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In this study, the stability and bifurcation problems of a fractional food chain system with two kinds of delays are studied. Firstly,
the nonnegative, bounded, and unique properties of the solutions of the system are proved. �e asymptotic stability of the
equilibrium points of the system is discussed. Furthermore, the global asymptotic stability of the positive equilibrium point is
deduced by using Lyapunov function method. Secondly, the system takes two kinds of time delays as bifurcation parameters and
calculates the critical values of Hopf bifurcation accurately. �e results show that Hopf bifurcation can advance with increasing
fractional order and another delay. In conclusion, numerical simulation veri�es and illustrates the theoretical results.

1. Introduction

In the ecosystem, no species exists in isolation. �e di�erent
populations are all related to each other. Predator rela-
tionship, competition relationship, reciprocity relationship,
and parasitic relationship are the main population rela-
tionships. In these major relationships, predator-prey re-
lationship is universal in nature and is of great signi�cance to
complex ecosystems. It is precisely because of the important
application background and practical value of the predation
system that the food chain system has been researched
extensively by many scholars [1–5].

In nature, the phenomenon of time delay is exhibited
universally in biological population. �e phenomenon of
time delay is mainly caused by many factors such as
gestation, maturation, and food digestion of population.
�e phenomenon of time delay signi�es that the related
properties of the system are related to not only the present
state but also the previous period. Aiello and Freedman
studied a single population system with a time delay and
stage structure [6]. Beddington et al. [7] proved that time
delay could a�ect the stability of the dynamical model.
Gazi et al. [8] researched the in�uence of harvest and
discrete time delay on the prey-predator populations and

obtained the discrete time-delay length required to re-
main the stability of the system. Jana et al. [9] analyzed the
time-delay predator-prey system including prey shelter
and demonstrated the global asymptotic stability of the
system. Yan et al. [10] considered the predator-prey model
with delayed reaction di�usion and analyzed the global
asymptotic stability of the positive equilibrium point of
the model. Vinoth et al. [11] put forward a delayed prey-
predator system with additive Allee e�ect, and the local
asymptotic stability of the model at equilibrium point was
studied. Numerous studies have shown that a population
system with time delay could exhibit more complex
nonlinear dynamic behaviors. �erefore, time delay has a
profound impact on the stability behavior of biological
systems.

Di�erential equation theory has been widely used in
automation system, aerospace technology, information
engineering, and so on. In these practical applications,
the system usually has some parameters. If the parameters
of the system change, the topological structure of the
phase diagram in phase space also changes; then, the
phenomenon is called bifurcation [12–14]. Hopf bifur-
cation theory has become a classical tool to research the
generation and extinction periodic solutions of small
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amplitude differential equations. When a parameter
passes a marginal value, the equilibrium point will lose
stability and a periodic solution will appear [15–19]. Deka
et al. [15] proposed and analyzed a one-predator and two-
prey system with a general Gauss type, and the stability
and direction of the Hopf bifurcation were proved
by regarding the mortality of the predator as the bifur-
cation argument. In [16], a predator-prey model with
discrete time delay of habitat complexity and sanctuary
for prey was proposed and the occurrence criterion of
Hopf bifurcation was obtained by taking the time lag as
argument. In [20], Guo et al. established a food chain
system with a couple of time lags and Holling II type
functions:

x′(t) � x(t) r1 − a1x(t) −
y t − τ1( 􏼁

1 + mx(t)
􏼠 􏼡,

y′(t) � y(t)
a2x t − τ2( 􏼁

1 + mx(t)
− r2 − a3z t − τ1( 􏼁􏼠 􏼡,

z′(t) � z(t) a4y t − τ2( 􏼁 − r3( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Among them, the biological significance of each pa-
rameter of system (1) is well illustrated in Table 1.

At the same time, the existence of the positive equilib-
rium point was proved, and the occurrence criterion of Hopf
bifurcation was obtained by taking the time lag as the
parameter.

Fractional-order calculus is a method that rises recently.
It is a method that extends the ordinary integral calculus to
nonintegral calculus [21–27]. So far, fractional calculus has
been applied to many domains, such as neural network [28],
medicine [29], finance system [30], and safety communi-
cation [31]. A great deal of studies have proved that the
fractional dynamical system is to a higher degree suitable to
biological systems because the fractional differential is
connected with the entire time zone, while the integer
differential is only related to a particular moment. Because
biological systems generally have the characteristics of he-
redity and memory, so more and more scholars believe that
the method of fractional calculus can better characterize the
behavior of biological system. At present, some scholars have
spread the classical integer-order differential systems to the
fractional-order differential systems [32–37]. Rihan et al.
[32] studied a fractional-order food chain model with time
delay as well as infection in predators; sufficient criterion for
asymptotic stability of the stable condition of the model was
established. Huang et al. [36] discovered that the bifurcation
dynamics of the model could be resultfully controlled as long
as other parameters of the system are determined, and the
extended feedback delay or fractional order is carefully
adjusted.

Based on the above discussion, model (1) is extended in
this study to obtain the following fractional-order food chain
model:

D
θ
x(t) � x(t) r1 − a1x(t) −

y t − τ1( 􏼁

1 + mx(t)
􏼠 􏼡,

D
θ
y(t) � y(t)

a2x t − τ2( 􏼁

1 + mx(t)
− r2 − a3z t − τ1( 􏼁􏼠 􏼡,

D
θ
z(t) � z(t) a4y t − τ2( 􏼁 − r3( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where 0< θ ≤ 1; the biological significance of each variable
and parameter of model (2) is the same as that of model (1).
)e initial conditions are x(t) � ζ1(t)≥ 0, y(t) � ζ2
(t)≥ 0, z(t) � ζ3(t)≥ 0, and t ∈ [− max(τ1, τ2), 0]. )e
model is established on the sense of Caputo derivative.

)e rest of the study is organized as follows. Several
definitions as well as lemmas are addressed in Section 2. In
Section 3, the corresponding nondelay system of (2) is
discussed. )e Hopf bifurcation of system (2) is studied in
Section 4. Some numerical simulations are presented in
Section 5. Conclusions are drawn in the end.

2. Preliminaries

For the theoretical derivation, we first give the relevant
definitions and lemmas of Caputo calculus.

Definition 1 (see [21]). )e fractional integral of order θ for
a function f(t) is defined as

I
θ
f(t) �

1
Γ(θ)

􏽚
t

t0

(t − s)
θ− 1

f(s)ds, (3)

where t≥ t0, θ> 0, and Γ(·) is the Gamma function,
Γ(θ) � 􏽒

∞
0 tθ− 1e− tdt.

Definition 2 (see [21]). )e Caputo fractional derivative of
order θ for a function f(t) is defined as

D
θ
f(t) �

1
Γ(n − θ)

􏽚
t

t0

f
(n)

(s)

(t − s)
θ− n+1 ds, (4)

Table 1: Biological significance of symbols.

