differential equations, and as a result, the stochastic differential
equations came into being and have been used successfully.

In the same way, there are some problems in real world
that cannot be captured by stochastic differential equations,
and this led to the development of different concepts of frac-
tional derivatives and integrals. Different concepts of frac-
tional operators have been used to capture trends including
nonlocalities, power-law processes, memory effects, fractal
processes, and some other real-world problems. Though
there are different endeavors made by mathematicians to
capture different real-world problems using mathematical
models, the issue of capturing dynamic systems that display
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multiple behaviors is not fully addressed (see [1] and the ref-
erences therein). With this understanding and to solve the
problem of capturing dynamics of real-world problems with
cross-over behaviors, Atangana and Araz [1, 2] developed a
novel concept named piecewise modeling that involves dif-
ferential and integral operators.

In this study, the notion of piecewise modeling is consid-
ered to develop different piecewise mathematical models for
tumor-immune interaction using the classical, stochastic,
and fractional derivative concepts.

There are several studies conducted on tumor-immune
interaction by using different mathematical models based
on classical and fractional derivative concepts. A few of them
are reviewed as follows: Kaur and Ahmad [3] developed a
mathematical model of tumor-immune interaction by
including the Michaelis-Menten function in the model.
The authors used the classical derivative and showed that
the inclusion of the Michaelis-Menten function helped in
achieving stability of the dynamical system and increased
the rate of growth of resting cells. A seven-dimensional
dynamical model of the tumor-immune system equipped
with the Reimann-Liouville fractal-fractional operator with
the Mittag-Leffler-type kernel was considered by Farman
et al. [4]. The results showed that the IL-12 cytokine and
anti-PD-L1 inhibitor increased the immune system and
decreased the cancer cells. Ahmed et al. [5] applied ABC
fractal-fractional operators to develop a mathematical model
and visualize the tumor-immune relationship. Various
mathematical models addressing different cancer treatments
such as cytotoxic chemotherapy, immunotherapy, and their
combination are investigated by Depillis et al. [6].

Wilkie [7] discussed different mathematical models with
the classical derivatives of tumor growth in the presence of
an immune response, and the findings suggest that feedback
from the tumor to the immune response induces the exis-
tence of dormant cancer cells. A mathematical model incor-
porating three types of immunotherapy and focusing on the
inhibitory role of Tregs in the tumor-immune system is
developed and analyzed by Zhongtao et al. [8]. A mathemat-
ical model describing how cancer cell progresses and sur-
vives an encounter with the immune cell population is
developed and discussed in [9]. The chaotic dynamics of a
tumor-immune interaction model with delay are considered
in [10]. Kuznetsov et al. [11] developed a tumor-immune
interaction mathematical model and described the response
of effector cells to the growth of an immunogenic tumor.
There are many other studies made on the tumor-immune
interaction (see for instance [12–16]).

As the concept of piecewise differential and integral
operators is relatively new, hence, little literature is avail-
able. The concept of the piecewise derivative and integral
operator is used with different fractional derivatives to
investigate an SIR mathematical model of COVID-19 in
[17]. Zeb et al. [18] investigated a five-dimensional com-
partmental model of COVID-19 with the concept of piece-
wise derivative and integral operators combining the
Caputo-Fabrizio, classical, and stochastic differential equa-
tions. A mathematical model representing an interaction
in a food web is considered, and the concept of piecewise

differential and integral operator is imposed for investiga-
tion in [19]. A mathematical model of the third wave of
COVID-19 is developed and considered with the concept
of piecewise differential and integral operators [2]. The
concept of piecewise differentiation and integral operator
is applied to a CAR-T cells-SARS-2 virus model [20]. Of
course, different concepts of fractional derivatives have
been used by several authors for investigation of different
dynamical systems and different applications (see for
instance [21–28] and the references therein).

To the best of the researchers’ knowledge, there is no
single study conducted on a Tumor-immune interaction
mathematical model in the sense of piecewise differential
and integral operators. The concept of piecewise deriva-
tives and integrals in capturing real-world problems with
multiple behaviors is a novel result as it empowers
researchers in the area to use different concepts of deriva-
tive and integral operators at the same time to study mul-
tiple behaviors of a given dynamic system which may not
otherwise be possible.

This study, therefore, focuses on discovering different
cross-over behaviors in a mathematical model of tumor-
immune interaction in the sense of the piecewise differential
and integral operators developed by Atangana and Seda. The
classical differential equations, stochastic differential equa-
tions, and different concepts of fractional operators are
included in the formation of the piecewise differential and
integral operators. Accordingly, three different scenarios of
the mathematical models were developed: a cross-over from
deterministic to randomness, a cross-over from Mittag-
Leffler law to randomness, and a cross-over from exponen-
tial decay to power-law and random process.

The remaining part of this paper is organized as follows:
The formulation and description of the model, the parame-
ters and their description, and the formulation of three
piecewise models representing the system are considered in
Section 2. Section 3 is devoted to the existence, uniqueness,
positivity, and boundedness of the piecewise models.
Numerical approximations of the piecewise models are con-
sidered in Section 4 followed by simulations in Section 5.
The conclusion is provided in Section 6 followed by the list
of references in the last section.

