Research Article

Locally Conformally Flat Doubly Twisted Product Complex Finsler Manifolds

Wei Xiao, Yong He, Shuwen Li, and Qihui Ni

School of Mathematical Sciences, Xinjiang Normal University, Urumqi 830017, China

Correspondence should be addressed to Yong He; heyong@xjnu.edu.cn

Received 27 March 2022; Revised 28 April 2022; Accepted 10 May 2022; Published 10 June 2022

Academic Editor: Bibhas Ranjan Majhi

Copyright © 2022 Wei Xiao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let \((M_1 \times \lambda_1 \lambda_2 M_2, F) \) be a doubly twisted product manifold of two strongly pseudoconvex complex Finsler manifolds \((M_1, F_1) \) and \((M_2, F_2) \). In this study, we give a characterization of locally conformally \(\gamma \)-flat doubly twisted product complex Finsler manifold. We also obtain a necessary and sufficient condition for a doubly twisted product of two locally conformally \(\gamma \)-flat complex Finsler manifolds to be locally conformally \(\gamma \)-flat.

1. Introduction

Warped product and twisted product are important methods used to construct manifolds with special curvature properties in Riemann geometry. The warped product manifold was first introduced in 1969 by O’Neill and Bishop to construct Riemannian manifolds with negative curvature [1]. Then, it was extended to real Finsler geometry by the work of Hushmandi et al. (see [2–4]). Later, it was studied by many authors to construct new examples of real Finsler manifold [5–7]. They consider warped product Finsler manifold with scalar flag curvature and some well-known non-Riemannian curvature properties such as Berwald, Landsberg, and \(S \)-curvature [8–11].

In [12], He and Zhong extended the warped product to complex Finsler geometry and gave a possible way to construct complex Finsler metric (e.g., weakly complex Berwald metric and complex locally Minkowski metric).

The twisted product manifold, as a generalization of warped product manifold, was mentioned first by Chen [13]. Then, the notion of twisted product was generalized for the pseudo-Riemannian manifold by Ponge and Reckziegel [14]. In [15], Kozma et al. extended the twisted product to real Finsler manifolds. Later, twisted product of Finsler manifolds was studied by many authors [16–19]. In 2021, Deng et al. obtained the necessary and sufficient conditions that the doubly twisted product of real Finsler manifolds is a Berwald manifold [20].

Recently, we extended the twisted product to complex Finsler geometry and gave characterization of a doubly twisted product complex Finsler manifold to be Kähler Finsler manifold (resp. weakly Kähler Finsler manifold, complex Berwald manifold, weakly complex Berwald manifold, and complex Landsberg manifold) [21]. Later, we obtained necessary and sufficient conditions for a doubly twisted product complex Finsler manifold to be locally dually flat [22]. In [23], we gave a characterization for doubly twisted product complex Finsler manifold to be a complex Einstein–Finsler manifold.

The Weyl theorem states that the projective and conformal properties of a Finsler space determine the metric properties uniquely [24, 25]. In Finsler geometry, it is important subject to study conformal transformations of Finsler manifolds. In [26], Aldea proved that the scale function of a conformal transformation between two complex Finsler metrics depends only on the position of the base manifold. Recently, many author studied conformal transformation in complex Finsler geometry [27–30]. In 2021, Li studied the locally conformal pseudo-Kähler Finsler manifolds [31].

Particularly, a Finsler manifold which is conformally related to a Minkowski manifold is called locally conformally flat Finsler manifold. One of the most important problems in Finsler geometry is to study and characterize conformally flat Finsler manifold. In 2012, Matsumoto and Pripathi systematically studied locally conformally flat twisted product Riemann manifolds and proved its component manifolds are...
locally conformally flat [18]. Later, He also gave a necessary and sufficient condition for a doubly warped product complex Finsler manifolds to be locally conformally flat in [32].

Thus, it is very natural and interesting to ask the following question. Under what condition does a doubly twisted product complex Finsler manifold be locally conformally flat? Under what condition does a doubly twisted product of two locally conformally flat complex Finsler manifolds be locally conformally flat?

