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�is paper investigates a parameter identi�cation problem in the grinding process. Due to the data saturated phenomenon and the
ill-posed of parameter identi�cation inverse problem, this paper presents a regularized least squares recursive algorithm with a
forgetting factor (RLSRAFF), the basic idea of which is to combine the forgetting factor with regularization parameters. Moreover,
based on RLSRAFF, this paper veri�es the recursive calculation of criterion function, analyzes the e�ect of calculation error from
the gain matrix and proves the convergence of the proposed algorithm. Finally, e�ectiveness of RLSRAFF is veri�ed by simulation
experiments and grinding data. Compared with other algorithms, RLSRAFF can give a more convergence rate to the real data and
reduce the error from the true value.

1. Introduction

Parameters identi�cation is one of the most important areas
in systemmodeling and signal processing [1], and the related
identi�cation methods are attracted by many scholars. As
one of most important parameters identi�cation methods,
the least square method (LSM) has been applied in various
�elds. In [2], to identify a ship’s linear sway-yaw manoeu-
vring coe�cients and drag-area parameters in current and
wind, Wayne and Gash developed a simple least squares
technique. In [3], the loss in localization accuracy induced by
time di�erence of arrival noises and velocity errors is re-
duced by the constrained total least squares method. In [4],
to deal with the problem of overenhancement results, an
image enhancement scheme based on weighted least squares
are proposed. In [5], due to the complex biochemical
characteristics of the wastewater treatment process, an
adaptive dynamic nonlinear partial least squares model is
proposed to improve the prediction performance and sta-
bility of e�uent quality indexes. In [6], Ramezani applied the
collocated discrete least squares meshless method to

improve the nodemoving technique. In order to enhance the
performance of LSM, some improved algorithms are de-
veloped. Reference [7] presents an iteratively reweighted
LSM to improve the antioutlier performance of the least
squares support vector machine. Reference [8] combines the
partial least square with the attention mechanism in a neural
network named the attention-PLS. Zhang, et al. [9] proposed
the Lagrange energy-least squares similitude method to
deduce output scaling laws. Furthermore, some scholars
study the recursive least squares (RLS) method with the
forgetting factor. In [10], Paleologu et al. pointed out that the
performance of the recursive least squares algorithm is
governed by the forgetting factor and proposed a variable
forgetting factor RLS (VFF-RLS) algorithm for system
identi�cation. Reference [11] based on the framework of
recursive least squares-temporal di�erence proposed a new
reinforcement learning method by using the forgetting
factor. Sun et al. [12] presented an adaptive forgetting factor
RLS method for online identi�cation of the second order
resistor-capacitance equivalent circuit model parameters.
Meanwhile, the regularization method is used to improve
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the LSM. Wang et al. [13] introduced the least squares
regularization method to solve the ill-posed problem of the
multiplicative error model. Zhou et al. [14] investigated the
method of the anti-ill-conditioned population-weighted
median based on the least squares regularization method. Jin
et al. [15] used the kurtosis regularization algorithm for
circuit joint optimization in neural network training to
increase the information entropy of neural network weight
data. Bai et al. [16] proposed a generic model for least
squares nonnegative matrix factorizations with Tikhonov
regularization. However, in the process of parameter
identi�cation, the data saturated phenomenon and the ill-
posed problem often occur simultaneously. �erefore, this
paper presents a regularized least squares recursive algo-
rithm with forgetting factor (RLSRAFF).

At the same time, grinding process [17–19], as one of the
most important procedures in the mineral processing, ex-
tracts the valuable minerals from the discernible gangue after
physical grinding and classi�cation. �e role of this process
can dissociate di�erent useful minerals from each other and
avail to the subsequent sorting process. �e grinding and
classi�cation process has complex characteristics, such as
large inertia, time-varying parameters, and nonlinearity.
Recently, to realize the automatic production, some control
technology strategies [20–24] for the grinding process have
been attracted by majority of scienti�c researchers. As the
core of the control system, the accuracy of the mathematical
model of the grinding process plays a vital role. Reference
[25] identi�ed the parameters of the prediction model of
steel ball wear law in the grinding process, [26] used a
nonlinear parameter identi�cation method based on the
improved di�erential evolution algorithm to solve the pa-
rameter of the nonlinear model in the bauxite grinding
classi�cation process. Furthermore, Chen [27] investigated
the least square recursive algorithm with forgetting factor to
systematically identify the unknown parameters of the
grinding process model.