Symbols Biological significance
x(t) )e density of prey population at time t

y(t) )e density of the primary predator population at time t

z(t) )e density of the top predator population at time t

r1 )e intrinsic growth rate of prey population
r2 )e death rate of the primary predator population
r3 )e death rate of the top predator population
a1 )e internal competition rate of the prey population

a2
)e nutrient conversion rate from prey to primary

predator

a3
)e rate of capture by top predators on primary

predators
a4 )e digestibility of top predators to primary predators
m )e semisaturation of predator
τ1 )e capture time
τ2 )e maturity time
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where n is a positive integer, n − 1< θ≤ n, and t≥ t0. So,
specifically, if 0< θ< 1,

D
θ
f(t) �

1
Γ(1 − θ)

􏽚
t

t0

f′(s)

(t − s)
θ ds. (5)

Lemma 1 (see [22]). Define w ∈ Cθ([t0, T], R). Suppose that
there exist t1 ∈ (t0, T], such that w(t1) � 0 and w(t)> 0 for
t0 ≤ t< t1; then,

D
θ
w t1( 􏼁< 0. (6)

Lemma 2 (see [21]). Define θ > 0, n − 1< θ≤ n. Suppose m(t)

is n times continuous differentiable function and Dθm(t) is
piecewise continuous on [t0,∞); we have

L D
θ
m(t)􏽮 􏽯 � s

θΥ(s) − 􏽘
n− 1

k�0
s
θ− k− 1

m
(k)

t0( 􏼁, (7)

where Υ(s) � L m(t){ }.

Lemma 3 (see [38]). AssumeM represents the complex plane,
for ∀a> 0 and b> 0, and Q ∈ M; then,

L t
b− 1

Ea,b Qt
a

( 􏼁􏽮 􏽯 �
s

a− b

s
a

− Q
, (8)

for R(s)> |Q|1/a, R(s) signifies the real part of the complex
number s, and Ea,b is the following Mittag–Leffler function
described by

Ea,b(z) � 􏽘
∞

n�0

z
n

Γ(an + b)
. (9)

Lemma 4 (see [24]). Consider the system:

D
θ
X(t) � ϱ(t, X), t0 > 0, (10)

with initial condition X(t0) � Xt0
, where θ ∈ (0, 1] and

ϱ: [t0,∞) × η⟶ Rn, η⊆Rn, if ϱ(t, X) meets the local Lip-
schitz criteria with respect to X ∈ Rn:

‖ϱ(t, X) − ϱ(t, X)‖≤ δ‖X − X‖, (11)

so it has a unique solution of (10) on [t0,∞), where

X u1, u2, . . . , un( 􏼁 − X v1, v2, . . . , vn( 􏼁
����

���� � 􏽘
n

i�1
ui − vi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, ui, vi ∈ R. (12)

Lemma 5 (see [23]). Define 0< θ < 1, X(t) ∈ Rn, and
f: Rn⟶ Rn; think about the following nonlinear fractional
system of the same order:

D
θ
X(t) � f(X(t)), X(0) � X0. (13)

If the eigenvalues λi (i � 1, . . . , n) of the Jacobian matrix
corresponding to the equilibrium point of the system meet
the following criterion |arg(λi)|> (θπ/2), i � 1, 2, . . . n, then
system (13) is asymptotically stable.

Lemma 6 (see [26]). Assume l(t) ∈ R+ is a continuous and
differentiable function. For ∀t≥ t0,
Dθ[l(t) − l∗ − l∗ ln(l(t)/l∗)]≤ (1 − (l∗/l(t)))Dθl(t),
l∗ ∈ R+, ∀θ ∈ (0, 1).

Lemma 7 (see [23]). ?ink about the under n-dimensional
linear fractional-order time-delay system:

D
θ1x1(t) � b11x1 t − τ11( 􏼁 + b12x2 t − τ12( 􏼁 + · · · + b1nxn t − τ1n( 􏼁,

D
θ2x2(t) � b21x1 t − τ21( 􏼁 + b22x2 t − τ22( 􏼁 + · · · + b2nxn t − τ2n( 􏼁,

⋮

D
θn xn(t) � bn1x1 t − τn1( 􏼁 + bn2x2 t − τn2( 􏼁 + · · · + bnnxn t − τnn( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

Among them, ∀θi ∈ (0, 1), and the initial conditions
xi(t) � ξi(t) are provided for − max1≤i,j≤nτij � − τmax ≤ t≤ 0,
i � 1, 2, . . . , n. It is defined as

Λ(s) �

s
θ1 − b11e

− sτ11 − b12e
− sτ12 · · · − b1ne

− sτ1n

− b21e
− sτ21 s

θ2 − b22e
− sτ22 · · · − b2ne

− sτ2n

⋮ ⋮ ⋱ ⋮

− bn1e
− sτn1 − bn2e

− sτn2 · · · s
θn − bnne

− sτnn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(15)
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If all roots of det(Λ(s)) � 0 have negative real parts, so
the zero solution of system (14) is Lyapunov globally as-
ymptotically stable.

3. Analysis of the Nondelayed Model

First, we research the delay-free system of (2):

D
θ
x(t) � x(t) r1 − a1x(t) −

y(t)

1 + mx(t)
􏼠 􏼡,

D
θ
y(t) � y(t)

a2x(t)

1 + mx(t)
− r2 − a3z(t)􏼠 􏼡,

D
θ
z(t) � z(t) a4y(t) − r3( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

)e nonnegativity and boundedness, existence, and
uniqueness of solutions about systems (2) and (16) are
discussed in Sections 3.1 and 3.2. )e local stability of the
equilibrium points of system (2) is discussed, and the global
asymptotic stability of the positive equilibrium point of
system (2) is demonstrated in Section 3.3.

3.1. Nonnegativity and Boundedness of Solutions. )ink
about the biological implications of reality, it is significant to

analyze the nonnegativity of the system. To prove the fol-
lowing theorem, let R+ denote the collection of entire
positive real numbers containing 0,
η+ � (x, y, z) ∈ η: x, y, z ∈ R+􏼈 􏼉.

Theorem 1. ?e solutions about system (16) from η+ are
nonnegative and uniformly bounded.