Inspired by the above questions, we will investigate the necessary and sufficient conditions for a doubly twisted product complex Finsler manifold to be locally conformally flat. We also give a necessary and sufficient condition that the doubly twisted product of two locally conformally flat complex Finsler manifolds is locally conformally flat.

2. Preliminary

In this section, we briefly recall some basic concepts and notations which we need in this study.

Let M be a complex manifold of complex dimension n. We denote $T^{1,0}M$ as the holomorphic tangent bundle of M and \bar{M} as the complement of zero section in $T^{1,0}M$. We denote $z = (z^1, \ldots, z^n)$ as the local holomorphic coordinates on M and $(z, v) = (z^1, \ldots, z^n, v^1, \ldots, v^\ell)$ as the induced local holomorphic coordinates on the holomorphic tangent bundle $T^{1,0}M$.

Definition 1 (see [33]). A strongly pseudoconvex complex Finsler metric F on a complex manifold M is a continuous function $F: T^{1,0}M \rightarrow \mathbb{R}^+$ satisfying

(i) $F(p, v) > 0$, for all $(p, v) \in \bar{M}$.
(ii) $F(p, v) = |z(F(p, v))|$, for all $(p, v) \in T^{1,0}M$ and $\zeta \in \mathbb{C}$.
(iii) The Levi matrix (or complex Hessian matrix),

\[
\left(G_{\alpha\beta} \right) = \left(\frac{\partial^2 G}{\partial v^\alpha \partial v^\beta} \right),
\]

is positive definite on \bar{M}.

In this study, we denote $(G^{\beta\gamma})$ the inverse matrix of $(G_{\alpha\beta})$ such that $G^{\beta\gamma}G_{\gamma\delta} = \delta^\beta_\delta$. We also use the notation in [33], that is, the derivatives of G with respect to the v-coordinates and z-coordinates are separated by semicolon; for instance,

\[
G_{\pi\nu} = \frac{\partial^2 G}{\partial z^\pi \partial v^\nu},
\]

\[
G_{\alpha\pi} = \frac{\partial^2 G}{\partial z^\alpha \partial v^\pi}.
\]

In the following, we denote ∂_μ as the partial derivative with respect to the local coordinates z^μ on M and ∂_μ as the partial derivative with respect to the fiber coordinates v^μ.

The Chern–Finsler connection was first constructed in [34] and systemically studied in [33]. Let $D: \mathcal{X}(\mathbb{Y}^{1,0}) \rightarrow \mathcal{X}(\mathbb{T}_c^{1,0} \bar{M} \otimes \mathbb{Y}^{1,0})$ be the Chern–Finsler connection associated to a strongly pseudoconvex complex Finsler metric F. The Chern–Finsler complex nonlinear connection Γ^a_μ associated to F is given by

\[
\Gamma^a_\mu = G^{a\pi} G_{\pi\mu}.
\]

The connection 1-forms ω^a_μ of D are given by

\[
\omega^a_\mu = \Gamma^a_\mu dz^\mu + \Gamma^a_\mu \psi^\mu,
\]

where

\[
\Gamma^a_\mu = G^{a\pi} \partial_\mu (G_{\pi\mu}),
\]

\[
\psi^\mu = \partial^\mu + \delta^a_\mu dz^a.
\]

The complex Rund connection associated to a strongly pseudoconvex complex Finsler metric F was first introduced in [35] and were systemically studied in [36, 37]. Let $\bar{D}: \mathcal{X}(\mathbb{Y}^{1,0}) \rightarrow \mathcal{X}(\mathbb{T}_c^{1,0} \bar{M} \otimes \mathbb{Y}^{1,0})$ be the complex Rund connection; then, the connection 1-forms $\bar{\omega}$ of \bar{D} are given by

\[
\bar{\omega}^a_\mu = \Gamma^a_\mu dz^\mu,
\]

where Γ^a_μ are defined by equation (5). It is clearly from equation (4) that ω^a_μ are just the horizontal part of ω^a_μ.