Due to characteristics of complexity and nonlinearity,
parameter identi�cation in the mathematical model of the
grinding process can lead to the ill-posed. �e above lit-
erature does not consider the e�ectiveness of ill-posed on the
identi�cation results. Regularization [28] is proved to be an
e�cient approach for the inverse problem. �erefore, this
paper develops RLSRAFF for identifying the parameters in
the mathematical model of the grinding process. �e main
contributions can be summed as follows:

(i) �e ill-posed problem is considered for identifying
the parameters in the mathematical model of the
grinding process.

(ii) RLSRAFF, which combines the forgetting factor
with the regularization parameter, is presented.

(iii) �e recursive calculation of criterion function, the
e�ect of calculation error from the gain matrix, and
the convergence of the proposed algorithm are
analyzed.

�e rest of the paper is organized as follows. In Section 2,
the grinding process is described and then the parameter

identi�cation model is introduced. In Section 3, RLSRAFF is
proposed and the calculation error of the gain matrix and
convergence of the algorithm are proved. In Section 4, two
experiments are carried out to verify the proposed method.
In Section 5, the conclusion is given.

2. Grinding Process and Parameter
Identification Model

2.1. Grinding Process. �e grinding process (see Figure 1)
can be brie©y described as follows. �e fresh ores are
�rstly sent into the ball mill by the conveyor belt and then
crushed ceaselessly by the steel balls to produce the pulp
within a certain concentration. Meanwhile, a certain
amount of water is added into the mill to adjust the
concentration of ore pulp within limits. After grinding,
the mixed ore pulp is continuously discharged from mill
into the spiral classi�er for classi�cation, and a certain
amount of water is added into the spiral classi�er to adjust
the concentration.�e substandard ore pulp returns to the
�rst stage of ball mill for regrinding, and the standard ore,
extracting from the classi�er, enters into the pump sump
for the next process [27].

2.2. Mathematical Model of the Grinding Process Parameter
Identi�cation. Mathematical model of the grinding process
mainly includes the ball mill model and spiral classi�er
model.�e ball mill model [29] has been detailed in a variety
of studies. It describes the relationship between the ore
feeding quantity, the water feeding quantity, the return sand
quantity, and the mill pulp concentration. �e spiral clas-
si�er model gives the relationship between the classi�er
over©ow concentration, the pulp �neness, the ore discharge
quantity, and the return sand quantity.

However, these models only give internal mechanism of
each part in the grinding process, and it has not re©ected the
multi-variable coupling and time delay between the primary
ball mill and the classi�er.

�us, the mathematical model [27] between the ball mill
and the classi�er can be described as follows:

Feeder

Ore bin

Mill water

Dilution water

Return
sand 

Spiral classifier

Primary ball mill

Overflow
product 

Figure 1: �e grinding process of the primary ball mill.
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where Cc is the actual value of the classifier overflow con-
centration, (%); QD is the actual value of the return sand
quantity,(m3/h); U1 is the actual value of the ore feeding
quantity, (t/h); U3 is the actual value of the classifier adding
water quantity, (m3/h).

By analyzing the model (1), we know that the U1 and U3
are the input variables, and Cc and QD are the output
variables. 'e model identifies between the ball mill and the
classifier is described as follows:

Cc

QD

  �
G11′ (S) G12′ (S)

G21′ (S) G22′ (S)
⎡⎣ ⎤⎦

U3

U1
 , (2)

where G11′ (S), G12′ (S), G21′ (S), G22′ (S) are consisted by the
inertia link and the delay link, and G11′ (S) � (β1/ (α1 S +

1))e
− τ1 s

, G12′ (S) � (β2/(α2 S + 1))e
− τ2s

, G21′ (S) � (β3/ (α3S +

1)(α5S + 1))e
− τ3s

, G22′ (S) � (β4/ (α4S + 1)(α4 S+ 1))e
− τ4s.

Different identification methods are used to identify the
parameters in these two links, respectively.'e inertia link is
identified by the least square algorithm, and the delay link is
identified by the cross-correlation function algorithm [27].
'emajor study in this paper focuses on identification of the
parameters for the inertia link (a1, b1, c1,

d1; a2, a3, b2, b3, c2, d2) to deal with the data saturated phe-
nomenon and the ill-posed problem. For the inertia link, we
have the following equations:

Cc � G11(S)U3 + G12(S)U1

�
β1

α1S + 1
U3 +

β2
α2S + 1

U1,

(3)

QD � G21(S)U3 + G22(S)U1

�
β3

α3S + 1(  α5S + 1( 
U3 +

β4
α4S + 1

U1,
(4)

where G11(S) � β1/(α1S +1), G12(S) � β2/(α2S +1),G21(S) �

β3/(α3S +1)(α5S +1),G22(S) � β4/(α4S +1). According to
equations (3) and (4), we have

Cc(z) �
b1z

− 1

1 + a1z
−1U3(z) +

c1z
− 1

1 + d1z
−1U1(z), (5)

QD(z) �
b2z

− 1
+ b3z

− 1

1 + a2z
−1

+ a3z
−1U3(z) +

c2z
− 1

1 + d2z
−1U1(z), (6)

'us, the input and output observation data are used to
estimate the unknown parameters (a1, b1, c1, d1;

a2, a3, b2, b3, c2, d2) in equations (5) and (6).