2. Formulation of Models

In this section, the tumor-immune mathematical model
used in this study is described. The system comprises three
nonlinear differential equations that modify to different con-
cepts of fractional operators and stochastic differential equa-
tions. The model involves the concentration of tumor cells at
time t, represented by XðtÞ, the concentration of hunting
predator cells at time t, represented by YðtÞ, and the
concentration of resting predator cells at time t, represented
by ZðtÞ. The hunting and resting predator cells are normal
tissue cells. The model is similar to the prey-predator system
and originally developed by Kaur and Ahmad [3] describing
the growth, death, and interaction among this population
and is given as shown in:
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_X =Λ + r1X 1 − X
k1

� �
− α1XY ,

_Y = βYZ − d1Y − α2YX,

_Z = r2Z 1 − Z
k2

� �
− βYZ − d2Z + ρXZ

X + η
,

ð1Þ

where all the parameters in (1) are nonnegative and the ini-
tial conditions are

X 0ð Þ > 0, Y 0ð Þ > 0, Z 0ð Þ > 0, and k1 > k2: ð2Þ

The first equation of (1) describes the rate of growth of
concentration of tumor cells. It is assumed that tumor cells
follow the logistic growth in the absence of any immune
intervention (hunting and resting predator CTL cells). The
extinction of hunting cells and tumor cells is proportional
to the densities of both the cells, in line with the law of mass
action. The proliferation of the resting cells is also assumed
to follow the logistic growth function in the absence of
tumor cells. The multiplying of the resting cells is enhanced
by the tumor cells characterized by the term ρXZ/ðX + ηÞ
called the Michael-Menten function which indicates the sat-
uration effect of the resting predator cells, with a rate of pro-
liferation ρ and a half-saturation constant η. The resting cells
are converted to hunting cells by direct contact with them or
by fast diffusing substance (cytokines) produced by hunting
cells at the rate β. It is worth mentioning that inactivated
hunting cells will not get back to the resting stage once over.
The parameters of the model and their description used in
this study are summarized in Table 1.

Following the work in [1], let us use the following
dimensionless variables in the system:

t∗ =Λt/k1, X∗ = X/k1, Y∗ = αk1Y/Λ, Z∗ = Z/k2: ð3Þ

After applying the dimensionless variables in (2) to the
systems (1), we obtain

_X = 1 + c1X 1 − Xð Þ − XY ,
_Y = c2YZ − c3Y − c4YX,

_Z = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ
X + K

,

8>>><
>>>:

ð4Þ

where

c1 =
r1k1
Λ

, c2 =
βk2k1
Λ

, c3 =
d1k1
Λ

, c4 =
α2k

2
1

Λ

c5 =
r2k1
Λ

, c6 =
β

α1
, c7 =

d2k1
Λ

, c8 =
ρk1
Λ

, K = η

k1
:

ð5Þ

In this study, the nondimensionalized mathematical model
(4) is considered in the sense of piecewise differential and inte-
gral operators using classical, stochastic differential equations
and different concepts of fractional and integral operators.

2.1. Preliminaries. The basic definitions of different frac-
tional derivatives and integral operators used in the study
are recalled as follows.

Definition 1 (see [30–32]). Let μ ∈ ð0, 1�, and f ∈ C1ð0, tÞ.
The fractional ABC (with Mittag-Leffler kernel), Caputo
(with the power-law kernel), and Caputo-Fabrizio (with
exponential decay kernel) derivatives are, respectively,
defined as follows:

ABC
0 D

μ

t f tð Þ = G μð Þ
1 − μ

ðt
0

d
dτ

f τð ÞEμ −
μ

1 − μ
t − τð Þμ

� �
dτ,

c

0D
μ
t f tð Þ = 1

Γ 1 − μð Þ
ðt
0

d
dτ

f τð Þ t − τð Þ−μdτ,

CF
0 D

μ

t f tð Þ = G μð Þ
1 − μ

ðt
0

d
dτ

f τð Þ exp −
μ

1 − μ
t − τð Þ

� �
dτ,

ð6Þ

where GðμÞ = 1 − μ + μ/ΓðμÞ is the normal operator, Eμð:Þ is
the Mittag-Leffler function, and Γð:Þ is the Euler Gamma
function.