Definition 2 (see [37, 38]). A complex Finsler manifold (M, F) is said to be modeled on a complex Minkowski space if the horizontal connection coefficients Γ^a_μ of the Chern–Finsler connection or complex Rund connection coefficients depend only on the coordinates z of the base manifold M, i.e., $\Gamma^a_\mu(z, v) = \Gamma^a_\mu(z)$.

Definition 3 (see [36]). Let F be a complex Finsler metric on M. If there exits an open cover $\{U, X_\nu\}$ such that, on each $\pi^{-1}_\nu(U)$, the function F is a function of the fiber coordinate only, then the complex Finsler metric F will be a complex locally Minkowski metric.

The necessary and sufficient condition of a complex Finsler metric F on M to be a complex locally Minkowski metric is that it is modeled on a complex Minkowski metric and the complex Rund connection coefficients on (M, F) is holomorphic. That is, the horizontal coefficients $\Gamma^a_\mu(z, v)$ of the Chern–Finsler connection or complex Rund connection coefficients satisfy the following conditions:

\[
\begin{aligned}
\Gamma^a_\mu(z, v) &= \Gamma^a_\mu(z), \\
\frac{\partial(\Gamma^a_\mu)}{\partial z^\mu} &= 0.
\end{aligned}
\]

Definition 4 (see [38]). Let F and \bar{F} be two strongly pseudoconvex complex Finsler metric on complex manifold M. [9]
A conformal change of F is the change $F \rightarrow \tilde{F} = e^{\sigma(z)}F$ for a smooth function $\sigma(z)$ on M.

Definition 5 (see [38]). A complex Finsler manifold (M, F) is said to be locally conformally flat if it is locally conformal to a locally Minkowski space; that is, there exists an open covering $\{U_a\}$ with a family $\{\sigma_a\}$ of locally defined smooth functions $\sigma_a : U_a \rightarrow \mathbb{R}$ such that the metric $\tilde{F} = e^{\sigma_a(z)}F$ is a complex locally Minkowski metric on U_a.

3. Doubly Twisted Product of Complex Finsler Manifolds

Let (M_1, F_1) and (M_2, F_2) be two strongly pseudoconvex complex Finsler manifolds with $\dim_c M_1 = m$ and $\dim_c M_2 = n$, then, $M = M_1 \times M_2$ is a strongly pseudoconvex complex Finsler manifold with $\dim_c M = m + n$.

Let $T^{1,0}M_1$ and $T^{1,0}M_2$ be the holomorphic tangent bundles of M_1 and M_2, respectively. Let $\pi_1 : M_1 \times M_2 \rightarrow M_1$ and $\pi_2 : M_1 \times M_2 \rightarrow M_2$ be natural projection maps; then, $d\pi_1 : T^{1,0}(M_1 \times M_2) \rightarrow T^{1,0}M_1$ and $d\pi_2 : T^{1,0}(M_1 \times M_2) \rightarrow T^{1,0}M_2$ be the holomorphic tangent maps induced by π_1 and π_2, respectively. Note that $d\pi_1(z, v) = (z_1, v_1)$ and $d\pi_2(z, v) = (z_2, v_2)$ for every $v = (v_1, v_2) \in T^{1,0}M_1 \times M_2$ with $v_1 = (v^{11}, \ldots, v^{1n}) \in T^{1,0}M_1$ and $v_2 = (v^{m1}, \ldots, v^{mn}) \in T^{1,0}M_2$.

Definition 6 (see [21]). Let (M_1, F_1) and (M_2, F_2) be two strongly pseudoconvex complex Finsler manifolds and $\lambda_i : M_1 \times M_2 \rightarrow (0, +\infty)(i = 1, 2)$ be smooth functions.