Remark 1. For the delay link, cross-correlation function [27]
can be used to identify the delay time (τ1, τ2, τ3, τ4), because
the main work of this paper is to identify the unknown
parameters, the details of identifying the delay time are not
given.

3. Regularized Least Squares Recursive
Algorithm with Forgetting Factor and
Property Analysis

3.1. Regularized Least Squares Recursive Algorithm with
Forgetting Factor. In order to identify the parameters in
model (5), U3z and U1(z) are defined as the input variable,
Cc(z) is defined as the output variable. 'e difference
equation is used to discrete the linear system as

2Cc(k) + a1Cc(k − 1) + d1Cc(k − 1)

� b1U3(k − 1) + c1U1(k − 1) + ε(k),
(7)

where k � 2, 3, . . . , 1 + N, ε(k)is uncorrelated random
variable that subjects to N(0, 1) distribution, U3(k − 1) and
U1(k − 1) are the actual input signal of recorded data, Cc(k)

is the actual output signal of recorded data, and Cc(k − 1) is
the function value of the output signal Cc(k) at the previous
sampling period. So we have the following equation from the
following equation:

2Cc(k) � −a1Cc(k − 1) − d1Cc(k − 1)

+ b1U3(k − 1) + c1U1(k − 1) + ε(k).
(8)

It can be seen from (8) that the above parameters can be
estimated by N sets of the observation equations:

Cc(1 + 1) � −0.5a1Cc(1) − 0.5d1Cc(1) + 0.5b1U3(1) + 0.5c1U1(1) + 0.5ε(1 + 1)

Cc(1 + 2) � −0.5a1Cc(2) − 0.5d1Cc(2) + 0.5b1U3(2) + 0.5c1U1(2) + 0.5ε(1 + 2)

⋮

Cc(1 + N) � −0.5a1Cc(N) − 0.5d1Cc(N) + 0.5b1U3(N) + 0.5c1U1(N) + 0.5ε(1 + N).

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

Equation (9) is defined as an observation equation. We
define Cc(N) � [Cc(1 + 1), Cc(1 + 2), . . . , Cc(1 + N)]T,

θ(N) � [0.5a1, 0.5d1, 0.5b1, 0.5c1]
T and ε(N) � [ε(1 + 1),

ε(1 + 2), . . . , ε(1 + N)]T. Equation (9) can be written into
the following form:
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CC(N) � Φ(N)θ(N) + ε(N), (10)

We define

Φ(N) � ϕT
(1),ϕT

(2), . . . , ϕT
(N) 

T
, (11)

ϕT
(i) � −Cc(i), −Cc(i), U3(i), U1(i) , (12)

where i � 1, 2, . . . , N. So the observation equation (9) can be
expressed as

Cc(1 + i) � ϕT
(i)θ(N) + ε(1 + i). (13)

'e least square method is to minimize the sum of
residuals by the observation equation (9). 'us, we assume
the sum of residuals squares as

F � 

N

i�1
ε2(n + i) � εT

(N)ε(N), (14)

we use equation (10) into equation (14), take the de-
rivative of θ and set this derivative as zero, we have

−2Φ CC −Φθ(  � 0, (15)

so we can obtain

θ � ΦTΦ 
− 1
ΦT

CC, (16)

due to the ill-posed of item (ΦTΦ)− 1, the regularization
term is introduced as

θ � ΦΤΦ + λI 
− 1
ΦT

CC, (17)

where λ is the regularization parameter.
Because the phenomenon of data saturation, which

makes the parameters to be identified and not improve with
the increase of new sampling values, occurs in the least
square method, this paper presents the regularized least
squares recursive algorithm with forgetting factor
(RLSRAFF). RLSRAFF combines the regularization pa-
rameter with forgetting factor, which is shown as follows:

θ(N + 1) � θ(N) + K(N) Cc(N + 2) − ϕTθ(N) ,

K(N) � P(N)ϕ μ + ϕT
P(N)ϕ 

−1
,

P(N + 1) �
1
μ

I − P(N)ϕ μ + ϕT
P(N)ϕ 

−1
ϕT

 P(N),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where P(N) � (ϕTϕ + ϕI)−1. N is the number of data group,
μ is the forgetting factor (0< μ≤ 1). If μ is chosen as a smaller
one, the forgetting rate of old data is larger. 'erefore, the
forgetting factor μ is adjusted according to the process
characteristics.