Proof. When t � 0, then x(0)> 0; we desire to obtain the
solution x(t) from η+ is nonnegative, i.e., x(t)≥ 0, for ∀t≥ 0.
Suppose it exhibits a constant t′ > 0, x(t′)< 0; according to
x(t) which is a continuous function, there exists t″ ∈ (0, t′)
and x(t″) � 0. Define t1 � min t″ ∈ (0, t′)|x(t″) � 0􏼈 􏼉; then,
when t � t1 > 0, from system (16), one obtains
Dθx(t)|t�t1

� x(t)(r1 − a1x(t) − (y(t)/(1 + mx(t)))) � 0.
However, according to the definition of t1, x(0)> 0 and
x(t1) � 0; moreover, x(t)> 0, t ∈ [0, t1); by Lemma 1, we
have Dθx(t1)< 0. Hence, we derive a contradiction; there-
fore, x(t)≥ 0, ∀t ∈ [0,∞). Likewise, we can demonstrate
y(t), z(t)≥ 0, ∀t ∈ [0,∞).

For boundedness, we think about the following function:

W(x(t), y(t), z(t)) � x(t) +
1
a2

y(t) +
a3

a2a4
z(t). (17)

According to system (16), one has

D
θ
W(t) � r1x(t) − a1x

2
(t) −

1
a2

r2y(t) −
a3r3

a2a4
z(t),

D
θ
W(t) + 􏽢kW(t) � − a1 x(t) −

r1 + 􏽢k

2a1
􏼠 􏼡

2

+
r1 + 􏽢k􏼐 􏼑

2

4a1
−

r2 − 􏽢k

a2
y(t) −

a3

a2a4
r3 − 􏽢k􏼐 􏼑z(t)

≤ − a1 x(t) −
r1 + 􏽢k

2a1
􏼠 􏼡

2

+
r1 + 􏽢k􏼐 􏼑

2

4a1

≤
r1 + 􏽢k􏼐 􏼑

2

4a1
� A,

(18)

where 􏽢k � min r2, r3􏼈 􏼉> 0. )erefore,

D
θ
W(t) + 􏽢kW(t)≤A. (19)

By Lemma 2, making Laplace transform of both sides of
(19), we obtain

s
θΥ(s) − s

θ− 1
W(0) + 􏽢kΥ(s)≤

A

s
, (20)

where Υ(s) � L W(t){ }. From this, we can obtain

Υ(s)≤
s
θ− 1

W(0)

s
θ

+ 􏽢k
+

A

s s
θ

+ 􏽢k􏼐 􏼑
. (21)

Making inverse Laplace transform of (21), then

W(t)≤W(0)L
− 1 s

θ− 1

s
θ

+ 􏽢k
􏼠 􏼡 + AL

− 1 s
θ− (θ+1)

s
θ

+ 􏽢k
􏼠 􏼡. (22)

By Lemma 3, one has

W(t)≤W(0)Eθ,1 − 􏽢kt
θ

􏽮 􏽯 + At
θ
Eθ,θ+1 − 􏽢kt

θ
􏽮 􏽯. (23)

According to

Eϑ,ι(z) � zEϑ,ϑ+ι(z) +
1
Γ(ι)

, (24)

so we have
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Eθ,1 − 􏽢kt
θ

􏼐 􏼑 � − 􏽢kt
θ

􏼐 􏼑Eθ,θ+1 − 􏽢kt
θ

􏼐 􏼑 +
1
Γ(1)

,

t
θ
Eθ,θ+1 − 􏽢kt

θ
􏼐 􏼑 � −

1
􏽢k

Eθ,1 − 􏽢kt
θ

􏼐 􏼑 − 1􏼐 􏼑.

(25)

Hence,

W(t)≤ W(0) −
A

􏽢k
􏼨 􏼩Eθ,1 − 􏽢kt

θ
􏼐 􏼑 +

A

􏽢k
, (26)

where, if t⟶∞, we have Eθ,1(− 􏽢ktθ)⟶ 0.
Furthermore, the setD attracts all the solutions of system

(16), where

D � (x, y, z) ∈ η+|x(t) +
1
a2

y(t) +
a3

a2a4
z(t)≤

1
􏽢k

r1 + 􏽢k􏼐 􏼑
2

4a1
+ ϵ, ϵ > 0

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
. (27)

□
3.2. Existence and Uniqueness of Solutions

Theorem 2. System (16) only exhibits a solution
X(t) � (x(t), y(t), z(t)) ∈ η+ for any given initial value
X(t0) � (xt0

, yt0
, zt0

) ∈ η+.

Proof. According to)eorem 1, the solutions of system (16)
from η+ are nonnegative and uniformly bounded; then, there
exists a constant P, such that max x(t), y(t), z(t)􏼈 􏼉≤P.
Define a mapping Q(X) � (Q1(X), Q2(X), Q3(X)), in
which

Q1(X) � x(t) r1 − a1x(t) −
y(t)

1 + mx(t)
􏼠 􏼡,

Q2(X) � y(t)
a2x(t)

1 + mx(t)
− r2 − a3z(t)􏼠 􏼡,

Q3(X) � z(t) a4y(t) − r3( 􏼁.

(28)

Let X andX be any two solutions to system (16); we can
derive

‖Q(X) − Q(X)‖

� Q1(X) − Q1(X)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Q2(X) − Q2(X)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 + Q3(X) − Q3(X)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

� x r1 − a1x −
y

1 + mx
􏼒 􏼓 − x r1 − a1x −

y

1 + mx
􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ y

a2x

1 + mx
− r2 − a3z􏼒 􏼓 − y

a2x

1 + mx
− r2 − a3z􏼒 􏼓

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ z a4y − r3( 􏼁 − z a4y − r3( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

≤ r1|x − x| + a1 x
2

− x
2􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 +

xy − xy + mxyx − mxyx

(1 + mx)(1 + mx)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ r2|y − y| + a3|yz − yz|

+ a2
xy − xy + mxyx − mxyx

(1 + mx)(1 + mx)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ a4|yz − yz| + r3|z − z|

≤ r1|x − x| + 2a1P|x − x| + P|y − y| + P|x − x| + mP
2
|y − y| + mP

2
|x − x|

+ mP
2
|x − x| + r2|y − y| + a3P|z − z| + a3P|y − y|

+ a2 P|y − y| + P|x − x| + mP
2
|y − y| + mP

2
|x − x| + mP

2
|x − x|􏼐 􏼑

+ a4P|z − z| + a4P|y − y| + r3|z − z|

� r1 + 2a1P + P + 2mP
2

+ a2P + 2a2mP
2

􏼐 􏼑|x − x|

+ P + mP
2

+ r2 + a3P + a2P + a2mP
2

+ a4P􏼐 􏼑|y − y|

+ a3P + a4P + r3( 􏼁|z − z|

≤ δ‖X − X‖,

(29)
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where δ � max M1, M2, M3􏼈 􏼉 and M1 � r1 + 2a1P + P+

2mP2 + a2P + 2a2mP2, M2 � P + mP2 + r2 + a3P + a2P +

a2mP2 + a4P, and M3 � a3P + a4P + r3. Hence, Q(X) meets
the Lipschitz criteria about X. By Lemma 4, it has only a
solution X(t) of system (16) with initial value X(t0) �

(xt0
, yt0

, zt0
). □

3.3. Stability Analysis of Balance Point. For analyzing the
possible equilibrium of system (16), we first present the
following assumptions:

(i) [H1]: r1(a2 − mr2) − a1r2 > 0.
(ii) [H2]: a4r1 − r3 > 0 and a2x

∗ − r2(1 + mx∗)> 0, in
which x∗ is the positive root of the following
equation:

− ma1a4x
2

+ mr1a4 − a1a4( 􏼁x + a4r1 − r3 � 0. (30)

We can find the following four biologically feasible
equilibrium points:

(1) E0 � (0, 0, 0)

(2) E1 � ((r1/a1), 0, 0)

(3) E2 � (�x, �y, 0); it exhibits if the condition [H1] is true,
where �x � (r2/(a2 − mr2)) and �y � (a2
[r1(a2 − mr2) − a1r2]/(a2 − mr2)

2)

(4) E3 � (x∗, y∗, z∗); it exhibits if the condition [H2] is
true, where y∗ � (r3/a4) and z∗ � (a2x

∗ − r2
(1 + mx∗))/(1 + mx∗)a3

)e Jacobian matrix about system (16) at arbitrary point
(x, y, z) is as follows

J �

r1 − 2a1x −
y

(1 + mx)
2 −

x

1 + mx
0

a2y

(1 + mx)
2

a2x

1 + mx
− r2 − a3z − a3y

0 a4z a4y − r3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(31)

Theorem 3. ?e trivial equilibrium E0 of system (16) is
unstable.

Proof. )e Jacobian matrix at E0 � (0, 0, 0) is as follows:

J E0( 􏼁 �

r1 0 0

0 − r2 0

0 0 − r3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (32)

Let λ � sθ; the characteristic equation of (32) is

λ − r1( 􏼁 λ + r2( 􏼁 λ + r3( 􏼁 � 0. (33)

So, the roots of the characteristic equation are
λ1 � r1, λ2 � − r2, and λ3 � − r3. )erefore,

arg λ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � 0<
θπ
2

,

arg λ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � arg λ3( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � π >
θπ
2

.

(34)

Consequently, by Lemma 5, the trivial equilibrium E0 of
system (16) is unstable. □

Theorem 4. If (a2r1/(a1 + mr1)) − r2 < 0 is met, the
boundary equilibrium E1 of system (16) is locally asymp-
totically stable.

Proof. )e corresponding Jacobian matrix at
E1 � ((r1/a1), 0, 0) is shown below:

J E1( 􏼁 �

− r1 −
r1

a1 + mr1
0

0
a2r1

a1 + mr1
− r2 0

0 0 − r3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (35)

At this point, the characteristic equation corresponding
to (35) is

λ + r1( 􏼁 λ + r3( 􏼁 λ −
a2r1

a1 + mr1
− r2􏼠 􏼡􏼠 􏼡 � 0. (36)

So, the roots of the characteristic equation are
λ1 � − r1, λ2 � (a2r1/(a1 + mr1)) − r2, λ3 � − r3. Owing to
the assumptions,

arg λ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � arg λ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � arg λ3( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � π >
θπ
2

. (37)

Consequently, E1 of system (16) is locally asymptotically
stable by Lemma 5. □

Theorem 5. In the case of [H1], if one of the following
conditions is met,

(1) r1(a2 − mr2) − a1r2 � (a1a2/m)< (r3(a2 − mr2)
2/

a2a4)

(2) r1(a2 − mr2) − a1r2 <min (a1a2/m), (r3(a2−􏼈

mr2)
2/a2a4)}

(3) (a1a2/m)< r1(a2 − mr2) − a1r2 < (r3(a2 − mr2)
2/

a2a4) and (p1/2
��
p2

√
)< cos(θπ/2), where p1 and p2

are given in the following proof; then, the boundary
equilibrium E2 � (�x, �y, 0) of system (16) is locally
asymptotically stable

Proof. In the case of [H1], the boundary equilibrium E2 �

(�x, �y, 0) of system exhibits. )e Jacobian matrix at E2 �

(�x, �y, 0) is as follows:
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J E2( 􏼁 �

m�x�y

(1 + m�x)
2 − a1�x −

�x

1 + m�x
0

a2�y

(1 + m�x)
2 0 − a3�y

0 0 a4�y − r3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (38)

)e characteristic equation of (38) is

λ2 − p1λ + p2􏼐 􏼑 λ − p3( 􏼁 � 0, (39)

where p1 � (m�x�y/(1 + m�x)2) − a1�x, p2 � (a2�x�y/(1+

m�x)3), and p3 � a4�y − r3.

(1) If r1(a2 − mr2) − a1r2 � (a1a2/m)< (r3(a2 − mr2)
2/

a2a4), we can find that p3 < 0 and p1 � 0; all char-
acteristic roots of equation (39) are λ1 �

��
p2

√
i, λ2 �

−
��
p2

√
i, and λ3 � p3; therefore,

arg λ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � arg λ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 �
π
2
>
θπ
2

,

arg λ3( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � π >
θπ
2

.

(40)

Hence, by Lemma 5, the equilibrium E2 about
system (16) is locally asymptotically stable.

(2) If r1(a2 − mr2) − a1r2 <min (a1a2/m), (r3(a2 −􏼈

mr2)
2/a2a4)}, we can find that p3 < 0 and p1 < 0.

Obviously,

arg λ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>
θπ
2

,

arg λ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>
θπ
2

,

arg λ3( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � π >
θπ
2

.

(41)

Accordingly, by Lemma 5, the equilibrium E2 about
system (16) is locally asymptotically stable.

(3) Using the given conditions, we can obtain all
characteristic roots of equation (39) are λ1 �

(p1/2) + (

�������

4p2 − p2
1

􏽱

/2)i, λ2 � (p1/2) − (
�����
4p2−

􏽰
p2
1 /

2)i, and λ3 � p3. Owing to (p1/2
��
p2

√
)< cos(θπ/2),

therefore,

arg λ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>
θπ
2

,

arg λ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>
θπ
2

,

arg λ3( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � π >
θπ
2

.

(42)

As a result, by Lemma 5, the equilibriumE2 about system
(16) is locally asymptotically stable. □

Theorem 6. If [H3]: a1 > (my∗/(1 + mx∗)) is satisfied, then
the positive equilibrium E3 � (x∗, y∗, z∗) about system (16) is
globally asymptotically stable.