The doubly twisted product (abbreviated as DTP) complex Finsler manifold of (M_1, F_1) and (M_2, F_2) is the product complex manifold $M = M_1 \times M_2$ endowed with the complex Finsler metric $F : \tilde{M} \rightarrow \mathbb{R}$ given by

$$F^i_j(z, v) = \lambda_1^1(z)F_1^i(\pi_1(z), d\pi_1(v)) + \lambda_2^2(z)F_2^i(\pi_2(z), d\pi_2(v)),$$

for $z = (z_1, z_2) \in M$ and $v = (v_1, v_2) \in T^{1,0}M - \{\text{zero section}\}$. The functions λ_1 and λ_2 are called twisted functions. The DTP-complex Finsler manifold of (M_1, F_1) and (M_2, F_2) is denoted by $(M_1 \times (\lambda_1, \lambda_2)M_2, F)$.

In the case of $\lambda_1 \equiv 1$ or $\lambda_2 \equiv 1$, the corresponding DTP-complex Finsler manifold is called twisted product complex Finsler manifold. If $\lambda_1 \equiv \lambda_2 \equiv 1, (M, F)$ becomes the product complex Finsler manifold. If neither λ_1 nor λ_2 is a constant, then we call (M, F) a nontrivial (proper) DTP-complex Finsler manifold of (M_1, F_1) and (M_2, F_2).

Notation: lowercase Greek indices such as α, β, and γ will run from 1 to $m + n$, whereas lowercase Latin indices such as i, j, and k will run from 1 to m, and lowercase Latin indices with a prime such as i', j', and k' will run from $m + 1$ to $m + n$. Quantities associated to F_1 and F_2 are denoted with upper indices 1 and 2, respectively, such as $\Gamma^i_{jk}, \Gamma^i_{j'k'}$.

Denote $g = F_1^i_j, h = F_2^i_j$, and $g_{ij} = \frac{\partial^2 g}{\partial v^i \partial v^j}$,

$$h_{ij} = \frac{\partial^2 h}{\partial v^i \partial v^j}$$

(10)

so equation (9) is equal to

$$G = F^2 = \lambda_1^1g + \lambda_2^2h.$$

(11)

Proposition 1. (see [21]). Let $(M_1 \times (\lambda_1, \lambda_2)M_2, F)$ be a doubly twisted product manifold of complex Finsler manifolds (M_1, F_1) and (M_2, F_2). Then, the fundamental tensor matrix of F is given by

$$
\begin{pmatrix}
\frac{\partial^2 G}{\partial v^i \partial v^j} \\
\frac{\partial^2 G}{\partial v^j \partial v^i}
\end{pmatrix}
=
\begin{pmatrix}
\lambda_1^i g_{ij} & 0 \\
0 & \lambda_2^i h_{ij}
\end{pmatrix},
$$

(12)

with its inverse matrix $(G^{-1})_{ij}$ given by

$$
\begin{pmatrix}
\lambda_1^{-i}g^{ji} & 0 \\
0 & \lambda_2^{-1}h^{ji}
\end{pmatrix}.
$$

(13)

Lemma 1 (see [21]). Let $(M_1 \times (\lambda_1, \lambda_2)M_2, F)$ be a doubly twisted product manifold of two strongly pseudoconvex complex Finsler manifolds (M_1, F_1) and (M_2, F_2). Then, the Chern–Finsler complex nonlinear connection coefficients associated to F are given by

$$
\Gamma^i_{jk} = \Gamma^i_{jk} + 2\lambda_1^{-1}\frac{\partial \lambda_1}{\partial z^k}v^j, \quad \Gamma^i_{j'k'} = 2\lambda_2^{-1}\frac{\partial \lambda_2}{\partial z^k}v^{j'},
$$

(14)

$$
\Gamma^i_{j'} = 2\lambda_1^{-1}\frac{\partial \lambda_1}{\partial z^k}v^{j'}, \quad \Gamma^i_{k'} = 2\lambda_2^{-1}\frac{\partial \lambda_2}{\partial z^k}v^j.
$$

