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1Department of Mathematics, Islamic University, Kushtia, Bangladesh
2Department of Mathematics, Faculty of Education, Erciyes University, 38039-Melikgazi, Kayseri, Turkey
3Department of Applied Mathematics, University of Rajshahi, Rajshahi, Bangladesh

Correspondence should be addressed to M. Ali Akbar; ali.akbar@ru.ac.bd

Received 5 August 2022; Revised 6 October 2022; Accepted 19 October 2022; Published 31 October 2022

Academic Editor: Firdous A. Shah

Copyright © 2022 M. Al-Amin et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Te modifed Zakharov–Kuznetsov (mZK) and the (2 + 1)-dimensional Calogero–Bogoyavlenskii–Schif (CBS) models convey a
signifcant role to instruct the internal structure of tangible composite phenomena in the domain of two-dimensional discrete
electrical lattice, plasma physics, wave behaviors of deep oceans, nonlinear optics, etc. In this article, the dynamic, companionable,
and further broad-spectrum exact solitary solitons are extracted to the formerly stated nonlinear models by the aid of the recently
enhanced auxiliary equation method through the traveling wave transformation. Te implication of the soliton solutions attained
with arbitrary constants can be substantial to interpret the involuted phenomena. Te established soliton solutions show that the
approach is broad-spectrum, efcient, and algebraic computing friendly and it may be used to classify a variety of wave shapes. We
analyze the achieved solitons by sketching fgures for distinct values of the associated parameters by the aid of the Wolfram
Mathematica program.

1. Introduction

Nonlinear evolution equations (NLEEs) are the fundamental
tools to model most of the phenomena that arise in engi-
neering, natural sciences, and mathematical physics, such as
propagation of shallow water waves, optical fbers, signal
processing, condensed matter, electromagnetic, plasma
physics, and fuid mechanics. Te solitary wave solutions of
NLEEs are used to analyze many natural events. Tis is owing
to the fact that NLEEs contain indefnite multivariable
functions and their derivatives. Terefore, many researchers
have shown their interest in studying and researching on this
topic.Te traveling waves are the waves which propagate with
respect to time and are gained much attention to the recent
researchers. Terefore, a large assortment of mathematical
methods which are efcient, powerful, and reliable were
suggested for fndings the exact traveling wave solutions of the

nonlinear diferential equations (NLDEs) as for instance, the
method of exp-function [1], the (G′/G)-expansion method
[2–5], the fnite diference approach [6], the extended tanh-
function approach [7], the Jacobi elliptic functionmethod [8],
the Bernoulli sub-equation function [9], the MSE method
[10–12], the frst integral scheme [13], the variational iteration
scheme [14], the modifed Kudryashov scheme [15], the
Hirota’s bilinear form [16], the Shehu transform scheme [17],
the modifed trial equation approach [18], the fractional sub-
equation approach [19], the Laplace transform scheme [20],
the sine-Gordon equation (SGE) [21, 22], the modifed ex-
tended direct algebraic technique [23], the auxiliary equation
method [24–27], etc.

Te weakly nonlinear ion-acoustic waves in strongly
magnetized lossless plasma in two-dimension are described
by the Zakharov–Kuznetsov (ZK) equation, was frst in-
troduced by Zakharov and Kuznetsov in 1974. But, when
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more realistic situations arise, the nonisothermal electrons
are governed by the ZK equation, the equation is changed
into a modifed form, known as the modifed Zakhar-
ov–Kuznetsov (mZK) equation [28–30]. Te mZK equation
was frst introduced by Munro and Parkes in 1999 [28]. Te
mZK equation is also important in the feld of 2D discrete
electrical lattice, plasma physics, etc. Bogoyavlenskii and
Schif constructed the Calogero–Bogoyavlenskii–Schif
(CBS) equation, where Bogoyavlenskii used the modifed
Lax formalism [31]. And, Schif derived the CBS equation by
reducing the self-dual Yang–Mills equation [32].Te (2 + 1)-
dimensional CBS equation [33, 34] is useful in research on
wave behavior in deep sea, nonlinear optics, and other felds.
In addition, the researchers showed that the CBS equation
possesses soliton as well as N-soliton solutions which are
smooth in one coordinate. In the literature, the modifed
mZK equation was investigated through the frst integral
approach [35], the extended tanh-function method [36], the
Lie symmetry scheme [37], the exp-function technique [38],
the unifed method [39], and some other techniques. Te
modifed simple equation approach [40], the Hirota’s bi-
linear approach [41], the improved (G′/G)-expansion
scheme [42], the exp(− ϕ(ζ))-expansion method [43], the
bilinear method [44], and some other techniques were used
to examine the CBS equation.