Proof. )e Jacobian matrix at E3 � (x∗, y∗, z∗) is as follows:

J E3( 􏼁 �

mx
∗
y
∗

1 + mx
∗

( 􏼁
2 − a1x

∗
−

x
∗

1 + mx
∗ 0

a2y
∗

1 + mx
∗

( 􏼁
2 0 − a3y

∗

0 a4z
∗ 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (43)

)e characteristic equation of (43) is

λ3 + A1λ
2

+ A2λ + A3 � 0, (44)

where A1 � − ((mx∗y∗/(1 + mx∗)2) − a1x
∗),A2 � (a2x

∗y∗/
(1 + mx∗)3) + a3a4y

∗z∗, and A3 � − a3a4y
∗z∗((mx∗y∗/

(1 + mx∗)2) − a1x
∗). Based on our assumptions, we have

A1 > 0,

A1 A3

1 A2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
> 0,

A3 > 0.

(45)

By the Routh–Hurwitz criterion, all roots of (44) are
negative real parts; therefore,

arg λ1( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>
θπ
2

,

arg λ2( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>
θπ
2

,

arg λ3( 􏼁
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌>
θπ
2

.

(46)
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As a result, by Lemma 5, the equilibrium E3 about system
(16) is locally asymptotically stable.

Let us consider the Lyapunov function:

V(x, y, z) � x − x
∗

− x
∗ ln

x

x
∗􏼒 􏼓 +

1 + mx
∗

a2
y − y
∗

− y
∗ ln

y

y
∗􏼠 􏼡 +

a3 1 + mx
∗

( 􏼁

a2a4
z − z
∗

− z
∗ ln

z

z
∗􏼒 􏼓. (47)

Obviously, V(x, y, z)> 0 for any x, y, z> 0, except for
the positive equilibrium E3 � (x∗, y∗, z∗).

By Lemma 6, we have

D
θ
V(x, y, z)≤ 1 −

x
∗

x
􏼠 􏼡D

θ
x(t) +

1 + mx
∗

a2
1 −

y
∗

y
􏼠 􏼡D

θ
y(t)

+
a3 1 + mx

∗
( 􏼁

a2a4
1 −

z
∗

z
􏼠 􏼡D

θ
z(t)

� x − x
∗

( 􏼁 r1 − a1x −
y

1 + mx
􏼒 􏼓 +

1 + mx
∗

a2
y − y
∗

( 􏼁
a2x

1 + mx
− r2 − a3z􏼒 􏼓

+
a3 1 + mx

∗
( 􏼁

a2a4
z − z
∗

( 􏼁 a4y − r3( 􏼁

� x − x
∗

( 􏼁 a1x
∗

− a1x −
y

1 + mx
+

y
∗

1 + mx
􏼠 􏼡

+
1 + mx

∗

a2
y − y
∗

( 􏼁
a2x

1 + mx
−

a2x
∗

1 + mx
∗ − a3z + a3z

∗
􏼠 􏼡

+
a3 1 + mx

∗
( 􏼁

a2a4
y − y
∗

( 􏼁a4 y − y
∗

( 􏼁

� − a1 x − x
∗

( 􏼁
2

+
my
∗

x − x
∗

( 􏼁
2

(1 + mx) 1 + mx
∗

( 􏼁
.

(48)

Since a1 > (my∗/(1 + mx∗)), then we have DθV(x,

y, z)≤ 0. )us, E3 is globally asymptotically stable. □

4. Analysis of the Delayed Model

)e conditions for nonnegativity boundedness, existence,
and uniqueness derived for system (16) also apply to system
(2). Systems (2) and (16) have identical equilibrium points.
Due to the impact of time lags τ1 and τ2, the stability of
system (2) needs to be rediscussed. Next, the stability and
branch of system (2) are studied by selecting τ1 and τ2 as key

parameters, and the critical bifurcation value is discussed
precisely.

4.1. ?e Bifurcation of System (2) Caused by Delay τ1. In the
following analysis, we focus on time delay τ1 as the bifur-
cation parameter of system (2) and obtain the critical value
of Hopf bifurcation of the system.

Making transformation, P1(t) � x(t) − x∗, P2(t) � y(t)

− y∗, and P3(t) � z(t) − z∗. In consequence, system (2) is
able to be transformed into
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D
θ
P1(t) � P1(t) + x

∗
( 􏼁 r1 − a1 P1(t) + x

∗
( 􏼁 −

P2 t − τ1( 􏼁 + y
∗

1 + m P1(t) + x
∗

( 􏼁
􏼠 􏼡,

D
θ
P2(t) � P2(t) + y

∗
( 􏼁

a2 P1 t − τ2( 􏼁t + nx
∗

( 􏼁

1 + m P1(t) + x
∗

( 􏼁
− r2 − a3 P3 t − τ1( 􏼁 + z

∗
( 􏼁􏼠 􏼡,

D
θ
P3(t) � P3(t) + z

∗
( 􏼁 a4 P2 t − τ2( 􏼁 + y

∗
( 􏼁 − r3( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(49)

)e linearized scheme from system (49) results in

D
θ
P1(t) � b11P1(t) + b12P2 t − τ1( 􏼁,

D
θ
P2(t) � b21P1(t) + b22P2(t) + b23P1 t − τ2( 􏼁 + b24P3 t − τ1( 􏼁,

D
θ
P3(t) � b31P3(t) + b32P2 t − τ2( 􏼁,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(50)

where

b11 � r1 − 2a1x
∗

−
y
∗

1 + mx
∗

( 􏼁
2,

b12 � −
x
∗

1 + mx
∗,

b21 � −
a2mx

∗
y
∗

1 + mx
∗

( 􏼁
2,

b22 �
a2x
∗

1 + mx
∗ − r2 − a3z

∗
,

b23 �
a2y
∗

1 + mx
∗,

b24 � − a3y
∗
,

b31 � a4y
∗

− r3,

b32 � a4z
∗
.

(51)

)e characteristic equation of system (50) is as shown
below:

U1(s) + U2(s)e
− sτ1 � 0, (52)

where

U1(s) � s
3θ

+ − b31 − b22 − b11( 􏼁s
2θ

+ b22b31 + b11b31 + b11b22( 􏼁s
θ

− b11b22b31,

U2(s) � b12b21b31 − b21b12s
θ

+ b12b23b31 + b11b32b24 − b12b23s
θ

− b32b24s
θ

􏼐 􏼑e
− sτ2 .

(53)

)e real and imaginary parts of Uk(s) (k � 1, 2) are
represented by Ur

k and Ui
k. Suppose s is a purely imaginary

root of (52), where s � ω1(cos(π/2) + i sin(π/2)) (ω1 > 0); it
follows from (52) that

U
r
2 cos ω1τ1 + U

i
2 sin ω1τ1 � − U

r
1,

U
i
2 cos ω1τ1 − U

r
2 sin ω1τ1 � − U

i
1.