Proposition 2. (see [21]). Let $(M_1 \times (\lambda_1, \lambda_2)M_2, F)$ be a doubly twisted product manifold of two strongly pseudoconvex complex Finsler manifolds (M_1, F_1) and (M_2, F_2); the horizontal coefficients of the Chern–Finsler connection associated to F are given by

$$
\Gamma^i_{j'k'} = \Gamma^i_{j'k'} + 2\lambda_1^{-1}\frac{\partial \lambda_1}{\partial z^k}v^j, \quad \Gamma^i_{j'k'} = 2\lambda_2^{-1}\frac{\partial \lambda_2}{\partial z^k}v^{j'},
$$

(15)

$$
\Gamma^i_{j'k'} = \Gamma^i_{j'k'} = \Gamma^i_{j'k'} = 0.
$$

4. Locally Conformally Flat Doubly Twisted Product Complex Finsler Manifolds

Let F be a complex Finsler metric on M. A conformal transformation of F is a change $F \rightarrow e^{\sigma(z)}F$, where
\(\sigma(z): M \rightarrow \mathbb{R} \) is a smooth real function. We denote \(e^{\sigma(z)}F \) by \(F \) and use the symbol \(" \sim " \) to mark the geometric objects associated to the complex Finsler metric \(F \), e.g., \(^*\Gamma_{\mu}^{\alpha} \) are the horizontal coefficients of the Chern–Finsler connection associated to \(F \).

Let \((M_1, F_1)\) and \((M_2, F_2)\) be locally conformally flat complex Finsler manifolds. In this section, we shall give the necessary and sufficient conditions for a doubly twisted product manifold \((M_1 \times (\alpha, \beta)M_2, F)\) of \((M_1, F_1)\) and \((M_2, F_2)\) to be locally conformally flat.

Proposition 3. Let \((M_1 \times (\alpha, \beta)M_2, F)\) be a doubly twisted product manifold of two strongly pseudoconvex complex Finsler manifolds \((M_1, F_1)\) and \((M_2, F_2)\), and \(F \) is conformal transformation of \(F_1 \). Then, the coefficients \(\bar{\Gamma}_{\mu}^{\alpha} \) of the Chern–Finsler connection associated to \(F \) are given by

\[
\bar{\Gamma}_{\mu}^{\alpha} = \bar{G}_{\mu}^{\alpha} \bar{\sigma}_{\mu} = \Gamma_{\mu}^{\alpha} + 2 \frac{\partial \sigma}{\partial z^\mu} \sigma.
\]

According to Lemma 1, we have

\[
\bar{\Gamma}_{\mu}^{\alpha} = \Gamma_{\mu}^{\alpha} + 2 \left(\frac{\partial \sigma}{\partial z^\mu} \right) \sigma.
\]

Similarly, we can get other equations of Proposition 3. \(\square \)

Proposition 4. Let \((M_1 \times (\alpha, \beta)M_2, F)\) be a doubly twisted product manifold of two strongly pseudoconvex complex Finsler manifolds \((M_1, F_1)\) and \((M_2, F_2)\), and \(F \) is conformal transformation of \(F_1 \). Then, the horizontal coefficients \(\bar{\Gamma}_{\mu}^{\alpha} \) of the Chern–Finsler connection associated to \(F \) are given by

\[
\bar{\Gamma}_{\mu}^{\alpha} = \bar{G}_{\mu}^{\alpha} \bar{\sigma}_{\mu} = \Gamma_{\mu}^{\alpha} + 2 \frac{\partial \sigma}{\partial z^\mu} \sigma.
\]

According to Lemma 1, we have

\[
\bar{\Gamma}_{\mu}^{\alpha} = \Gamma_{\mu}^{\alpha} + 2 \left(\frac{\partial \sigma}{\partial z^\mu} \right) \sigma.
\]

Similarly, we can get other equations of Proposition 4. \(\square \)