The fractional integrals of the Caputo, Caputo-Fabrizio,
and ABC types are, respectively, given by

C
0 I

μ
t f tð Þ = 1

Γ μð Þ
ðt
0
t − ρð Þμ−1 f ρð Þdρ,

CF
0 I

μ
t f tð Þ = 1 − μ

G μð Þ f tð Þ + μ

G μð Þ
ðt
0
f ρð Þdρ,

ABC
0 Iμt f tð Þf g = 1 − μ

G μð Þ f tð Þ + μ

G μð ÞΓ μð Þ
ðt
0
f ρð Þ t − ρð Þμ−1dρ:

ð7Þ

2.2. Equilibrium Points. Four equilibrium points of the sys-
tem (4) are given below:

E1 =
1
2 1 +

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4

c1

s !
, 0, 0

 !
,

E2 = X2, 0, Z2ð Þ,

whereX2 =
1
2 1 +

ffiffiffiffiffiffiffiffiffiffiffiffi
1 + 1

c1

s !
, Z2 =

1
c5

c5 − c7 +
c8X2
X2 + K

� �
,

E3 = X3, Y3, 0ð Þ, where X3 = −
c3
c4

< 0,

ð8Þ
E4 = X4, Y4, Z4ð Þ is the interior equilibriumpoint, ð9Þ

where

C3X3
4 + C2X2

4 + C1X4 + C0 = 0, ð10Þ
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and C1 = c5K − ðc7K + ðc5c3K/c2Þ + c6ðc1K + 1ÞÞ,

C2 = c5 − c7 + c8 −
c5
c2

c3 + c4Kð Þ − c1c6 1 − Kð Þ, ð11Þ

C3 = c1c6 −
c4c5
c2

, C0 = −c6K < 0: ð12Þ

2.3. Formulation of Piecewise Model. In this subsection, we
formulate three different scenarios of piecewise differential
operator representations for the tumor-immune interaction
model given in (4).

Scenario 1. In this case, we consider a piecewise model that
involves a passage from the deterministic to a random process:

For 0 ≤ t ≤ t1, Xð0Þ = X11, Yð0Þ = Y12, Zð0Þ = Z13,

_X = 1 + c1X 1 − Xð Þ − XY ,
_Y = c2YZ − c3Y − c4YX,

_Z = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ
X + K

,

8>>><
>>>:

ð13Þ

for t1 ≤ t ≤ T , Xðt1Þ = X21, Yðt1Þ = Y22, Zðt1Þ = Z23,

dX = 1 + c1X 1 − Xð Þ − XYð Þdt + σ1 Xð ÞdB1 tð Þ,
dY = c2YZ − c3Y − c4YXð Þdt + σ2 Yð ÞdB2 tð Þ,

dZ = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ
X + K

� �
dt + σ3 Zð ÞdB3 tð Þ:

8>>>><
>>>>:

ð14Þ

The mathematical model (10) has a deterministic char-
acter, and it is extended to the stochastic model described
in (11) by adding a white noise-type perturbation to the sys-
tem. The parameters σ1, σ2, σ3 are positive constants and are
the intensities of the random disturbances. Bt = ðB1ðtÞ, B2ðt
Þ, B3ðtÞÞ is the white noise process.

Scenario 2. In this case, we have considered a piecewise
model involving a passage from the Mittag-Leffler law to a
random process:

For 0 ≤ t ≤ t1, Xð0Þ = X11, Yð0Þ = Y12, Zð0Þ = Z13,

ABC
0 D

α
t X = 1 + c1X 1 − Xð Þ − XY ,

ABC
0 D

α

t Y = c2YZ − c3Y − c4YX,

ABC
0 D

α

t Z = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ
X + K

,

8>>>><
>>>>:

ð15Þ

for t1 ≤ t ≤ t2, Xðt1Þ = X21, Yðt1Þ = Y22, Zðt1Þ = Z23,

dX = 1 + c1X 1 − Xð Þ − XYð Þdt + σ1 X − X4ð ÞdB1 tð Þ,
dY = c2YZ − c3Y − c4YXð Þdt + σ2 Y − Y4ð ÞdB2 tð Þ,

dZ = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ
X + K

� �
dt + σ3 Z − Z4ð ÞdB3 tð Þ:

8>>>><
>>>>:

ð16Þ

Scenario 3. In this case, we consider a piecewise model from
fadingmemory to the power-law and then to a random process:

For 0 ≤ t ≤ t1, Xð0Þ = X11, Yð0Þ = Y12, Zð0Þ = Z13

CF
0 D

α

t X = 1 + c1X 1 − Xð Þ − XY ,
CF
0 D

α
t Y = c2YZ − c3Y − c4YX,

CF
0 D

α

t Z = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ
X + K

,

8>>>><
>>>>:

ð17Þ

for t1 ≤ t ≤ t2, Xðt1Þ = X21, Yðt1Þ = Y22, Zðt1Þ = Z23,

C
0D

α

t X = 1 + c1X 1 − Xð Þ − XY ,
C
0D

α

t Y = c2YZ − c3Y − c4YX,

C
0D

α
t Z = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ

X + K
,

8>>>><
>>>>:

ð18Þ

Table 1: Parameters of the model and their descriptions.