Te auxiliary equation (AE) method is a relatively new
technique. It is observed that the AE method is readily ap-
plicable to a large variety of NLEEs as well as coupled NLEEs.
Moreover, it not only generates regular solutions but also
singular ones involving csch and coth functions. Due to this
advantage the AEmethod, it gains considerable interest to the
researchers. To our optimum comprehension, the exact so-
lutions of the modifed ZK and CBS equations have yet not
been developed using the auxiliary equation approach
[24–27]. Terefore, the aim of this study is to examine the
soliton solutions which means the solutions of a widespread
class of weakly NLDEs describing a physical system of the
modifed Zakharov–Kuznetsov (mZK) equation and the
(2 + 1)-dimensional Calogero–Bogoyavlenskii–Schif (CBS)
equation via the auxiliary equation method. With the ap-
propriateness and simplicity of this method, we achieve
several realistic and further generic solutions to the equations.
Inserting specifc values of arbitrary factors various wave
solitons are created and these attained solitons are not
established in the previous literature. We portray the diagram
of attain solutions and illustrate their physical signifcation.

Te organization of this work is as follows: in Section 2,
the auxiliary equation method is described. We study the
stated nonlinear evolution equations and examine solutions
of the equations in Section 3. Explain the physical impor-
tance of the obtained solutions in Section 4 and compare the
results in Section 5. Finally, the conclusion is presented.

2. Description of the Method

Te auxiliary equation (AE) method, which is promising,
powerful, and profcient, has been briefy described in this
section.

Consider a general higher dimensional NLEE:

H u, ut, ux, uy, utt, uxx, uyy, . . .  � 0, (1)

where u � u(t, x, y, z) be the unknown wave function
andH is the polynomial of u(t, x, y, z) and its diverse partial
derivatives, where the utmost order derivatives and non-
linear terms are concerned. By executing the consequent
steps we can evaluate the solution of (1) by the aid of the AE
method:

Step 1: Suppose the wave variable in the form:

u(t, x, y, z) � V(ϕ), ϕ � x + y + z ± ωt, (2)

where ω denotes wave propagation velocity. Te
transformation (2) assists us to transform (1) into the
following equation:

L V, V′, V′′, V′′′, . . .(  � 0, (3)

where L is a polynomial in V(ϕ) and the derivatives for
V(ϕ), in which V′(ϕ) � dV/dϕ.
Step 2: Here, Equation (3) could be integrated one or
more times as per possibility.
Step 3: As per AE method the subsequent solution of
Equation (3) can be revealed as follows:

u(ϕ) � 
N

i�0
cia

if(ϕ)
. (4)

Here, the constants ci, a have to evaluated, where
cN ≠ 0 (N is a positive integer) and f(ϕ) satisfes the
subsequent auxiliary equation:

f′(ϕ) �
1

ln a
la− f(ϕ)

+ m + naf(ϕ)
 . (5)

Te prime species the derivative with regard to ϕ;
l, m, n are parameters.
Here, the transformation ψ � af(ξ) converts the aux-
iliary equation Equation (5) to a Riccati equation in ψ
as follows:

ψ′ + nψ2
+ mψ + l � 0. (6)

Te Riccati equation (6) gives a set of generic solutions
that provide the exact solutions to the nonlinear
equation (3). It is worth noting that series extension of
(4) is a particular type of rational function and also a
polynomial. Terefore, an interrelation was found
between the considered approach and the transformed
rational function technique. Te AE method is used in
the present study since it is straightforward, easy to
compute, and adaptable to user-friendly computation
software like Maple to examine closed-form soliton
solutions.
Step 4: Te value of N seem in (4) can be acquired by
considering the homogeneous balance between the ut-
most order exponent and the derivative occurring in (3).
Step 5: Inserting Equation (4) jointly with (5) into (3)
and the score of N calculated in Step 4 yields
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polynomial in aif(ϕ), (i � 1, 2, 3 . . .). Collecting all the
terms of like power of aif(ϕ), and equating the coef-
cient to zero yield a class of equations (algebraic) for
ci, ω, l, m and n and solving this set of equations, we get
the values of the indefnite parameters. Since the so-
lution of Equation (5) is identifed, putting the values of
ci(i � 1, 2, 3 . . .), l, m and n in Equation (4), we attain
wide-ranging, more comprehensive and newer closed-
form solution of Equation (3).
Step 6: Equation (5) delivers diferent generic solutions
of NLDEs for the diferent values of l, m and n as well as
their interrelation and provide the exact solutions of
nonlinear evolution (3). Tus, it can be determined
adequate exact solutions to the nonlinear models using
the AE method.