⎧⎨

⎩ (54)

In view of (54), we derive that

cos ω1τ1 � −
h1 ω1( 􏼁

h3 ω1( 􏼁
,

sin ω1τ1 � −
h2 ω1( 􏼁

h3 ω1( 􏼁
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(55)

where h1(ω1) � Ur
1U

r
2 + Ui

1U
i
2, h2(ω1) � Ur

1U
i
2 − Ur

2U
i
1, and

h3(ω1) � (Ur
2)

2 + (Ui
2)

2. It is apparent from (55) that
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h
2
1 ω1( 􏼁 + h

2
2 ω1( 􏼁 − h

2
3 ω1( 􏼁 � 0. (56)

In terms of cos ω1τ1 � − (h1(ω1)/h3(ω1)), we obtain

τk
10 �

1
ω1

arccos −
h1 ω1( 􏼁

h3 ω1( 􏼁
􏼠 􏼡 + 2kπ􏼢 􏼣, k � 0, 1, 2 . . . . (57)

Suppose the equation of (56) has a positive real root ω10;
we make

τ10 � min τk
10, k � 0, 1, 2 . . .􏽮 􏽯, (58)

where τk
10 is provided by (57).

If τ1 � 0, then (52) becomes

ς1(s) + ς2(s)e
− sτ2 � 0, (59)

where

ς1(s) � s
3θ

+ − b31 − b22 − b11( 􏼁s
2θ

+ b22b31 + b11b31 + b11b22 − b12b21( 􏼁s
θ

+ b12b21b31 − b11b22b31,

ς2(s) � − b12b23 − b32b24( 􏼁s
θ

+ b12b23b31 + b11b32b24.
(60)

Suppose that ςr
k and ςi

k represent the real and imaginary
parts of ςk(s) (k � 1, 2), s is a purely imaginary root of (59),
and s � ω1(cos(π/2) + i sin(π/2)) (ω1 > 0); we can get that

ςr
2 cos ω1τ2 + ςi

2 sin ω1τ2 � − ςr
1,

ςi
2 cos ω1τ2 − ςr

2 sin ω1τ2 � − ςi
1.

⎧⎨

⎩ (61)

Based on (61), we have

cos ω1τ2 � −
k1 ω1( 􏼁

k3 ω1( 􏼁
,

sin ω1τ2 � −
k2 ω1( 􏼁

k3 ω1( 􏼁
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(62)

where k1(ω1) � ςr
1ςr

2 + ςi
1ςi

2, k2(ω1) � ςr
1ςi

2 − ςr
2ςi

1, and
k3(ω1) � (ςr

2)
2 + (ςi

2)
2. It is apparent from (62) that

k
2
1 ω1( 􏼁 + k

2
2 ω1( 􏼁 − k

2
3 ω1( 􏼁 � 0. (63)

In the light of cos ω1τ2 � − (k1(ω1)/k3(ω1)), we obtain

τk
20 �

1
ω1

arccos −
k1 ω1( 􏼁

k3 ω1( 􏼁
􏼠 􏼡 + 2kπ􏼢 􏼣, k � 0, 1, 2 . . . . (64)

Suppose the equation of (63) has a positive real root, we
make

τ20 � min τk
20, k � 0, 1, 2 . . .􏽮 􏽯, (65)

where τk
20 is provided by (64).

Remark 1. If equation (56) has no positive roots, then the
system does not have bifurcation points. On the contrary, if
equation (56) has more than one positive root, we take the
minimum of all the roots. As mentioned above,
τ10 � min τk

10, k � 0, 1, 2 . . .􏼈 􏼉. Similarly, τk
20 is obtained this

way.

In order to better search for the criterion of the oc-
currence for bifurcation, the following hypotheses are
helpful and essential: [H4]: ((􏽢E1

􏽢F1 + 􏽢E2
􏽢F2)/(􏽢F

2
1 + 􏽢F

2
2))> 0,

where 􏽢E1, 􏽢E2, 􏽢F1, and 􏽢F2 are described in the following.

Lemma 8. Let s(τ1) � ξ(τ1) + iω1(τ1) be the root of (17)
near τ1 � τ1j meeting ξ(τ1j) � 0 and ω1(τ1j) � ω10, so the
following transversality criteria are true:

Re
ds

dτ1
􏼢 􏼣| ω1�ω10 ,τ1�τ10( )> 0, (66)

where ω10and τ10 are the critical frequency and the bifur-
cation point individually.

Proof. After differentiating equation (52) about τ1, we have

U1′(s)
ds

dτ1
+ U2′(s)

ds

dτ1
e

− sτ1 + U2(s)e
− sτ1 − τ1

ds

dτ1
− s􏼠 􏼡 � 0.

(67)

So, we can obtain

ds

dτ1
�

􏽢E(s)

􏽢F(s)
, (68)

where
􏽢E(s) � sU2(s)e

− sτ1 ,

􏽢F(s) � U1′(s) + U2′(s) − τ1U2(s)􏼂 􏼃e
− sτ1 .

(69)

Let 􏽢E1 and 􏽢E2 be the real and imaginary parts of 􏽢E(s)

individually. 􏽢F1 and 􏽢F2 be the real and imaginary parts of
􏽢F(s) severally. After several algebraic calculation, we get
from (68) that

Re
ds

dτ1
􏼢 􏼣| ω1�ω10 ,τ1�τ10( ) �

􏽢E1
􏽢F1 + 􏽢E2

􏽢F2

􏽢F
2
1 + 􏽢F

2
2

, (70)
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where

􏽢E1 � ω10 U
r
2 sin ω10τ10 − U

i
2 cos ω10τ10􏼐 􏼑,

􏽢E2 � ω10 U
r
2 cos ω10τ10 + U

i
2 sin ω10τ10􏼐 􏼑,

􏽢F1 � U1′( 􏼁
r

+ U2′( 􏼁
r

− τ10U
r
2􏼐 􏼑cos ω10τ10 + U2′( 􏼁

i
− τ10U

i
2􏼐 􏼑sin ω10τ10,

􏽢F2 � U1′( 􏼁
i
+ U2′( 􏼁

i
− τ10U

i
2􏼐 􏼑cos ω10τ10 − U2′( 􏼁

r
− τ10U

r
2􏼐 􏼑sin ω10τ10.

(71)

As a result, suppose [H4] implies that the transversality
criteria are true. )at is the proof of Lemma 8. □

With the support of Lemmas 7 and 8, the under theorem
can be derived.

Theorem 7. In the case of [H2], [H4], and τ2 ∈ [0, τ20), we
have the following results:

(1) ?e positive equilibrium E3 of system (2) is asymp-
totically stable when τ1 ∈ [0, τ10).