Theorem 1. Let \((M_1 \times (\alpha, \beta)M_2, F)\) be a doubly twisted product manifold of two strongly pseudoconvex complex Finsler manifolds \((M_1, F_1)\) and \((M_2, F_2)\); then, \((M_1 \times (\alpha, \beta)M_2, F)\) is locally conformally flat if and only if there exists an open covering \([U_\alpha]\) and a family of smooth functions \(\{\sigma_\alpha; U_\alpha \rightarrow \mathbb{R}\} \) such that

\[
\begin{align*}
\bar{\Gamma}_{jk}^{\alpha}(z,v) &= \Gamma_{jk}^{\alpha}(z), \\
\bar{\Gamma}_{jk}^{\alpha}(z,v) &= \Gamma_{jk}^{\alpha}(z),
\end{align*}
\]

where \(\sigma(z): M \rightarrow \mathbb{R} \) is a smooth real function.

Proof. According to equation (5) and Proposition 2, by straightforward computation, we obtain

\[
\bar{\Gamma}_{jk}^{\alpha} = \bar{\Gamma}_{jk}^{\alpha} = \Gamma_{jk}^{\alpha} + 2 \left(\frac{\partial \sigma}{\partial z^\mu} \right) \sigma.
\]

Similarly, we can obtain other equations of Proposition 4. \(\square \)

Proof. According to Definition 5, \((M, F)\) is locally conformally flat if and only if there exists an open covering \([U_\alpha]\) and a family of smooth functions \(\{\sigma_\alpha; U_\alpha \rightarrow \mathbb{R}\} \) on \(M \) such that \(F_\alpha = e^{\sigma_\alpha(z)}F \) is a locally Minkowski metric on \(U_\alpha \). Notice that the complex Finsler metric \(F_\alpha \) is a complex locally Minkowski metric if and only if it is modeled on a complex Minkowski metric and the complex Rand connection coefficients of \(F_\alpha \) are holomorphic. Thus, we obtain

\[
\begin{align*}
\bar{\Gamma}_{jk}^{\alpha}(z,v) &= \Gamma_{jk}^{\alpha}(z), \\
\frac{\partial \bar{\Gamma}_{jk}^{\alpha}}{\partial z^\alpha} &= 0.
\end{align*}
\]

Submit the equations of Proposition 4 into equations (22) and (23); after a straightforward computation, we have

\[
\begin{align*}
\bar{\Gamma}_{jk}^{\alpha}(z,v) &= \Gamma_{jk}^{\alpha}(z), \\
\frac{\partial \Gamma_{jk}^{\alpha}}{\partial z^\alpha} &= 0.
\end{align*}
\]
\[
\begin{aligned}
&\Gamma^i_{jk}(z,v) = \Gamma^i_{j,k}(z), \quad \Gamma^2_{j,k'}(z,v) = \Gamma^2_{j,k'}(z), \\
&\frac{\partial \Gamma^i_{j,k}}{\partial z^2} = \frac{\partial \Gamma^i_{j,k}}{\partial z^2} + 2 \left(\frac{\partial^2 \ln \lambda_1}{\partial z^k \partial z^l} + \frac{\partial^2 \sigma_a}{\partial z^k \partial z^l} \right) \delta_j^i = 0,
\end{aligned}
\]

Proof. Since \((M_1 \times_{\alpha_{\beta}} M_2, F)\) be a twisted product complex Finsler manifold, so
\[
\frac{\partial \lambda_2}{\partial z^2} = 0.
\]

By plunging equation (26) into equation (21), we obtain
\[
\begin{aligned}
&\Gamma^1_{j,k}(z,v) = \Gamma^1_{j,k}(z), \quad \Gamma^2_{j,k'}(z,v) = \Gamma^2_{j,k'}(z), \\
&\frac{\partial \Gamma^i_{j,k}}{\partial z^2} + 2 \left(\frac{\partial^2 \ln \lambda_1}{\partial z^k \partial z^l} + \frac{\partial^2 \sigma_a}{\partial z^k \partial z^l} \right) \delta_j^i = 0,
\end{aligned}
\]