Remark 2. 'e innovation of this paper mainly focuses on
the combination of regularization parameter λ and the

forgetting factor μ. 'e regularization parameter λ, added in
the itemP(N) � (ϕTϕ + λI)−1, can eliminate the ill-posed
caused by(ϕTϕ)−1 and reduce error.

3.2. PropertyAnalysis ofRLSRAFF. 'e property of recursive
least square includes the following points: the recursive
calculation of criterion function, the effect of calculation
error from the gain matrix, and the convergence of the
proposed algorithm. In this section, the property of
RLSRAFF is analyzed.

Theorem 1. We assume that J(N + 1) and J(N) are de-
scribed as follows:

J(N) � CC
T
(N)CC(N), (19)

J(N + 1) � CC
T
(N + 1)CC(N + 1). (20)

On the basis of RLSRAFF, the recurrence equation of the
criterion function can be given as follows:

J(N + 1) � μ J(N) + μ + ϕT
P(N)ϕ 

− 1 Cc

2
(N + 2) , (21)

where Cc(N +2) � Cc(N +2) −ϕTθ(N), J(N), and J(N +1)

are the criterion function of parameter estimation at N and
(N +1), respectively.

Proof. By analyzing Section 3.1, we have

Φ(N + 1) �
ρΦ(N)

ϕT
(N + 1)

⎛⎝ ⎞⎠, (22)

CC(N + 1) �
ρCC(N)

Cc(N + 2)
 , (23)

where ρ(0< ρ≤ 1) is a factor, and we have

%

CC1(N + 1) � CC(N + 1) −Φ(N + 1)θ(N + 1)

�
ρ Cc(N)

Cc(N + 2)
⎛⎝ ⎞⎠

−
ρΦ(N)

ϕT
(N + 1)

⎛⎝ ⎞⎠K(N) Cc(N + 2).

(24)

So we have

J(N + 1) � CC1
T
(N + 1)CC1(N + 1)

� ρ2J(N) − 2ρ2KT
(N)ΦT

(N)CC1(N) Cc(N + 2)

+ ρ2KT
(N)ΦT

(N)Φ(N)K(N) Cc

2
(N + 2)

+ I −ΦT
K(N)  Cc

2
(N + 2).

(25)

Using equation (19), the third and fourth terms of
equation (26) can be transformed into
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ρ2KT
(N)ΦT

(N)Φ(N)K(N) Cc

2
(N + 2)

� ρ2ϕT
P(N)ϕ μ + ϕT

P(N)ϕ 
− 2 Cc

2
(N + 2),

(26)

I − ϕT
K(N) 

2 Cc

2
(N + 2)

� μ2 μ + ϕT
P(N)ϕ 

− 2 Cc

2
(N + 2).

(27)

Substituting equation (26) into equations (27) and (28),
and using ϕT(N)CC1(N + 1) � 0, we have

J(N + 1) � μJ(N) + μ μ + ϕT
P(N)ϕ 

− 1 Cc
2
(N + 2)

� μ J(N) + μ + ϕT
P(N)ϕ 

− 1 Cc
2
(N + 2) .

(28)

'eorem 1 has been proved. □

Theorem 2. In the process of recursive calculation, if the gain
matrix K(N) contains calculated error ΔK(N), which is
affected by the rounding off and other factors, it can take the
calculated error ΔP(N) into the matrix P(N). So we can
obtain the following equation:

ΔP(N + 1) � −ΔK(N)ϕT
P(N), (29)

where ΔP(N) can transmit the calculation error to the gain
matrix again by equation (19). If this cycle continues, the final
identified result will be affected.

Proof. According to equation (19), equation P(N + 1) can
be described as follows:

P(N + 1) � I − K(N)ϕT
 P(N)

− P(N)ϕK
T
(N) + P(N)ϕK

T
(N)

� I − K(N)ϕT
 P(N) − P(N)ϕK

T
(N)

+ K(N) μ + ϕT
P(N)ϕ K

T
(N),

(30)

so we have

P(N + 1) � I − K(N)ϕT
 P(N) I − K(N)ϕT

 
T

+ μK(N)K
T
(N).

(31)

By equation (27), we know that ΔP(N + 1) is only re-
lated to the quadratic form of ΔK(N), which can effectively
reduce the transmission of the calculation error and ensure
the identification accuracy. However, if the number of pa-
rameters is less than 10, it is not necessary to avoid in-
creasing the amount of calculation.

Meanwhile, we bring K(N) � K(N) + ΔK(N) in to
equation (27) and subtract from equation (27), we can
obtain equation (25). □

'eorem 2 has been proved.