Te AE method is used to examine the exact soliton
solutions of NLEEs. Te key idea of this method is to take full
advantage of NLEEs which yields useful, fresher, and further
general exact wave solutions. Principally, the AE method is a
direct algebraic method, efective algorithm, further gener-
alized to establish several exact traveling wave solutions for
NLEEs and can be utilized to arrange the wave velocity.
Furthermore, by this method, some physically important of
NLEEs are investigated with the aid of symbolic computation.

3. Mathematical Analysis of theWave Solutions

In this part, we establish scores of advanced, standard, and
wide-spectral closed-form traveling wave solutions to the
modifed Zakharov–Kuznetsov (mZK) equation and the
(2 + 1)-dimensional Calogero–Bogoyavlenskii–Schif (CBS)
equation by executing the thriving AE method.

3.1.TemZKModel. Herein, we examine a variety of newer
closed-form soliton solutions to themZKmodel by using the
AE method. Tis is a noteworthy model which has vast
applications in engineering and mathematical physics,
namely, the efects of ionic temperature, ion density gra-
dient, presence of third species (dust), composite phe-
nomena in the domain of two-dimensional discrete electrical
lattice, oblique propagation, and others. Te mZK model is
an integrable model which is in the form [28–30]:

ut + u
2
ux + uxxx + uxyy � 0. (7)

Using the compound transformation u(ψ) � U(t, x, y),
where ψ � x + y − ωt, (7) turns into a nonlinear equation
and integrating, it becomes the subsequent form:

− ωU + U
3/3 + 2U′′ � 0. (8)

By means of homogeneous balancing of the uppermost
order nonlinear and linear terms appearing in (8), we fnd
N � 1. Terefore, the solution structure of (8) is as follows:

u � c0 + c1a
f(ψ)

. (9)

Inserting (9) jointly with (5) and (8) and gathering all the
terms of similar power of aif(ψ) and equating the coefcients
to zero yields a class of (algebraic) equations (these are not
shown for simplicity) and addressing these via the com-
putation software Maple, gives the solutions:

c0 � ± m
���
− 3

√
,

c1 � ± 2n
���
− 3

√
,

ω � 4 ln − m
2
,

(10)

where ω is traveling wave velocity and l, m, n are constants.
Substituting the values assembled in (10) into (9) and

applying the conditions of the AE method, we establish the
subsequent solutions of (7):

While m2 − 4 ln < 0 and n≠ 0, the resulting solutions
are as follows:

v(ψ) � ±
�
3

√
���������

m
2

− 4 ln


tan

��������
4 ln − m

2


2
ψ⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (11)

v(ψ) � ±
�
3

√
���������

m
2

− 4 ln


cot

��������
4 ln − m

2


2
ψ⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (12)

Whenm2 − 4 ln > 0 and n≠ 0, the obtain the solutions are

v(ψ) � ∓
�
3

√
��������

4 ln − m
2



tan h

���������
m

2
− 4 ln



2
ψ⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (13)

v(ψ) � ∓
�
3

√
��������

4 ln − m
2



cot h

���������
m

2
− 4 ln



2
ψ⎛⎝ ⎞⎠⎛⎝ ⎞⎠. (14)

For m2 + 4 l2 < 0, n≠ 0 and n � − l, gives the solutions.

v(ψ) � ±
�
3

√ ����������

m
2

+ 4 l
2

 



tan

����������
− m

2
+ 4l

2
 



2
ψ⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠, (15)

v(ψ) � ±
�
3

√ ���������

m
2

+ 4l
2

 



cot

����������
− m

2
+ 4l

2
 



2
ψ⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠. (16)

When m2 + 4l2 > 0, n≠ 0 and n � − l, we attain the
solutions

v(ψ) � ∓
�
3

√ ����������

− m
2

+ 4l
2

 



tan h

���������
m

2
+ 4l

2
 



2
ψ⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠, (17)

v(ψ) � ∓
�
3

√ ����������

− m
2

+ 4l
2

 



cot h

���������
m

2
+ 4l

2
 



2
ψ⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠. (18)

While m2 − 4l2 < 0 and n � l, we achieve the solution.
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v(ψ) � ±
�
3

√ ���������

m
2

− 4l
2

 



tan

����������
− m

2
− 4l

2
 



2
ψ⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠, (19)

v(ψ) � ∓
�
3

√ ���������

m
2

− 4l
2

 



cot

���������
− m − 4l

2
 



2
ψ⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠. (20)

By means of m2 − 4l2 > 0 and n � l, leads the solutions.

v(ψ) � ∓
�
3

√ ����������

− m
2

− 4l
2

 



tan h

����������
− m

2
− 4l

2
 



2
ψ⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠, (21)

v(ψ) � ∓
�
3

√ ����������

− m
2

− 4l
2

 



cot h

����������
− m

2
− 4l

2
 



2
ψ⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠. (22)

While m2 � 4 ln, the wave velocity becomes zero,
therefore, the soliton solution does not exist in this case.