Parameter Description Dimensional values Source

Λ The rate of conversion of normal tissue cells to malignant (cancerous) cells (fixed input) 1000000/cell/day Assumed

r1 The growth rate of the tumor cellsX. 0.18/day [14]

r2 The growth rate of the resting cells Z 0.1045/day [29]

β The rate of conversion of resting cell Z to hunting cell Y 4.32×10−8/cell/day

[14]

k1 Carrying capacity of tumor cells X 5 × 106/cell
k2 Carrying capacity of resting cells Z 3 × 106 cell
ρ The proliferation rate of resting cell Z 0.49545/day

η The value at which the growth rate of resting immune cells Z gets half of its maximum value. 1000000

d1 Apoptotic or natural death rate of the hunting cells Y . 0.0412/day

[29]

d2 Apoptotic or natural death rate of the resting cellsZ . 0.0412/day

α1 The rate of inactivation of tumor cell T by hunter cells Y .
1:101 × 10−7/cell/

day

α2 The rate of inactivation of hunting cell Y by tumor cell X 2:2 × 10−8 /cell/day

4 Journal of Mathematics



for t2 ≤ t ≤ T , Xðt2Þ = X31, Yðt2Þ = Y32, Zðt2Þ = Z33,

dX = 1 + c1X 1 − Xð Þ − XYð Þdt + σ1 Xð ÞdB1 tð Þ,
dY = c2YZ − c3Y − c4YXð Þdt + σ2 Yð ÞdB2 tð Þ,

dZ = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ
X + K

� �
dt + σ3 Zð ÞdB3 tð Þ:

8>>>><
>>>>:

ð19Þ

3. Existence, Uniqueness, Positivity, and
Boundedness of the Solutions

This section proves the existence and uniqueness of a solu-
tion to the system in Scenario 3.

Theorem 2. Let Ω = fðX, Y , ZÞ ∈ℝ3 : max fjXj, jY j, jZjg ≤
Lg: For each initial condition U0 = ðX11, Y12, Z13Þ ∈Ω, there
exists a unique solution of (17) for all t ≥ 0:

Proof. Let 0 < t1 <∞: We want to find a sufficient condition
for the existence and uniqueness of the solution of (17) in
the domain Ω × ð0, t1�:

Suppose that G is a mapping such that GðWÞ =
ðH1ðWÞ,H2ðWÞ,H3ðWÞÞ, where W = ðX, Y , ZÞT ,W ′ =
ðX / , Y / , Z / ÞT , and

 H1 X, Y , Zð Þ = 1 + c1X 1 − Xð Þ − XY ,

H2 X, Y , Zð Þ = c2YZ − c3Y − c4YX,

H3 X, Y , Zð Þ = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ
X + K

:

ð20Þ

Now for any W,W ′ ∈Ω, we have

G Wð Þ −G W ′
� �  ≤ XY − X ′Y ′

�� �� + c2 YZ − Y ′Z ′
� ����

+ c3 Y ′ − Y
� �

+ c4 Y ′X ′ − YX
� �

j
+ c6 Y ′Z ′ − YZ

�� �� + c7 Z ′ − Z
�� �� + c8 Z − Z ′

�� ���� ��
+ c8XZ

X + K
−
c8X ′Z ′
X ′ + K

�����
����� ≤ X ′Y ′ − XY
�� ��

+ c2 YZ − Y ′Z ′
�� �� + c3 Y ′ − Y

�� �� + c4 Y ′X ′
��

− YXj + c6 Y ′Z ′ − YZ
�� �� + c7 Z ′ − Z

�� ����
+ c8 Z − Z ′
�� ��j + c8X

X + K
Z − Z ′
� �����

+ Kc8Z ′
X ′ + K
� �

X + Kð Þ
X − X ′
� �

j

≤ L + KLc8ð Þ X ′ − X
�� �� + c2L + c3 + c4Lð Þ Yj

− Y ′j + c6L + c7 + 2c8ð Þ Z − Z ′
�� ��

≤ Y W −W ′�� ��, ≤ Y W −W ′�� ��,
ð21Þ

where Y =max fL + KLc8, c2L + c3 + c4L, c6L + c7 + 2c8g:

Thus, the mapping G satisfies the Lipschitz condition
with respect to W. This proves that the system (17) has a
unique solution.

Theorem 3. The solution of (17) is invariant in the set ℝ3
+

= fW ∈ℝ3 : W ≥ 0 andWðtÞ = ðX, Y , ZÞT:g.

Proof. By referring to the system (17), we can observe that
CF
0 Dα

t XðtÞjX=0 ≥ 0, CF0 Dα
t YðtÞjY=0 ≥ 0,CF0 Dα

t ZðtÞjZ=0 ≥ 0, and
then the mentioned system is nonreducing which proves
the invariance of the system in ℝ3

+ and the feasible region
is Ω = fðX, Y , ZÞ ∈ℝ3 : max fjXj, jY j, jZjg ≤ L > 0g.