Theorem 3. If ε(k) is known to be an uncorrelated random
variable with zero mean, the parameter estimation θ(N)

given in (19) is uniformly convergent, and we have

lim
N⟶∞

θ(N) � θ0, (32)

where θ0 is true value of model parameters.

Proof. We define θ1(N) � θ0 − θ(N), and suppose

lim
N⟶∞

θ1(N) � θ1′, (33)

'en according to equation (12), we have

CC � ϕTθ0 + ε. (34)

Based on equation (19), we have

Table 1: 'e parameter identification results of different λ.

'e value of λ
Identification results

a′1 Absolute error a′2 Absolute error b′1 Absolute error b′2 Absolute error

λ � 0.01 −1.5434 0.0434 0.7694 0.0694 1.0543 0.0543 0.5164 0.0164
λ � 0.1 −1.5059 0.0059 0.7076 0.0076 1.1059 0.1059 0.4532 0.0468
λ � 0.5 −1.4527 0.0473 0.6951 0.0049 1.0817 0.0817 0.5151 0.0151
λ � 1 −1.5300 0.0300 0.7447 0.0447 1.0146 0.0146 0.7409 0.2409
λ � 2 −1.4797 0.0203 0.6642 0.0358 0.9826 0.0174 0.3803 0.0297
λ � 3 −1.4631 0.0369 0.6848 0.0152 0.9666 0.0364 0.5916 0.0916
λ � 4 −1.5227 0.0227 0.7230 0.0230 0.9214 0.0786 0.7239 0.2239
λ � 5 −1.5557 0.0557 0.7010 0.0010 0.7703 0.2297 0.4051 0.0949
λ � 6 −1.5805 0.0305 0.7668 0.0668 0.8559 0.1441 0.5573 0.0573
λ � 7 −1.6059 0.1059 0.7983 0.0983 0.9148 0.0852 0.4076 0.0924
λ � 8 −1.4907 0.0093 0.7546 0.0546 1.1587 0.1587 0.6139 0.1139
λ � 9 −1.4976 0.0022 0.6987 0.0013 1.0150 0.0150 0.5167 0.0167
λ � 10 −1.4407 0.0083 0.6825 0.0175 1.1735 0.0249 0.6839 0.1839

Table 2: Parameter identification results.

Algorithm
Identification results

a1′ a2′ b1′ b2′

LSM [30] −1.4713 0.6629 0.8065 0.5918
RLSM [30] −1.4942 0.6674 0.8737 0.4274
LSRAFF [31] 1.4911 0.6883 0.9671 0.5446
RLSRAFF −1.4976 0.6927 1.0450 0.5167
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θ1(N + 1) � θ1(N) −K(N) Cc(N + 2) − ϕTθ(N)[ ]

� θ1(N) −K(N) ϕTθ0 + ε − ϕTθ(N)[ ]

� I −K(N)ϕT[ ]θ1(N) −K(N)ε

� μP(N + 1)P− 1(N)θ1(N) −K(N)ε.

(35)

We de�ne

A(N + 1) � μP(N + 1)P− 1(N)

� μ μP− 1(N) + ϕϕT[ ]
− 1
P− 1(N).

(36)

Using (32), θ1(N + 1) can be obtained as

θ1(N + 1) � A(N + 1)θ1(N) −K(N)ε. (37)

Further, we de�ne the eigenvalue of matrix A(N) is η,
and then the following equation holds

A(N + 1)x � ηx, (38)

where x is nonzero eigenvector. Substituting (32) into (34),
we have

μ(1 − η)P− 1(N)x � ηϕϕTx. (39)

�en, we get

μ(1 − η)xTP− 1(N)x � ηxTϕϕTx, (40)
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Figure 2: Parameter estimation variation process.
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According to μ> 0, P− 1(N) and ϕϕT are all
positive de�nite matrix. �us, for all nonzero vector
x, μ(1 − η) and η are the same number on both sides of
(36), we have

μ(1 − η)
η

�
μ
η
− μ> 0, (41)

we can gain that the eigenvalue of matrix A(N) satis�es
0< η< 1, so (33) is stable at the balance point θ′1 � 0, and
then according to (29), we have

lim
N⟶∞

θ1(N) � 0. (42)

Because θ1(N) � θ0 − θ(N), (28) is obtained. □

�eorem 3 has been proved.

4. Simulation Experiment

In this section, the proposed RLSRAFF is compared with
other methods by two experiments. Firstly, the algorithm is
compared with LSRAFF [30], the least squares method
(LSM) [30], and the regularized least squares method
(RLSM) [31] in Section 4.1 and Section 4.2. �en, the paper
tests the performance of RLSRAFF in the parameter iden-
ti�cation of the grinding process in Section 4.3.