When ln < 0, m � 0 and n≠ 0, we derive,

v(ψ) � ± i
�
3

√
m + 2n(−

����
− l/n

√
tan h(

���
− ln

√
ψ)) , (23)

v(ψ) � ± i
�
3

√
m + 2n(−

����
− l/n

√
cot h(

����
− ln

√
ψ)) . (24)

For m � 0 and l � − n, we ascertain the soliton.

v(ψ) � ± i
�
3

√
m − 2l

1 + e
2lψ

− 1 + e
2lψ  . (25)

When l � n � 0, the soliton reach into trivial form and it
is physical signifcance less. So the solution dropped here.

While l � m � f and n � 0, we achieve a trivial soliton
solution and that is negligible here.

For m � n � f and l � 0, the solutions turns into,

v(ψ) � ± i
�
3

√
m + 2f

e
fψ

1 − e
fψ  . (26)

When m � l + n, we get a trivial solution, which is not
represented here.

For m � − (l + n), we attain the trivial solution, therefore
it is omitted here because it has no physical signifcance.

When l � 0, we obtain the exponential function solution
which is signifcant.

v(ψ) � ± i
�
3

√
m + 2n

memψ

1 − nemψ  . (27)

For n � m � l≠ 0, we accomplish the solutions.

v(ψ) � ± i
�
3

√
m + 2l

1
2

�
3

√
tan

�
3

√

2
lψ  − 1   . (28)

For n � l � 0 and l � m � 0, the obtained solution is in
trivial form and therefore omitted here.

While n � l and m � 0, we determine.

v(ψ) � ± i
�
3

√
(m + 2l(tan(lψ))). (29)

When n � 0, we achieve a trivial form soliton solution,
which is also skipped here.

In all solutions, ψ � x + y − ωt, where ω is the traveling
wave velocity and l, m, n are free parameters.

It is remarkable to observe that the established wave
solutions of the considered models which are further general
and for the individual values of the arbitrary parameters
some exact solutions are reinstated and some other solutions
are ascertained which are not found in the earlier study.

3.2.Te CBSModel. In this subsection, we determine novel,
useful, and further general closed-form solitary wave solu-
tions to the (2 + 1)-dimensional CBS model by the aid of the
auxiliary equation method. Te model has a vital role in
mathematical physics and engineering such as, explore
several nonlinear dynamics of interaction phenomena in
fuids and plasmas felds, nonlinear wave in optics, wave
behaviors of deep oceans, and more. Te CBS model [33, 34]
which is an integrable model is as follows:

uxt + 4uxuxy + 2uxxuy + uxxxy � 0. (30)

Te traveling wave variable u(ξ) � V(x, y, t), where ξ �

x + y − ωt converts the model (30) into a nonlinear
equation and after integration with zero integral constant it
turns into the following equation:

− ωV′ + 3 V′( 
2

+ V′ � 0. (31)

Now, using the balance number N � 1, the form of the
solution of (30) is written as follows:

v � c0 + c1a
f(ξ)

. (32)

Setting the solution (32), and (5) into (31) and summing
up the coefcients of identical powers of aif(ξ) and assigning
them to zero, we fnd out a set of algebraic equations (for
simplicity which are not assembled here) for c0 , c1, l, m, n.
Unraveling the system of equations (algebraic) by applying
computation software (Maple), it provides the following
solutions:

c0 � 0,

c1 � − 2n,

ω � 4 ln − m
2
,

(33)

where ω is wave velocity and l, m, n are free parameters.
Now, applying the results (33) and (32) and by means of

the constraints on the free parameters, we establish the
following solutions of (30):

While m2 − 4 ln < 0 and n≠ 0, we attain the singular
periodic solutions:

v(ξ) � m −

��������

4 ln − m
2



tan

��������
4 ln − m

2


2
ξ⎛⎝ ⎞⎠, (34)

v(ξ) � m −

��������

4 ln − m
2



cot

��������
4 ln − m

2


2
ξ⎛⎝ ⎞⎠. (35)

When m2 − 4 ln > 0 and n≠ 0, we attain kink and
singular kink shape solutions.
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v(ξ) � m +

���������

m
2

− 4 ln


tan h

���������
m

2
− 4 ln



2
ξ⎛⎝ ⎞⎠, (36)

v(ξ) � m +

���������

m
2

− 4 ln


cot h

���������
m

2
− 4 ln



2
ξ⎛⎝ ⎞⎠. (37)

For m2 + 4 l2 < 0, n≠ 0 and n � − l, we reach the soliton
solutions.