(2) System (2) exhibits a Hopf bifurcation at E3 when
τ1 � τ10, i.e., it has a branch of periodic solution
bifurcating from E3 near τ1 � τ10

4.2. ?e Bifurcation of System (2) Caused by Delay τ2. In the
following discussion, time delay τ2 is taken as the bifurcation
parameter of system (2), and the Hopf bifurcation criterion
of the system is obtained through theoretical analysis.

)e characteristic equation about system (2) is available:

V1(s) + V2(s)e
− sτ2 � 0, (72)

where

V1(s) � s
3θ

+ − b31 − b22 − b11( 􏼁s
2θ

+ b22b31 + b11b31 + b11b22( 􏼁s
θ

− b11b22b31 + b12b21b31 − b21b12s
θ

􏼐 􏼑e
− sτ1 ,

V2(s) � b12b23b31 + b11b32b24 − b12b23s
θ

− b32b24s
θ

􏼐 􏼑e
− sτ1 .

(73)

)e real and imaginary parts of Vk(s) (k � 1, 2) are
represented by Vr

k and Vi
k. Suppose s is a purely imaginary

root of (72), where s � ω2(cos(π/2) + i sin(π/2)) (ω2 > 0),
and we have

V
r
2 cos ω2τ2 + V

i
2 sin ω2τ2 � − V

r
1,

V
i
2 cos ω2τ2 − V

r
2 sin ω2τ2 � − V

i
1.

⎧⎨

⎩ (74)

With the help of (74), we have

cos ω2τ2 � −
l1 ω2( 􏼁

l3 ω2( 􏼁
,

sin ω2τ2 � −
l2 ω2( 􏼁

l3 ω2( 􏼁
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(75)

where l1(ω2) � Vr
1V

r
2 + Vi

1V
i
2, l2(ω2) � Vr

1V
i
2 − Vr

2V
i
1, and

l3(ω2) � (Vr
2)

2 + (Vi
2)

2. From (75), one has

l
2
1 ω2( 􏼁 + l

2
2 ω2( 􏼁 − l

2
3 ω2( 􏼁 � 0. (76)

In terms of cos ω2τ2 � − (l1(ω2)/l3(ω2)), we obtain

τk
20 �

1
ω2

arccos −
l1 ω2( 􏼁

l3 ω2( 􏼁
􏼠 􏼡 + 2kπ􏼢 􏼣, k � 0, 1, 2 . . . . (77)

Support the equation of (76) has a positive real root ω20,
and we make

τ20 � min τk
20, k � 0, 1, 2 . . .􏽮 􏽯, (78)

where τk
20 is provided by (77).

Once eliminating τ2 from (72), then

v1(s) + v2(s)e
− sτ1 � 0, (79)

where

v1(s) � s
3θ

+ − b31 − b22 − b11( 􏼁s
2θ

+ b22b31 + b11b31 + b11b22( 􏼁s
θ

− b11b22b31,

v2(s) � b12b21b31 + b12b23b31 + b11b32b24 + − b21b12 − b12b23 − b32b24( 􏼁s
θ
.

(80)
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Labels vr
k and vi

k represent the real and imaginary parts of
vk(s) (k � 1, 2). Suppose s is a purely imaginary root of (79),
where s � ω2(cos(π/2) + i sin(π/2)) (ω2 > 0), and we can
derive from (79) that

v
r
2 cos ω2τ1 + v

i
2 sin ω2τ1 � − v

r
1,

v
i
2 cos ω2τ1 − v

r
2 sin ω2τ1 � − v

i
1.

⎧⎨

⎩ (81)

By means of (81), we have

cos ω2τ1 � −
q1 ω2( 􏼁

q3 ω2( 􏼁
,

sin ω2τ1 � −
q2 ω2( 􏼁

q3 ω2( 􏼁
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(82)

where q1(ω2) � vr
1v

r
2 + vi

1v
i
2, q2(ω2) � vr

1v
i
2 − vr

2v
i
1, and

q3(ω2) � (vr
2)

2 + (vi
2)

2. It is obtained from (82) that

q
2
1 ω2( 􏼁 + q

2
2 ω2( 􏼁 − q

2
3 ω2( 􏼁 � 0. (83)

Because of cos ω2τ1 � − (q1(ω2)/q3(ω2)), we obtain

τk
10 �

1
ω2

arccos −
q1 ω2( 􏼁

q3 ω2( 􏼁
􏼠 􏼡 + 2kπ􏼢 􏼣, k � 0, 1, 2 . . . . (84)

Suppose (83) has a positive real root; we make

τ10 � min τk
10, k � 0, 1, 2 . . .􏽮 􏽯, k � 0, 1, 2 . . . , (85)

where τk
10 is provided by (84).

In order to better search for the criterion of the oc-
currence for bifurcation, the following hypotheses are
available and essential: [H5]: ((ℵ1I1 + ℵ2I2)/

(I2
1 + I2

2))> 0, where ℵ1, ℵ2, I1, and I2 are described in
the following.

Lemma 9. Let s(τ2) � ξ(τ2) + iω2(τ2) be the root of (29)
near τ2 � τ2j meeting ξ(τ2j) � 0 and ω2(τ2j) � ω20, so the
following transversality criteria are true:

Re
ds

dτ2
􏼢 􏼣| ω2�ω20 ,τ2�τ20( )> 0, (86)

where ω20 and τ20 are the critical frequency and the bifur-
cation point individually.

Proof. Differentiating equation (72) with respect to τ2, we
have

V1′(s)
ds

dτ2
+ V2′(s)

ds

dτ2
e

− sτ2 + V2(s)e
− sτ2 − τ2

ds

dτ2
− s􏼠 􏼡 � 0.

(87)

So, we can obtain

ds

dτ2
�
ℵ(s)

I(s)
, (88)

where

ℵ(s) � sV2(s)e
− sτ2 ,

I(s) � V1′(s) + V2′(s) − τ2V2(s)􏼂 􏼃e
− sτ2 .

(89)

Defineℵ1 andℵ2 be the real and imaginary parts ofℵ(s)

individually. I1 and I2 be the real and imaginary parts of
I(s) individually. After several algebraic calculations, we
receive from (88) that
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Figure 1: Case 1: the trajectories and phase diagrams of system (92) over time at τ1 � τ2 � 0.
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Re
ds

dτ2
􏼢 􏼣| ω2�ω20 ,τ2�τ20( ) �

ℵ1I1 + ℵ2I2

I
2
1 + I

2
2

, (90)
where

ℵ1 � ω20 V
r
2 sin ω20τ20 − V

i
2 cos ω20τ20􏼐 􏼑,

ℵ2 � ω20 V
r
2 cos ω20τ20 + V

i
2 sin ω20τ20􏼐 􏼑,

I1 � V1′( 􏼁
r

+ V2′( 􏼁
r

− τ20V
r
2􏼐 􏼑cos ω20τ20 + V2′( 􏼁

i
− τ20V

i
2􏼐 􏼑sin ω20τ20,

I2 � V1′( 􏼁
i
+ V2′( 􏼁

i
− τ20V

i
2􏼐 􏼑cos ω20τ20 − V2′( 􏼁

r
− τ20V

r
2􏼐 􏼑sin ω20τ20.