4.1. Comparison of the Algorithm Performance. In this
simulation, we choose the following equation to identify the
model parameter as

z(k + 2) � −a1′z(k + 1) + a2′z(k)
+ b1′u(k + 1) + b2′u(k) + ε(k),

(43)
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Figure 3: �e output results of the system.
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where a′1 � −1.5, a′2 � 0.7, b′1 � 1.0, b′2 � 0.5; ε(k) is a
random variable that subjects to N(0, 1) distribution;
u(k) is the system input, which is generated by fourth
orderM sequences (the amplitude is 1); z(k) is the system
output, and the length of observation data L � 400.
Meanwhile, the forgetting factor is chosen as μ � 0.98 in
this simulation.

In this section, we choose 13 regularization parameters λ
of the proposed RLSRAFF method to �nd the better
identi�cation results. �e parameter identi�cation results of
di�erent parameters λ are listed in Table 1. We can see from
this table that the best one is given when λ � 9. Next, the
proposed RLSRAFF, LSM [30], RLSM [30], and LSRAFF
[31] methods are used to identify the identi�cation results,
which are given in Table 2. From this table, we can �nd that
the proposed RLSRAFFmethod has better performance than
others.

�e parameter estimation process is shown in Figure 2.
By observing the parameter estimation process from Fig-
ure 2, we can �nd that the curve (LSM and RLSM) changes
very little in the later stage. However, the curve of RLSRAFF
and LSRAFF [30] ©uctuate all the time, and the error be-
tween the RLSRAFF curve and asymptotic property is
smaller than the LSRAFF curve.

�e output results of the system of these four algorithms
are given in Figure 3, and the relative errors between the
estimated value and the true value of system output are
shown in Figure 4. From these �gures, it can be seen that
estimated values of system output obtained by the proposed
RLSRAFF match with the true value very well. �e average
and maximum relative errors of system output of these four
algorithms are described in Table 3, and the average and
maximum relative error of RLSRAFF is 5.93% and 74.49%,
respectively, which are smaller than others.
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Figure 4: �e relative error between the estimated value and the true value of system output.
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4.2. Statistical Results and Analysis. In this section, the
performance of the proposed RLSRAFF method is tested by
the statistical way. In this experiment, we select 10 groups of
different parameters (a1′, a2′, b1′, b2′), the true values of which
are given in Table 3. 'e proposed RLSRAFF, LSM [30],
RLSM [31], and LSRAFF [30] methods are used to identify
these parameters, the results of which are shown in Table 4.
From the identification results of Table 4, we can see that, the
proposed RLSRAFF method gives a better result.

By analyzing the RLSRAFF algorithm, we can see that
forgetting factors and regularization parameters are the
key elements for this method. When forgetting factors are
the same, the identification results of the two algorithms
(RLSRAFF and LSRAFF [30]) with regularization pa-
rameters are better than those without regularization
parameters. Furthermore, the forgetting factor of the
proposed RLSRAFF method can eliminate the data sat-
urated phenomenon.

Remark 3. According to equation (19), we can see that the
proposed RLSRAFF method is equal to LSRAFF [30] when
λ � 0. By analyzing the results of statistical results, it can be
seen that the regularization parameters not only can solve ill-
posed problems but also improve the identification results
by adjusting the appropriate regularization parameters λ.

4.3. Application of Parameter Identification in the Grinding
Process. In this section, the data in the grinding process are
given to identify the parameters in the model by the pro-
posed RLSRAFF.We set the sampling time is 10 seconds and
collect 70 groups of data. 'e sampling data are shown in
Table 5 [27]. In this table, the time is from 11 : 45 :14 to 11 :
56 : 54; the process data of the ore feeding quantity is set
from 25 t/h to 233 t/h; the process data of the classifier
adding water quantity is set from 5.5 m3/h to 35 m3/h; the
process data of the sand return quantity is set from 22 m3/h
to 105 m3/h; the process data of the classifier overflow
concentration is set from 42% to 92%, the forgetting factor is
0.3, and 0.5∗randn is added in the sampling data [27].

'e observation data of input variables and output
variables are selected for identifying the parameters in the
grinding process model and RLSRAFF is used. 'e average
relative error between the calculated value and the actual
value with different regularization parameters λ are used to
test the performance of RLSRAFF, and the results are given
in Table 6. 'e best result is given when λ � 8.

'e experiment compares RLSRAFF and LSRAFF [27]
(We select the obtained parameters
θT � [−0.303 − 0.409 0.236 0.136] as the parameter identi-
fication results of LSRAFF in [27].), and the output results
are given in Figure 5, which compares the output contrasting
curves obtained by RLSRAFF and LSRAFF. It is observed
from this figure that RLSRAFF can achieve a better per-
formance than LSRAFF.