v(ξ) � m −

�����������

− m
2

+ 4 l
2

 



tan

����������
− m

2
+ 4l

2
 



2
ξ⎛⎜⎜⎝ ⎞⎟⎟⎠, (38)

v(ξ) � m +

����������

− m
2

+ 4l
2

 



cot

����������
− m

2
+ 4l

2
 



2
ξ⎛⎜⎜⎝ ⎞⎟⎟⎠. (39)

When m2 + 4l2 > 0, n≠ 0 and n � − l, we achieve the
solutions.

v(ξ) � m +

���������

m
2

+ 4l
2

 



tan h

���������
m

2
+ 4l

2
 



2
ξ⎛⎜⎜⎝ ⎞⎟⎟⎠, (40)

v(ξ) � m +

���������

m
2

+ 4l
2

 



cot h

���������
m

2
+ 4l

2
 



2
ξ⎛⎜⎜⎝ ⎞⎟⎟⎠. (41)

While m2 − 4l2 < 0 and n � l, the soliton reach into,

v(ξ) � m −

����������

− m
2

− 4l
2

 



tan

����������
− m

2
− 4l

2
 



2
ξ⎛⎜⎜⎝ ⎞⎟⎟⎠, (42)

v(ξ) � m +

����������

− m
2

− 4l
2

 



cot

����������
− m

2
− 4l

2
 



2
ξ⎛⎜⎜⎝ ⎞⎟⎟⎠. (43)

By means of m2 − 4l2 > 0 and n � l, gives the solutions.

v(ξ) � m +

���������

m
2

− 4l
2

 



tan h

����������
− m

2
− 4l

2
 



2
ξ⎛⎜⎜⎝ ⎞⎟⎟⎠, (44)

v(ξ) � m +

���������

m
2

− 4l
2

 



cot h

����������
− m

2
− 4l

2
 



2
ξ⎛⎜⎜⎝ ⎞⎟⎟⎠. (45)

While m2 � 4 ln, the wave velocity becomes zero, so the
soliton solution does not exist for this case.

When ln < 0, m � 0 and n≠ 0, we attain the standard
kink and singular kink soliton.

v(ξ) � 2n
����
− l/n

√
tan h(

����
− ln

√
ξ), (46)

v(ξ) � 2n
����
− l/n

√
cot h(

����
− ln

√
ξ). (47)

For m � 0 and l � − n, we obtain exponential function
solutions.

v(ξ) � 2l
1 + e

2lξ

− 1 + e
2lξ .

(48)

When l � n � 0, or l � m � f and n � 0, introducing a
trivial solution thus has no physical signifcance.

For m � n � f and l � 0, we accomplish the following
solution:

v(ξ) � − 2f
e

fξ

1 − e
fξ .

(49)

When m � l + n, and/or m � − (l + n), we have the af-
terwards trivial soliton solution and that is negligible.

While l � 0, the solution turns into,

v(ξ) � − 2n
memξ

1 − nemξ
⎛⎝ ⎞⎠. (50)

For n � m � l≠ 0, we accomplish the solution.

v(ξ) � − 2l
(

�
3

√
tan(l ξ

�
3

√
/2) − 1)

2
 . (51)

For n � m � 0 , the resulting soliton is a trivial solution
and has no physically signifcance. So the result dropped
here.

When l � m � 0, we get the trivial solution, which is not
essential to show here.

While n � l andm � 0, we determine

v(ξ) � − 2l tan(l ξ). (52)

When n � 0, the established soliton is not present here
because the resulting solution is physically signifcance less.

For all solutions, ξ � x + y − ωt, where ω is traveling
wave velocity and l, m, n are indefnite constants.

Te above-established solutions of the considered CBS
model are further general and the particular values for the
associated constants some exact solutions are available in the
literature which are abundant novel and not found in the
previous research.

4. The Graphical Representations and
Physical Description

In this part, we will demonstrate the 3-dimensional and
contour structure for the obtained solitons of the models
using the Wolfram Mathematica program to visualize the
internal mechanism of them. For simplicity, some fgures of
the gained solitons are depicted and some are skipped here.

4.1. Te Graphical Representations. Here, we have demon-
strated the diverse nature of attained solitons graphically of
the considered nonlinear evolution equations for dissimilar
values of the integrated parameters inside appropriate in-
terval but the values of traveling wave velocity ω varies. Te
infuence of wave velocity is exposed in the following shapes.

Te profles of the wave solution (11) for diverse trav-
eling wave velocity ω are shown in Figures 1–3.
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Te above-given fgures of (11) represent singular bell
shape soliton and this shape is depicted for the value of the
traveling wave velocity ω � 5.0 in the interval 0≤x, t≤ 1 and
the contour graph is depicted at t � 0 for the same velocity
and shown in Figure 1. But for the velocity decreasing, i.e.,
ω � 3.0, the solution (11) displays the singular periodic
soliton in the interval − 2≤x, t≤ 2. Te contour graph of this
solution for the velocity ω � 3.0 is depicted at t � 0 and
portrayed in Figure 2. Again when the traveling wave ve-
locity is gradually tends to zero i.e., ω � 0.8, the compacton
type soliton of (11) is demonstrated inside the range
− 2≤ x, t≤ 2. Te contour graph of this solution for the
velocity ω � 0.8 is depicted at t � 0 and sketched in Figure 3.