Corollary 1. Let \((M_1 \times_{\alpha_{\beta}} M_2, F)\) be a twisted product manifold of two strongly pseudoconvex complex Finsler manifolds \((M_1, F_1)\) and \((M_2, F_2)\); then, \((M_1 \times_{\alpha_{\beta}} M_2, F)\) is locally conformally flat if and only if \((M_2, F_2)\) is locally conformally flat, and there exists an open covering \(\{U_a\}\) and a family of smooth functions \(\{\sigma_a, U_a \to \mathbb{R}\}\) such that

Theorem 2. Let \((M_1 \times_{\alpha_{\beta}} M_2, F)\) be a doubly twisted product manifold of two locally conformally flat complex
Finsler manifolds \((M_1, F_1)\) and \((M_2, F_2)\); then, \((M_1 \times_{(\lambda_1, \lambda_2)} M_2, F)\) is locally conformally flat if and only if \(\ln \lambda_1\) and \(\ln \lambda_2\) are pluriharmonic functions on \(M_1\) and \(M_2\), respectively, and there exists an open covering \([U_a]\) and a family of smooth functions \(\{\sigma_a: U_a \rightarrow \mathbb{R}\}\) such that

\[
\begin{align*}
\frac{\partial^2 \ln \lambda_1}{\partial z_i \partial \bar{z}_j} + \frac{\partial^2 \sigma_{i}}{\partial z_i \partial \bar{z}_j} &= \frac{\partial^2 \ln \lambda_2}{\partial z_k \partial \bar{z}_{k'}} + \frac{\partial^2 \sigma_{k'}}{\partial z_k \partial \bar{z}_{k'}} = 0, \\
\frac{\partial^2 \ln \lambda_2}{\partial z_j \partial \bar{z}_i} + \frac{\partial^2 \sigma_{j}}{\partial z_j \partial \bar{z}_i} &= \frac{\partial^2 \ln \lambda_1}{\partial z_i \partial \bar{z}_j} + \frac{\partial^2 \sigma_{i}}{\partial z_i \partial \bar{z}_j} = 0.
\end{align*}
\]

Equations (35) and (36) mean that \(\ln \lambda_1\) and \(\ln \lambda_2\) are pluriharmonic functions on \(M_1\) and \(M_2\), respectively. Therefore, \((M_1 \times_{(\lambda_1, \lambda_2)} M_2, F)\) is locally conformally flat if and only if \(\ln \lambda_1\) and \(\ln \lambda_2\) are pluriharmonic functions on \(M_1\) and \(M_2\), respectively, and equation (32) holds on \(U_a\).

5. Conclusion
This study considered about conformal transformations of a doubly twisted product complex Finsler manifolds and gave a characterization for doubly twisted product complex Finsler manifolds to be locally conformally flat.

Locally conformally flat doubly warped product complex Finsler manifolds were studied by the work of He [32]. He also obtained the relations of locally conformally flatness between doubly warped product manifolds and its components. This study extended the work due to He, where we obtained the relations of locally conformally flatness between doubly twisted product complex Finsler manifolds and its components. Moreover, Theorem 2 gave an answer to question mentioned above in Section 1, that is, the doubly twisted product of two locally conformally flat complex Finsler manifolds is locally conformally flat when \(\ln \lambda_1\) and \(\ln \lambda_2\) are pluriharmonic functions on \(M_1\) and \(M_2\), respectively, and equation (32) holds. Our approach to this problem depends on the existence of solutions for system (32). We have been trying to find solutions of the PDE systems, but, unfortunately, we have not found a possible way to get some solutions up to now. Investigating possible solutions for PDE systems will be the subject matter of future works.

Data Availability
Previously reported data were used to support this study and are available at 10.4208/jms.v55n2.22.04.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Acknowledgments
This work was supported by National Natural Science Foundation of China (Grant nos. 11761069 and 12061077).

References