Thus, in Theorems 2 and 3, we find that the system (17)
has a unique solution for each initial condition in the feasi-
ble set Ω. The existence and uniqueness of the solution of
the system (18) can be shown similarly for the domain Ω
× ½t1, t2�:

We shall now show the existence and uniqueness of the
solution for the stochastic differential equation given in
(19) based on Theorem 3. Let us first write the system (19)
in a Volterra type of integrals for all t in ½t2, T�:

For simplicity, let us write (19) in the form

dX =H1 X, Y , Zð Þdt +G1 t, Xð ÞdB1 tð Þ,
dY =H2 X, Y , Zð Þdt +G2 t, Yð ÞdB2 tð Þ,
dZ =H3 X, Y , Zð Þdt +G3 t, Zð ÞdB3 tð Þ,

8>><
>>:

ð22Þ

where t2 ≤ t ≤ T , and the initial condition is given by Xðt2Þ
= X31, Yðt2Þ = Y32, Zðt2Þ = Z33, Hi, i = 1, 2, 3 are defined in
(20) and G3ðt, ZÞ = σ1ðZÞ,G2ðt, YÞ = σ2ðYÞ,G1ðt, XÞ = σ1ðX
Þ, and E4 = ðX4, Y4, Z4Þ is the interior equilibrium point of
(4).

We shall now show the existence and uniqueness of the
solution for all t such that t ∈ ðt2, TÞ. Indeed, by referring
to (19), we want to show the following items:

(I) Lipschitz condition: for all W,W/ ∈ℝ3
+ and t ∈ ½t2, T�

max Hi W, tð Þ −Hi W ′, t
� ���� ���2, Gi W, tð Þ − Gi W ′, t

� ���� ���2
� �

�k W −W ′�� ��2, i = 1, 2, 3
�

ð23Þ

for some positive constant �k

(II) Linear growth condition: for all ðW, tÞ ∈ℝ3
+ × ½t2, T�

max Hi W, tð Þj j2, Gi W, tð Þj j2È É
≤ k 1 + Wj j2À Á

, i = 1, 2, 3
É
,

ð24Þ

5Journal of Mathematics



for some positive constant k,where W = ðX, Y , ZÞT ,W/ =
ðX/, Y /, Z/ÞT :

Proof. From the inequalities

G1 Wð Þ − G1 W ′
� ���� ���2 = X − X/�� ��2 ≤ σ21 X − X ′

�� ��2,

G2 Wð Þ −G2 W ′
� ���� ���2 = Y − Y /�� ��2 ≤ σ22 Y − Y ′

�� ��2,
G3 Wð Þ −G3 W ′

� ���� ���2 = Z − Z/�� ��2 ≤ σ23 Z − Z ′
�� ��2:

ð25Þ

We have

where kΦk2∞ = sup
t∈½t2,T�

jΦj2.
Thus, we have

H1 Xð Þ −H1 X ′
� ���� ���2 ≤ �k1 X − X ′

�� ��2, ð27Þ

where

�k1 = c21 + 2c1 Yk k2∞ + c1 Xk k∞ + c1 X/ 
∞ + XYk k∞

�

+ YX/ 
∞Þ + c21 Xk k2∞ + X/2 2

∞ + 2 XX/ 2
∞

� �
:

ð28Þ

Similarly

�k2 = c21 + 2c2c4 + 2c2c3
À Á

Zk k2∞ + 2c3c4 Xk k∞,
�k3 = c5 + c7 + c8ð Þ 1 + c26 Yk k2∞ + 2c6 Yk k∞

À Á
+ c25 Zk k2∞ + Z/ 2

∞

� �
+ 2 Zk k∞ Z/ 

∞

+ 2c5 c5 + c7 + c8ð Þ + 2c5c6 Yk k∞
À Á

Zk k∞ + Z/ 
∞

� �
:

ð29Þ

Now, by choosing �k =max fσ2i , �ki, i = 1, 2, 3g, we can see
that the Lipschitz condition ðIÞ is satisfied. Similarly, we
obtain

G1 Wð Þj j2 = σ21 X − X4j j2 ≤ σ21X
2
4 1 + 1

X2
4
Xj j2

� �

≤ σ21X
2
4 1 + Xj j2À Á

,
ð30Þ

with the condition of 1/X2
4 ≤ 1

G2 Wð Þj j2 = σ2
2 Y − Y4j j2 ≤ σ22y

2
4 1 + 1

Y2
4
Yj j2

� �

≤ σ2
2Y

2
4 1 + Yj j2À Á

,
ð31Þ

with the condition of 1/Y2
4 ≤ 1, and

G3 Wð Þj j2 = σ2
3Z

2
4 Z − Z4j j2 ≤ σ23 1 + 1

Z2
4
Zj j2

� �
≤ σ2

3Z
2
4 1 + Zj j2À Á

,

ð32Þ

with the condition of Z2
4 ≤ 1:

Moreover, ≤kð1 + c1XÞ2k∞ + kðc1X + YÞ2k∞jXj2 ≤
kð1 + c1XÞ2k∞ + kðc1X + YÞ2k∞jXj2≤≤ ≤ ≤

H1 X, Y , Zð Þj j2 = 1 + c1X 1 − Xð Þ − XYj j2,
≤1 + 2c1X + c21X

2 + c21X
4 + 2c1X3Y + XYð Þ2

≤ 1 + c1Xð Þ2 
∞ + c1X + Yð Þ2 

∞ Xj j2

≤ k1 1 +
c1X + Yð Þ2 

∞

1 + c1Xð Þ2 
∞

Xj j2
 !