Te profles of the wave solution (13) for diferent
traveling wave velocities ω are depicted in Figures 4–7.

It is observed from the above-given analysis, the
background of the soliton (13) is a spike for the traveling
wave velocity ω � 44.53 portrayed surrounded by inter-
val − 1≤ x, t≤ 1. Te contour graph of this soliton for the
velocity ω � 44.53 is depicted at t � 0 and displayed in
Figure 4. But, when the wave velocity is decreased i.e., ω �

3.43, the solution function (13) represents singular bell
shape soliton within − 2≤x, t≤ 2 and for this velocity the
contour shape of the solution is depicted at t � 0 and
presented in Figure 5. When the wave velocity is further
decreased i.e., ω � 2.25, the solution function (13) repre-
sents bell shape soliton inside range − 2≤ x, t≤ 2 and also
the contour graph is depicted at t � 0 (for same velocity) in
Figure 6. Again, if the wave velocity gradually tends to zero
i.e., ω � 0.25, the solution (13) represents the singular
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Figure 1: Sketched the singular bell shape soliton from (11) when ω � 5.0.
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periodic soliton in the period − 10 ≤x, t≤ 10 and the con-
tour design of this solution for the same velocity is drawn at
t � 0 and shown in Figure 7.

Te profles of the traveling wave solution (34) for di-
verse wave velocity ω are given as follows.

Te soliton (34) represents the singular kink soliton for
the wave velocity ω � 3.2 portrayed within the inter-
val − 1≤x, t≤ 1. Te graph of the contour of the soliton for
the wave velocity ω � 3.2 is depicted at t � 0 and reported in
Figure 8. When the traveling wave velocity is ω � 3, the
solution (34) represents a singular periodic surrounded by
− 2≤ x, t≤ 2 and its contour graph of the soliton is designated
in Figure 9 for the same velocity ω � 3. Also, when the wave
velocity is ω � 1, the solution (34) also represents singular
periodic in − 8≤ x, t≤ 8 and in this case contour shape is
depicted in Figure 10 at t � 0.

Te profles of the wave solution (36) for diferent
traveling wave velocity ω are given as follows.

Te solution (36) represents kink type soliton for the
traveling wave velocity ω � 12 shown inside the
range − 2≤ x, t≤ 2. Te shape (contour) of the soliton is
depicted at t � 0 for the velocity ω � 12 and documented in
Figure 11. But, for decreasing wave velocity, i.e., ω � 2.25,
the solution (36) represents the fat kink shape soliton in the
space − 2≤x, t≤ 2. Te graph of the solution (contour) for
the wave velocity ω � 2.25 is depicted at t � 0 and displayed
in Figure 12. Again, when the wave velocity is gradually
tends to zero i.e., ω � 0.44, the solution (36) represents
general soliton within the space − 2≤x, t≤ 8. Te contour
fgure for the traveling wave velocity ω � 0.44 of solution is
represented at t � 0 and indicated in Figure 13.

Te profles of the wave solution (44) for various trav-
eling wave velocity ω are given as follows.

When the traveling wave velocity is ω � 0.84, the
solution (44) stand for singular periodic soliton contained by
the space − 8≤x, t≤ 8. Te contour graph of this solution
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Figure 4: Design3D and contour shape of (13) for ω � 44.53.
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for the wave velocity ω � 0.84 is depicted at t � 0 and
portrayed in Figure 14. If the wave velocity gradually tends
to zero i.e., ω � 0.004, the solution (44) represents a concave
parabolic wave contained by the range − 8≤ x, t≤ 8. Te
graph of this soliton (contour) for the wave velocity ω �

0.004 is depicted at t � 0 and documented in Figure 15.
Te profles of the wave solution (47) for various trav-

eling wave velocity ω are given as follows.
Te solution (47) signifes singular soliton for the

traveling wave velocity ω � 10 described in the
range − 2≤x, t≤ 2. Te fgure of this solution (contour) for
the wave velocity ω � 10 is depicted at t � 0 and displayed
in Figure 16. When the wave velocity decreases i.e., ω � 4,
the solution (47) represents a singular kink type soliton
within the period − 2≤x, t≤ 2. Te contour design of this
soliton for the traveling wave velocity ω � 4 is depicted at
t � 0 and specifed in Figure 17. Besides, when the wave

velocity gradually decreases (i, eω � 2), the solution (47)
represents a singular anti-bell soliton within − 8≤ x, t≤ 8 and
contour graph of this solution for the same velocity is
depicted at t � 0 and specifed in Figure 18.