(91)

As a result, suppose [H5] implies the transversality
criteria are true. )at is the proof of Lemma 9. □

With the support of Lemmas 7 and 8, the under theorem
can be derived.

Theorem 8. In the case of [H2], [H5], and τ1 ∈ [0, τ10), we
have the following results:

(1) ?e equilibrium E3 of system (2) is asymptotically
stable when τ2 ∈ [0, τ20)
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Figure 2: Case 1: the phase diagrams for system (92) at τ1 � τ2 � 0 and θ � 0.9.
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(2) System (2) occurs a Hopf bifurcation at E3 when
τ2 � τ20, i.e., it has a branch of periodic solution
bifurcating from E3 near τ2 � τ20

Remark 2. In the previous work, many authors discussed
Hopf bifurcations for fractional-order systems with single
delay [39, 40], but in this study, we study Hopf bifurcations
for fractional-order systems with two delays, which is of

great significance for the discussion of Hopf bifurcations for
systems with multiple delays.

Remark 3. In fact, the fractional-order system has a
wider stability region than the integer order system. In other
words, the fractional-order number will affect the stability of
the system, taking the fractional-order number as the bi-
furcation parameter will also cause Hopf bifurcation.
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Figure 4: Case 2: the trajectories and phase diagrams of system (92) over time at τ2 � 2.5.
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Figure 5: Case 3: the trajectories and phase diagrams of system (92) over time at τ2 � 0.
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5. Numerical Results

Now, we verify our theoretical consequences by numerical
simulations. For practical reasons, we only analyze the
positive equilibrium E3, rather than E0, E1, or E2. We set
r1 � 1.5, r2 � 0.125, r3 � 0.25, a1 � 1.2, a2 � 0.4, a3 � 0.6,
a4 � 0.4, and m � 0.5; then, system (2) can be transformed
into

D
θ
x(t) � x(t) 1.5 − 1.2x(t) −

y t − τ1( 􏼁

1 + 0.5x(t)
􏼠 􏼡,

D
θ
y(t) � y(t)

0.4x t − τ2( 􏼁

1 + 0.5x(t)
− 0.125 − 0.6z t − τ1( 􏼁􏼠 􏼡,

D
θ
z(t) � z(t) 0.4y t − τ2( 􏼁 − 0.25( 􏼁.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(92)
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Figure 6: Case 3: the trajectories and phase diagrams of system (92) over time at τ1 � 2.
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Figure 7: Case 4: the trajectories and phase diagrams of system (92) at τ1 � 2 and τ2 � 0.4.
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We can easily verify that the system only has a positive
equilibrium, E3 � (0.8895, 0.6250, 0.2021).

Case 1. We set τ1 � τ2 � 0, θ � 0.8, 0.9, 1, and then, we can
verify that the system meets the condition of )eorem 6;
Figure 1 indicates the positive equilibrium E3 of system (92)
is stable. Particularly, if θ � 0.9, Figure 2 shows that E3 of
system (92) is globally asymptotically stable.

To discuss the bifurcation points about system (92), let us
define θ � 0.9.

Case 2. We fix τ2 and choose τ1 as the branch parameter to
consider the bifurcation of system (92). If τ1 � 0, we can
figure out that τ20 � 3.6581. In Figure 3, it implies system
(92) is asymptotically stable when τ1 � 0 and τ2 � 3, and we

can clearly find that the system is not stable and Hopf bi-
furcation appears when τ1 � 0 and τ2 � 4. )en, we can
calculate that τ10 � 0.8649 when τ2 � 2.5. Based on)eorem
7, system (92) is asymptotically stable if τ1 � 0.3(< 0.8649)

and τ2 � 2.5. However, if we increase τ1 from 0.3 to
0.9(> 0.8649), system (92) is unstable and Hopf bifurcation
occurs, see Figure 4.

Case 3. We fix τ1 and choose τ2 as the branch parameter to
consider the bifurcation of system (92). When τ2 � 0, we
can calculate that τ10 � 4.0646. In Figure 5, it implies
system (92) is asymptotically stable when τ1 � 3.2 and
τ2 � 0, and we can clearly find that system (92) is not stable
and Hopf bifurcation appears when τ1 � 4.2 and τ2 � 0.
)en, we can get that τ20 � 3.5566 when τ1 � 2. By)eorem
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Figure 8: Case 4: effect of θ on bifurcation point τ10.
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Figure 9: Case 5: the trajectories and phase diagrams of system (92) at τ1 � 0.2 and τ2 � 3.3.
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8, system (92) is asymptotically stable when τ1 � 2 and
τ2 � 1(< 3.5566). However, if we increase τ2 from 1 to
3.6(> 3.5566), system (92) is unstable and Hopf bifurcation
occurs, see Figure 6.

In order to study the impact of fractional order on bi-
furcation points, we make the following simulation results.

Case 4. We choose τ2 � 0.4. When θ � 1, we can calculate
τ10 � 1.5156. At this time, we take τ1 � 2(> 1.5156), and
Hopf bifurcation appears in system (92). When θ � 0.9, we
can calculate τ10 � 3.5790; then, we take τ1 � 2(< 3.5790);
system (92) is asymptotically stable. Look at Figure 7. Fig-
ure 8 shows the impact of fractional order on τ1.

Case 5. Similarly, we take τ1 � 0.2. When θ � 1, we can
obtain τ20 � 3.2996. At this time, we take
τ2 � 3.3(> 3.2996), and Hopf bifurcation appears in system
(92). When θ � 0.9, we can get τ20 � 5.3302, and we take
τ2 � 3.3(< 5.3302); system (92) is asymptotically stable (see
Figure 9). Figure 10 shows the impact of fractional order on
τ2.

6. Conclusion

In this study, a fractional-order food chain system involving
two time delays has been presented. Nonnegative, bounded,
existence, and uniqueness about the solution of the system
have been proved. For nondelay system, we have discussed
the local stability of the system equilibrium point and proved
the globally asymptotically stability of the positive equilib-
rium point by constructing Lyapunov functions. By using
time delays as parameters to discuss the Hopf bifurcation,
which has showed that when the delay exceeds the critical
value, the Hopf bifurcation will appear in the system, that is
to say, the system will change from stable to unstable and a
periodic solution will appear. In particular, the periodic
oscillation behavior of the system could be suppressed by
fractional order, which has indicated that the fractional-

order system has a larger range of stability region than the
integer-order system.
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