≤ k1 1 + Xj j2À Á
,

ð33Þ

where k1 = kð1 + c1XÞ2k∞ with the condition
kðc1X + YÞ2k∞/k1 < 1: Also

H2 X, Y , Zð Þj j2 = c2YZ − c3Y − c4YXj j2 ≤ c22 Zk k∞
À ÁÀ

+ 2c3c4 Xk k∞ + c4 X2 
∞

� �
+ c23Þ Y2�� ��

≤ k2 1 + Y2�� ��À Á
,

ð34Þ

H1 Xð Þ −H1 X ′
� ���� ���2 = c1X 1 − Xð Þ − XYð Þ − c1X ′ 1 − X ′

� �
− X/Y

� ���� ���2 = c1 + Y + c1 X ′ + X
� ���� ���2 X − X ′

�� ��2

≤
c21 + 2c1 Yk k2∞ + c1 Xk k∞ + c1 X ′

 
∞ + XYk k∞ + YX ′

 
∞

� �

+c21 Xk k2∞ + X/2 2
∞ + 2 XX ′

 2
∞

� �
0
BB@

1
CCA X − X/�� ��2, ð26Þ
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where k2 = ððc22kZk∞Þ + 2c3c4kXk∞ + ðc4kX2k∞Þ + c23Þ, and

H3 X, Y , Zð Þj j2 = c5Z 1 − Zð Þ − c6YZ − c7Z + c8XZ
X + K

����
����
2

≤
c5 + c8 − c7ð Þ2 + c25 Zk k2∞

+ c26 + 2c5c6 + c28 + 2c2
À Á

Zk k∞ + 2c6c8 Yk k∞

0
@

1
A Zj j2

≤ k3 1 + Zj j2À Á
,

ð35Þ

where k3 = ðc5 + c8 − c7Þ2 + c25kZk2∞ + ðc26 + 2c5c6 + c28 + 2c2Þ
kZk∞ + 2c6c8kYk∞:

Now, by choosing k =max fσ21X2
4, σ22Y2

4, σ2
3Z

2
4, k1, k2, k3

g, we can see that the linearity condition ðIIÞ is satisfied.
Thus, the system (19) has a unique solution with the initial
conditions Xðt2Þ = X31, Yðt2Þ = Y32, Zðt2Þ = Z33: We can
then conclude that the piecewise differential equation con-
sidered in Scenario 3 has a unique solution for all t ∈ ½0, T�:

By following the same method, the existence and
uniqueness of solutions for the mathematical models
described in Scenarios 1 and 2 are proved.

4. Numerical Approximations

Based on the work studied in [33], we can show that the
numerical approximation of the system in Scenario 1 is
given as follows:

For all t ∈ ½0, t1�

Wi n + 1ð Þ =WI nð Þ + 23h
12 Hi W nð Þð Þ + 5h

12Hi W n − 2ð Þð Þ

−
4h
3 Hi W n − 1ð Þð Þ½ �,

ð36Þ

where

W = X, Y , Zð Þ, h = Δt,W1 = X,W2 = Y ,W3 = Z, i = 1, 2, 3,
ð37Þ

andH1,H2,H3 are defined in (20).
For all t ∈ ½t1,T�, we have

X n + 1ð Þ = X nð Þ + 23h
12 H1 X nð Þ, Y nð Þ, Z nð Þð Þ

+ 5h
12H1 X n − 2ð Þ, Y n − 2ð Þ, Z n − 2ð Þð Þ

−
4h
3 H1 X n − 1ð Þ, Y n − 1ð Þ, Z n − 1ð Þð Þ½ �

+ 5
12 B1 t n − 1ð Þð − B1 t n − 2ð Þðð Þσ1 X n − 2ð Þð

− X4Þ −
4
3 B1 t nð Þð − B1 t n − 1ð Þðð Þσ1 X n − 1ð Þð

− X4Þ +
23
12 B1 t n + 1ð Þð − B1 t nð Þðð Þσ1 X nð Þ − X4ð Þ,
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Figure 1: Time series trajectories of the piecewise systems (10) and (11) for c1 = 0:9, c2 = 0:65, c3 = 0:21, c4 = 0:55, c5 = 0, c6 = 0:39, c7 = 0
:21, c8 = 2:48,K = 0:2:
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Figure 2: Time series trajectories of the piecewise systems (10) and (11) for c1 = 0:9, c2 = 0:65, c3 = 0:21, c4 = 0:55, c5 = 0:52, c6 = 0:39, c7
= 0:21, c8 = 2:48, K = 0:2:
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Figure 3: Time series trajectories of the piecewise systems (10) and (11) for c1 = 0:9, c2 = 0:65, c3 = 0:21, c4 = 0:55, c5 = 0:62, c6 = 0:39, c7
= 0:21, c8 = 2:48, K = 0:2:
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Figure 4: Time series trajectories of the piecewise systems (10) and (11) for c1 = 0:9, c2 = 0:65, c3 = 0:21, c4 = 0:55, c5 = 0:92, c6 = 0:39, c7
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Figure 5: Time series trajectories of the piecewise systems (10) and (11) for c1 = 0:9, c2 = 0:65, c3 = 0:21, c4 = 0:55, c5 = 0:52, c6 = 0:39, c7
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Y n + 1ð Þ = Y nð Þ + 23h
12 H2 X nð Þ, Y nð Þ, Z nð Þð Þ