4.2. Te Physical Signifcance of the Established Wave
Solutions. Te Presented contour and 3D graphical de-
piction of the established solutions of contemplated
models might be practical to explicate the internal con-
trivances of the phenomena related with the considered
models. For particular values of the traveling wave ve-
locity, we obtain the diverse shape of solitons and outlined
in the graphical representation section. Furthermore, all of
the attained solutions exit numerous traveling wave so-
lutions which are of key signifcance in elucidating several
physical circumstances which are useful in the feld of wave
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mechanics such as wave behaviors of deep oceans, in the
two-dimensional discrete electrical lattice, plasma physics,
nonlinear optics, and more. We mention that all presented
solutions insert valuable insights into associated studies on
soliton solutions and are supplementary general in wave
nature. We also study that, the solutions hold diferent
natures of recognized profles of solitary wave solutions as
for instance, kink, singular kink, periodic and singular
periodic, spike, compacton, bell shaped, and singular bell
shaped.

In the above-given graphical representation, the
attained solutions of the models disclose their diferent
dynamical characteristics for diferent wave patterns in
their corresponding media, show their diferent behavior
such as the bell shaped wave indicates that the considered
models are typically continuous or smooth, asymptotically
approach to zero and commonly symmetric. Te com-
pacton wave specifes that the solutions of the models are
stable and carry fnite wavelength. And, the kink wave rises
or falls from one asymptotic state to another and it ap-
proaches a constant at infnity. Furthermore, the periodic
wave indicates that the wave family involves stable parts
and the singular periodic wave shows that the wave family
involves unstable parts.

5. Comparison of the Attained Solutions

In this part, we compare the exact traveling wave solutions
of the modifed Zakharov–Kuznetsov (mZK) model by
executing the AE method with those solutions attained by
the (G′/G)-expansion method. Also, we compare the so-
lutions of the (2 + 1)-dimensional Caloger-
o–Bogoyavlenskii–Schif (CBS) model with those solutions
obtained by the modifed tanh-function method. It is
important to observe that the obtained solutions are
compatible, straightforward, and further general. Te
attained solutions might be helpful to examine the physical
signifcance for the considered models.

5.1. Te Modifed Zakharov–Kuznetsov (mZK) Model.
Bekir [45] investigate the mZK model and established only
two solutions (see Appendix A) by executing the (G′/G)

-expansion method. We identify that some of our obtained
solutions are identical to Bekir’s solutions and some are
diferent. In Table 1, we compare the obtained solutions by
the two methods [45].

Te AE method delivered nineteen diferent solutions.
From Table 1, we notice that the solutions u1,2 and u3,4
obtained by the (G′/G)-expansion method and the solutions
(23) and (29) obtained by the AE method are identical
respectively. Te solution u5,6 (see Appendix A) obtained by
the (G′/G)-expansion method is a trivial solution and does
not carry any physical signifcance. Terefore, the solution
u5,6 is not considered. In addition, we found some other
solutions, namely, (11)–(23), and (24)–(28) which are not
found in [45]. Terefore, by comparing the solutions ob-
tained by the two methods, it might be concluded, that we
attain further solutions which are general and compatible.

5.2. Te Calogero–Bogoyavlenskii–Schif (CBS) Model. By
executing the modifed tanh-function method, Taha et al.
[46] obtained only three solutions (see Appendix B) for the
(2 + 1)-dimensional CBS model. We identify that some of
the attained solutions are identical to the Taha et al. solutions
and some are diferent. In Table 2, we compare the solutions
examined by the two methods [46].

By applying the AEmethod, we determine nineteen fresh
solutions. From Table 2, we see that the solutions u1, u2, u3
obtained by the modifed tanh-function method and the
solutions (36), (40), and (44) obtained by the AE method are
identical, respectively. In addition, we attain other sixteen
solutions (34), (35), (37)–(39), (41)–(43), (45)–(52)which are
not found by Taha et al. [46]. Terefore, from the com-
parison of the solutions obtained by the two methods, it
might be concluded that we have attained further general,
functional solutions than Taha et al. [46] solutions.

Table 2: Comparison of the results of the Calogero–Bogoyavlenskii–Schif (CBS) model.

Solutions obtained in by the modifed tanh-function
method Solutions obtained in this article

1. u1(x, t) � a0 + 2 tan h(x + z − 4t).
1. If

���������
(m2 − 4l2)


� 2, m � a0, ξ � x + z − 4t, v(ξ) � u1(x, t), the solution (36)
becomes u1(x, t) � a0 + 2 tan h(x + z − 4t).