Table 4: Identification results of 10 experiments.

Parameters a1′ a2′ b1′ b2′

Truth value −1.5 1 1.5 1
RLSRAFF −1.5009 0.9989 1.4985 0.9958
RLSM [31] −1.4965 0.9984 1.4874 1.0582
LSM [30] −1.5039 1.0044 1.5852 0.8855
LSRAFF [30] −1.4980 0.9938 1.4812 0.9872
Truth value −1.0 0.8 3.0 4.0
RLSRAFF -0.9963 0.7996 2.9921 3.9940
RLSM [31] −1.0191 0.8023 2.9365 3.8294
LSM [30] −1.1040 0.8143 3.1093 3.7783
LSRAFF [30] −1.0048 0.8054 3.0474 4.0382
Truth value −0.9 0.3 2.0 3.0
RLSRAFF −0.9037 0.3017 2.0170 2.9730
RLSM [31] −0.9058 0.3175 2.0299 2.9587
LSM [30] −0.9306 0.3233 1.9454 3.1175
LSRAFF [30] −0.9257 0.3096 1.9708 3.0338
Truth value −0.5 0.1 4.0 10.0
RLSRAFF −0.4989 0.1008 3.9981 9.9925
RLSM [31] −0.5128 0.0959 3.9381 9.9606
LSM [30] −0.4790 0.0945 3.8541 9.9446
LSRAFF [30] −0.4885 0.0948 4.1090 10.0459
Truth value −0.1 0.4 10.0 7.0
RLSRAFF −0.1021 0.4020 9.9249 6.9556
RLSM [31] −0.0857 0.3694 9.8860 6.9263
LSM [30] −0.0798 0.4077 10.0263 7.0824
LSRAFF [30] −0.1077 0.3979 9.8964 6.8515
Truth value −0.8 1.0 −2.0 6.0
RLSRAFF −0.8015 0.0010 −2.0104 5.9948
RLSM [31] −0.8013 0.9965 −1.8112 5.9769
LSM [30] −0.8022 1.0106 −1.9778 6.1568
LSRAFF [30] −0.8020 1.0003 −1.9851 5.9752
Truth value −0.7 0.4 2.0 −3.0
RLSRAFF −0.7011 0.4016 2.0014 −2.9984
RLSM [31] −0.7157 0.3897 1.9152 −2.9785
LSM [30] −0.6705 0.3668 1.8951 −3.0987
LSRAFF [30] −0.7381 0.3899 2.1158 −2.9857
Truth value −0.6 −0.2 −4.0 −3.0
RLSRAFF −0.6060 −0.1988 −4.0408 −3.0135
RLSM [31] −0.6247 −0.1962 −3.9870 −2.9425
LSM [30] -0.6309 -0.1755 -4.0537 −2.8846
LSRAFF [30] −0.5882 −0.2156 −3.9819 −2.9502
Truth value 0.3 0.4 8.0 5.5
RLSRAFF 0.3004 0.4006 7.9987 5.4976
RLSM [31] 0.2921 0.3982 7.9762 5.5475
LSM [30] 0.2834 0.3877 7.8914 5.3927
LSRAFF [30] 0.2895 0.3989 8.0239 5.4837
Truth value 0.3 −0.5 −3.0 1.0
RLSRAFF 0.2935 −0.4956 −3.0148 0.9929
RLSM [31] 0.3283 −0.4890 −2.9772 0.9802
LSM [30] 0.2553 −0.5161 −2.8933 1.0424
LSRAFF [30] 0.2621 −0.5128 −3.0151 1.0201

Table 3: 'e average and maximum relative error between the
estimated value and the true value of system output.

Algorithm Average relative error
(%)

Maximum relative error
(%)

LSM [30] 14.72 201.5
LSRAFF
[30] 11.86 180.0

RLSM [31] 9.14 129.3
RLSRAFF 5.93 74.79
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Table 5: Sampling data [27].

Sequence Time Ore feeding quantity
(t/h)

Classi�er adding water
quantity (m3/h)

Sand return quantity
(m3/h)

Classi�er over©ow concentration
(m3/h)

1 11 : 45 :14 24.884 5.457 22.114 42.05
2 11 : 45 : 24 27.162 5.496 30.506 58.306
3 11 : 45 : 34 34.782 5.762 31.118 62.482
. . . . . . . . . . . . . . . . . .
70 11 : 56 : 54 233.091 35.059 105.131 92.101

Table 6: �e average relative error between the calculated value and the actual value.