+ 5h
12H2 X n − 2ð Þ, Y n − 2ð Þ, Z n − 2ð Þð Þ

−
4h
3 H2 X n − 1ð Þ, Y n − 1ð Þ, Z n − 1ð Þð Þ½ �

+ 5
12 B2 t n − 1ð Þð − B2 t n − 2ð Þðð Þσ2 Y n − 2ð Þð

− Y4Þ −
4
3 B2 t nð Þð − B2 t n − 1ð Þðð Þσ2 Y n − 1ð Þð

− Y4Þ +
23
12 B2 t n + 1ð Þð − B2 t nð Þðð Þσ2 Y nð Þ − Y4ð Þ,

Z n + 1ð Þ = Z nð Þ + 23h
12 H3 X nð Þ, Y nð Þ, Z nð Þð Þ

+ 5h
12H3 X n − 2ð Þ, Y n − 2ð Þ, Z n − 2ð Þð Þ

−
4h
3 H3 X n − 1ð Þ, Y n − 1ð Þ, Z n − 1ð Þð Þ½ �

+ 5
12 B3 t n − 1ð Þð − B3 t n − 2ð Þðð Þσ3 Z n − 2ð Þ − Z4ð Þ

−
4
3 B3 t nð Þð − B3 t n − 1ð Þðð Þσ3 Z n − 1ð Þ − Z4ð Þ

+ 23
12 B3 t n + 1ð Þð − B3 t nð Þðð Þσ3 Z nð Þ − Z4ð Þ:

ð38Þ
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Figure 6: Time series trajectories of piecewise systems (10) and (11) for c1 = 0:9, c2 = 0:65, c3 = 0:21, c4 = 0:55, c5 = 0:52, c6 = 0:39, c7 =
0:21, c8 = 1:6,K = 0:2:
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Figure 7: Time series trajectories of the piecewise systems (10) and (11) for c1 = 0:9, c2 = 0:65, c3 = 0:21, c4 = 0:55, c5 = 0:52, c6 = 0:39, c7
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By referring to Scenario 2 and applying the numerical
method developed in [34], the approximate solution of the
ABC fractional derivative part for all t ∈ ½0, t1� is given by

Wi tn+1ð Þ =Wi 0ð Þ + 1 − μ

F μð ÞHi W tnð Þð Þ + μ

F μð ÞΓ μð Þ〠
n

k=1

Á

Hi W tkð Þð Þ
Γ μ + 2ð Þ

� �

× hμ n + 1 − kð Þμ n − k + 2 + μð Þ − n − kð Þμ n − k + 2 + 2μð Þ½ �

−
Hi W tk−1ð Þð Þ
Γ μ + 2ð Þ

� �

× hμ n + 1 − kð Þμ+1 − n − kð Þμ n − j + 1 + μð ÞÂ Ã

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

,

ð39Þ

where

W = X, Y , Zð Þ, h = Δt,W1 = X,W2 = Y ,W3 = Z, i = 1, 2, 3,
ð40Þ

andH1,H2,H3 are defined in (20).
By referring to Scenario 3 and based on the work studied

in [29], we can show that the numerical approximation of

the system for the Caputo-Fabrizio fractional differential
equation for t ∈ ½0, t1� is given as follows:

Wi n + 1ð Þ =Wi nð Þ + 1 − μ

Γ μð Þ Hi W nð Þð −W n − 1ð Þð Þ

+ μh
Γ αð Þ

5
12Hi W n − 2ð Þð Þ − 4

3Hi W n − 1ð Þð Þ
�

+ 23
12Hi W nð Þð Þ

�
,

ð41Þ

where

W = X, Y , Zð Þ, h = Δt,W1 = X,W2 = Y ,W3 = Z, i = 1, 2, 3,
ð42Þ

andH1,H2,H3 are defined in (20).
By referring to Scenario 3 and based on the work studied

in [29], we can show that the numerical approximation of
the system for the Caputo fractional differential equation
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for t ∈ ½t1, t2� is given as follows:

Wi n + 1ð Þ =Wi t1ð Þ + hμ

Γ μ + 1ð Þ〠
n

j=2
Hi t j − 2ð Þ,W j − 2ð Þð Þ n − j + 1ð Þμ½

− n − jð Þμ� + hμ

Γ μ + 2ð Þ〠
n

j=2
Hi t j − 1ð Þ,W j − 1ð Þð Þ

−Hi t j − 2ð Þ,W j − 2ð Þð Þ × n − j + 1ð Þμ n − j + 3 + 2μð Þ½

− n − jð Þμ n − j + 3 + 3μð Þ� + hμ

2Γ μ + 3ð Þ〠
n

j=2
Hi t jð Þ,W jð Þð Þ

− 2Hi t j − 1ð Þ,W j − 1ð Þð Þ +Hi t j − 2ð Þ,W j − 2ð Þð Þ

×
n 2 n − jð Þ2 + 3μ + 10ð Þ n − jð Þ + 2μ2 + 9μ+12
Â ÃÀ

− n 2 n − jð Þ2 + 5μ + 10ð Þ n − jð Þ + 6μ2 + 18μ + 12
Â ÃÀ

2
4

3
5,

ð43Þ

where
W = ðX, Y , ZÞ, h = Δt,W1 = X,W2 = Y ,W3 = Z,

i = 1, 2, 3,andH1,H2,H3 are defined in (20).