2.
u2(x, t) � a0 + tan h(x + z − t) +

����
− 1/σ

√ ��������
σ(1 − y2)


.

2. If
���������
(m2 + 4l2)


� 1, m � a0 +

����
− 1/σ

√ ��������
σ(1 − y2)


, (ξ/2) � x + z − t,

v(ξ) � u2(x, t), the solution (40) turns into
u2(x, t) � a0 + tan h(x + z − t) +

����
− 1/σ

√ ��������
σ(1 − y2)



3.
u3(x, t) � a0 + tan h(x + z − t) −

����
− 1/σ

√ ��������
σ(1 − y2)


.

3. If
���������
(m2 − 4l2)


� 1, m � a0 −

����
− 1/σ

√ ��������
σ(1 − y2)


,((

���������
(4l2 − m2)


/2)ξ) � x + z − t

, v(ξ) � u3(x, t), the solution (44) becomes
u3(x, t) � a0 + tan h(x + z − t) −

����
− 1/σ

√ ��������
σ(1 − y2)



Table 1: Comparison of the results of the modifed Zakharov–Kuznetsov (mZK) model.

Solutions obtained in by the (G′/G)-expansion method Solutions obtained in this article
1. If C1 ≠ 0, C2 � 0, λ> 0, μ � 0, the solution (4.13) becomes:
u1,2(ξ) � ±

�
3

√
i λ tan h((λ/2)ξ) ±

�
3

√
i.

1. If m � 1, 2
���
− ln

√
� λ,ψ � ξ, v(ψ) � u1,2(ξ), the solution (23)

becomes: u1,2(ξ) � ±
�
3

√
i λ tan h((λ/2)ξ) ±

�
3

√
i.

2. If C1 ≠ 0, C2 � 0, λ> 0, μ � 0, the solution (4.14) becomes:
u3,4(ξ) � ±

�
3

√
λ tan((iλ/2)ξ) ±

�
3

√
i

2. If m � 1, 2l � iλ,ψ � ξ, v(ψ) � u3,4(ξ), the solution (29) turns into:
u3,4(ξ) � ±

�
3

√
λ tan((iλ/2)ξ) ±

�
3

√
i.
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6. Conclusion

Te auxiliary equation approach has efectively been
implemented to the modifed Zakharov–Kuznetsov and
the (2 + 1)-dimensional Calogero–Bogoyavlenskii–Schif
models in this article. Te established wave solutions are
further generic than the reachable results in the literature
and for distinct values of the associated parameters
standard solutions are originated and a few existing so-
lutions are restored. In this study, it is established diverse
solutions and the established traveling wave solutions are
constructed through trigonometric, exponential, and hy-
perbolic functions and their integration. Te accuracy of
the investigated solutions have been verifed by placing
them into their original models and found accurate. From
the analysis, it is perceived that the auxiliary equation
approach can be used to study the further nonlinear
evolution models that frequently occur in physics,
mathematical physics, engineering, and other scientifc
real-time application felds. Te ascertained solutions have
revealed that the auxiliary equation method is an efective
algorithm, powerful, further generalized, and can be uti-
lized to arrange the wave velocity. In this study, we ex-
amine the exact solutions of the nonlinear mZK and CBS
equations but it might assert that the approach can be
implemented for other NLEEs. Terefore, in future, we can
investigate the exact solutions of other NLEEs, such as the
Calogero–Degasperis (CD) model, the Zakhar-
ov–Kuznetsov–Benjamin–Bona–Mahony (ZK-BBM)
model, the (3 + 1)-dimensional Boi-
ti–Leon–Manna–Pempinelli equation and some others by
means of the auxiliary equation method.

Appendix

A. Bekir [45] Solutions

Te solution of Bekir [45], investigated by the (G′/G)-ex-
pansion method for the modifed Zakharov–Kuznetsov
(mZK) model are scheduled as follows:

u1,2(ξ) � ±
�
3

√
iλ tan h

λ
2
ξ  ±

�
3

√
i, (A.1)

u3,4(ξ) � ±
�
3

√
λ tan

iλ
2
ξ  ±

�
3

√
i, (A.2)

u5,6(x, t) � ±
±

�
3

√
iC2

C1 + C2x
. (A.3)

B. Taha et al. [46] Solutions

Te solution of Taha et al. [46], examined by the modifed
tanh-function method for the Caloger-
o–Bogoyavlenskii–Schif (CBS) model are arranged as
follows:

u1(x, t) � a0 + 2 tan h(x + z − 4t), (B.1)

u2(x, t) � a0 + tan h(x + z − t) +

���
− 1
σ

 ��������

σ 1 − y
2

 



, (B.2)

u3(x, t) � a0 + tan h(x + z − t) −

���
− 1
σ

 ��������

σ 1 − y
2

 



. (B.3)
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