Regularization parameters Average relative error (%) Regularization parameters Average relative error (%)
λ � 1 3.87 λ � 7 3.85
λ � 2 3.94 λ � 8 3.83
λ � 3 4.02 λ � 9 3.88
λ � 4 4.12 λ � 10 3.89
λ � 5 4.00 λ � 11 3.94
λ � 6 3.93 λ � 12 4.03
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Figure 5: Output of the system.
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Further, the relative errors of the RLSRAFF method and
the LSRAFF method are given in Figure 6, and the relative
error of RLSRAFF is smaller than LSRAFF. Meanwhile, the
average relative error of RLSRAFF is 3.83%, and the max-
imum relative error is 8.02%, but for LSRAFF is 8.79% and
18.32%, respectively. 'erefore, RLSRAFF gives a better
performance.

5. Conclusion

In the actual industrial production process, a large amount
of data is often obtained by online real-time measurement,
and the measured data often contains some error. 'us, the
data saturated phenomenon and the ill-posed problem often
occur simultaneously. 'e original LSM seldom considers
the above effects to the identification of parameters.
'erefore, this paper investigates the identification of pa-
rameters in the grinding process and considers the data
saturated phenomenon and the ill-posed problem.

In order to solve the above problems, this paper presents a
RLSRAFF algorithm, which combines the forgetting factor
with regularization parameters. Furthermore, to analyze the
performance of the RLSRAFF algorithm, this paper verifies
the recursive calculation of criterion function and describes

the effect of calculation error from the gain matrix and proves
the convergence of the proposed algorithm. Finally, effec-
tiveness of RLSRAFF is verified by the simulation experiments
and grinding data. Comparing with other algorithms, the
results show that RLSRAFF gives a better result and eliminates
the ill-posed problem by the simulation and statistical results.

RLSRAFF is a universal method, the aim of which is to
solve the data saturated phenomenon and the ill-posed
problem. Both problems often occurs in the parameter
identification process, such as the lithium ion batteries [32]
and the wastewater treatment process [5]. 'erefore, the
RLSRAFF method and its extension method also can be
applied in other fields. Furthermore, for LSM-based iden-
tification methods, noises can cause biased identification
results. Some noise-compensated methods [33–35] can be
used to reduce these biases. In the future research work, the
noise-compensated methods can be considered to improve
the RLSRAFFmethod and be applied in the grinding process
(see Table 7).

Data Availability

'e first experiment data used to support the findings of this
study are included within the article. Previously reported

Table 7: A List of symbols.

Symbols Definition
α1, α2, α3, α4, α5; β1, β2, β3, β4 Coefficient of inertia link
τ1, τ2, τ3, τ4 Coefficient of delay link
G′11(S), G′12(S), G′21(S), G′22(S) Transfer function with delay link and inertia link
G11(S), G12(S), G21(S), G22(S) Transfer function with inertia link
U1 'e actual value of ore feeding quantity (t/h)

U3 'e actual value of classifier adding water quantity (m3/h)

QD 'e actual value of the return sand quantity (m3/h)

Cc 'e actual value of classifier overflow concentration (%)
k Observed times (k � 2, 3, . . . , 1 + N)

i i � 1, 2, . . . , N

U3(k), U1(k)U1K 'e actual input signal of recorded data
Cc(k) 'e actual output signal of recorded data
a1, b1, c1, d1; a2, a3, b2, b3, c2, d2a Parameters to be identified
ε(k) Uncorrelated random variable that subjects to N(0, 1) distribution
N(0, 1) Normal distribution
θ(N) θ(N) � [0.5a1, 0.5d1, 0.5b1, 0.5c1]

T

Cc(N) Cc(N) � [Cc(1 + 1), Cc(1 + 2), . . . , Cc(1 + N)]T

Φ(N) Φ(N) � [ΦT(1),ΦT(2), . . . ,ΦT(N)]T

ϕT(i) ϕT(i) � [−Cc(i), −Cc(i), U3(i), U1(i)]T

F 'e sum of residuals squares
N Number of data group
μ Forgetting factor (0< μ≤ 1))
ρ A factor (ρ2 � μ)

λ Regularization parameter
K(N) Gain matrix
P(N) P(N) � (ϕTϕ + λI)−1

J(N) Criterion function of parameter estimation at N

θ0 True value of model parameters
η Eigenvalue of matrix A(N + 1))
x Nonzero eigenvector
u(k) System input of equation (43)
z(k) System output of equation (43)
a1′, a2′, b1′, b2′ Parameters to be identified of equation (43)
L Length of observation data
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(Research on Modeling and Control Method in Grinding
and Classification Process) data were used to support this
study and are available at DOI or other persistent identifier.
'ese prior studies (and datasets) are cited at relevant places
within the text as references [26].
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