5. Numerical Simulations and Discussion

In this section, some of the numerical simulations of three
different scenarios are depicted. Based on the dimensional
parameter values given in Table 1 and the relationship
between parameters given in (5), the following nondimen-
sional parameter values of the system (4) are used for the

numerical simulations: c1 = 0:9, c2 = 0:65, c3 = 0:21, c4 = 0:55
, c5 = 0:52, c6 = 0:39, c7 = 0:21, c8 = 2:48, K = 0:2:

By using the above parameter values, the interior equi-
librium point given by expression (9) is calculated to be E4
= ðX4, Y4, Z4Þ = ð0:308, 3:87, 0:580Þ with the corresponding
eigenvalues of the system given by f−3:78,−0:22 + 0:88i,−
0:22 − 0:88ig: Thus, the equilibrium point E4 is stable.

Let us consider the simulation of Scenario 1 for different
values of the parameters c5 = r2k1/Λ = 0:52, 0:62, 0:92 and
c8 = ρk1/Λ = 0,1:6,2:

It can be observed from Figures 1–4 that when the
values of c5 increase from 0, the hunting cells get activated
and seem to increase and continue to oscillate with con-
vergence for the deterministic part and cross-overs to ran-
domness. The hunting cells can increase as indicated in
the figures when the value of c5 is different from zero
and gets larger and larger. In Figures 1–4, the tumor cells
remain mitigated.

It can be inferred from Figures 5–7 that by increasing the
parameter values of c8 from zero, the number of tumor cells
reduces significantly as shown in both deterministic and sto-
chastic parts of the figures. It means that the proliferation of
the resting cells enhanced by the tumor cells characterized
by the term c8XZ/X + K (see Equation (4)) has a positive
effect on the mitigation of the tumor cells. It can be inferred
from this result that proliferation of the hunting cells has a
positive effect on mitigating the tumor cells which seems
good news for treating the disease.
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Figure 15: Phase portrait of the piecewise systems (15) and (16) projected onto the XZ plane for the parameter values of c1 = 0:9, c2 =
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Some of the phase portraits for Scenario 2 which is the
case for a cross-over from ABC fractional derivatives to the
random process of systems in (15) and (16) are depicted in
Figures 8–12. In these figures, the effect of different parame-
ter values of c5 (Figure 8) and the effect of different values of
the fractional orders μ (Figures 9–11) are shown.

It can be observed from Figure 8 that by increasing the
parameter values of c5, the memory effect of the ABC frac-
tional derivative increases. This effect led to a slow increment
of the resting cells ZðtÞ, when the number of hunting cells Y
ðtÞ is less than one unit, and later on, as the number of hunting
cells increased, the number of resting cells decreases until both
of them begin decreasing at the same time as shown in
Figure 8. This process repeats, and the trajectories spiral
inwards and cross-over to randomness.

Some of the simulation results of Scenario 3 are
described by piecewise systems (17)–(19); a cross-over from
fading memory (Caputo-Fabrizio fractional derivative) to
the power-law (Caputo fractional derivative) and then to
the random process is depicted in Figures 13–15. These fig-
ures show the impact of different fractional orders (Figure 13
and zooming in shown in Figure 14 and different values of
the parameter c5 (Figure 15 and zooming in shown in
Figure 16) on the dynamics of the piecewise system
described in Scenario 3.

6. Conclusions

The piecewise mathematical model representation of cancer-
immune interaction used in this study has exposed a property

that has never been considered or observed in earlier studies
using mathematical models based on the classical or different
fractional derivatives. The cancer-immune interaction, for
instance, showed a cross-over behavior from deterministic to
stochastic as shown in the Scenario 1 of this study. We argue
that the approach of piecewise mathematical model represen-
tation of different real-world dynamic systems is an eye-
opener for researchers as the approach has the potential of
uncovering hidden properties in the dynamics of a system.
In this study, it would have been better to compare the model
results with the actual data; it is what the researchers are sup-
posed to consider in future work. It can be contested that the
piecewise mathematical model approach is better closer to
reality as compared to using only one classical or fractional
derivative representation of a dynamic system. This is because
of this fact that different dynamical systems have the property
that cross-over behaviors cannot be cached without a piece-
wise mathematical model representation of the system. It is
observed from the result of this study that (Scenario 1) the
proliferation of the resting cells enhanced by the tumor cells
characterized by the term c8XZ/X + K is a good target for
treatment of the diseases as is shown in Figures 1–5.
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Figure 16: Zooming in on the inner part of Figure 15.
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