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*e manipulation of multiple physical connected objects can be described by virtual connected string system. We proposed a
Lyapunov-based stabilization control approach for virtual connected string with midway discontinue vertical force. *e system is
with Riemannian boundary. We use the backstepping method to transform the system into a stable system with Dirichlet
boundary. In this way, we get the controller to make sure the closed-loop system converge to the zero point exponentially. *en,
we construct a Lyapunov function to analyze the stability for the closed-loop system. We also show the system is well-posedness.
Also, we use the active disturbance rejection control (ADRC) to reject the disturbance when disturbance is present. Some
numerical stimulations show that the control law is the effective.

1. Introduction

Multirobot transportation system has been one of the most
potential research fields in recent years, and the majority of
these studies are focused on multiple robots manipulating a
single object, while the manipulated object in this paper is a
class of multiple physical connected objects (MPO). *e
manipulation of MPO has been widely used both in daily life
and industrial application. As an example, flood shield is
used to obstruct flood disaster. *ese shields are connected
with each other, and each shield is immobilized by fixed
oblique support, flexible oblique support, or vertical support,
which are represented in Figures 1(a)–1(c), respectively.
Retaining wall is another typical application of MPO, i.e.,
retaining mesh, which is supported by multiple linked rods,
as shown in Figure 1(d). One more abstracted application, a
multiple link model-based human body is held by two-arm
service robot, as shown in Figure 1(e). In this application,
human beings are abstracted as free-ended multiple con-
nected rigid bodies, and these rigid bodies are manipulated
by two arms, respectively. Similar to above applications, the
pushing manipulation problem of mobile support robot

(MSR, also known as hydraulic support or roof support) on
underground fully mechanized coal mining face is a such
kind of system as well. Since the manipulated object, i.e.,
scraper conveyor, is composed of multiple middle troughs
(MTs), we simplified scraper conveyor as multiple connected
objects with physical connections. As shown in Figures 1(f )
and 1(g), both the physical and simulated workplace of
multiple MTs manipulated by MSRs on ground is repre-
sented, respectively. With simplification, as shown in
Figure 1(h), MPO is replaced by external virtual string.*en,
the simulated external constraint using virtual connected
string is presented, as shown in Figure 1(i).

Due to loadable characteristics as well as its mobility
through pushing and advancing, the manipulation problem
of MSRs is one of the most complicated problems on un-
derground fully mechanized coal mining face. Based on our
previous research on the underground multirobot system
[1, 2], we found the main difficulty is modeling the external
constraints. Considering the commonalities of above ap-
plications, a reasonable assumption is proposed by replacing
MPOwith virtual connected string constraints, and themain
problem is boundary stabilization of virtual connected string

Hindawi
Journal of Mathematics
Volume 2022, Article ID 5336512, 12 pages
https://doi.org/10.1155/2022/5336512

mailto:lin.zhang_2014@hotmail.com
https://orcid.org/0000-0002-5140-1096
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/5336512


system. *us, one contribution of this paper is replacing the
manipulated MPO with a virtual connected string. *en, the
problem is converted to the system stabilization of the
connected string system considering pushing disturbance
and antidamping.

*e study for the virtual connected string equations has
drawn significant attention in recent years. It can be applied
widely in engineering field. For example, aerial cable, traffic
problem, and transmission lines can be described by con-
nected string systems [3, 4]. In [5], the stability of strings
with various connected feedbacks is studied by spectral
analysis. In [2], the control of a connected string converter
modeled from electrical power is studied. In [6], the sym-
metry is considered for the system of strings. Other literature
relevant can be found in [7–9] and the references therein.

Although there are some works on the stability of
connected strings, there is still no result on the Lyapunov
stability analysis for connected strings. It needs some
mathematical techniques to find the suitable Lyapunov
function for connected strings. Moreover, these models are
without disturbance. However, disturbance is usually
present in practical applications [10–12]. So, we are also
concerned with the disturbance for the model. Sliding mode
control and active disturbance rejection control (ADRC) are
usually used to reject the disturbance [13–19]. ADRC is used
in this paper. ADRC shows its advantages because it can not
only estimate the disturbance but also counteract the dis-
turbance (see [20–24]).

We consider a connected string system, which is con-
nected at point x � 1 in [0, 2]:

χtt(x, t) � χxx(x, t), x ∈ (0, 1)∪ (1, 2), t> 0,

χ 1−
, t( ) � χ 1+

, t( , t≥ 0,

χx 1−
, t( ) − χx 1+

, t(  � qχt(1, t), t≥ 0,

χx(0, t) � U(t) + r(t), t≥ 0,

χx(2, t) � 0, t≥ 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩
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Figure 1: Widely applied scenarios of MPO. (a) Flood shield immobilized by multiple fixed oblique supports. (b) Flood shield immobilized
by multiple flexible oblique supports. (c) Flood shield immobilized by multiple vertical supports. (d) Retaining wall supported by multiple
bars. (e) Multiple link model-based person held by the two-arm service robot. (f ) *e simulated workplace of multiple MTs manipulated by
MSRs on the ground. *e scraper conveyor is composed of many middle troughs (MTs) and each MT is connected with other. MSRs push
corresponding MT forward. (g) *e diagram of the multirobot system with MPO. (h) Generalized system architecture of the multirobot
system, whose manipulating object is replaced with virtual external string. (i) Simulated external constraints through virtual connected
string, and both the disturbance and antidamping are presented.
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where χ is the state, U(t) is the input, q> 0, q≠ 2, and r is the
disturbance; we also assume |r(t)| ≤M, |r

.
(t)|≤M,∀t> 0.

*e connected term is the discontinuity of vertical force
component; it is antistable.

We introduce a new variable φ(x, t) � [φ1(x, t),

φ2(x, t)]T, where

φ1(x, t) � χ(x, t),φ2(x, t) � χ(2 − x, t), x ∈ [0, 1], t≥ 0.

(2)

*en, system (1) becomes

φtt(x, t) � φxx(x, t), 0< x< 1, t> 0,

φ1(1, t) � φ2(1, t), t≥ 0,

φ1x(1, t) + φ2x(1, t) � qφ1t(1, t), t≥ 0,

φ1x(0, t) � U(t) + r(t), t≥ 0,

φ2x(0, t) � 0, t≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

It can be seen that the string is unstable because there is
an antidamping in the term of discontinuity of the vertical
force. Also, the boundary is Riemannian, which gives rise to
difficulty to make it converge to zero point.*e contribution
is compensating the unstable term as well to make sure that
it can converge to zero. We used the backstepping trans-
formation (see [25–27]) to deal with the unstable term, and
we are the first to give the Lyapunov function for connected
strings.

*e paper is organized as follows. Section 2 designs the
controller. Section 3 shows MATLAB simulations, and
Section 4 gives the conclusion remarks.

2. The Control Design

An invertible backstepping transformation is introduced by

θ1(x, t) � φ1(x, t) +
q(q + c)

4 − q
2 φ1(x, t) + φ2(x, t)  −

q(q + c)

4 − q
2 φ1(1, t) + φ2(1, t) 

+
2(q + c)

4 − q
2 

1

x
φ1t(y, t) + φ2t(y, t) dy,

(4)

θ2(x, t) � φ2(x, t), (5)

where q> 0, q≠ 2 and c> 0, c≠ 2; its inverse transformation
is

φ1(x, t) � θ1(x, t) +
q(q + c)

4 − c
2 θ1(x, t) + θ2(x, t)  −

q(q + c)

4 − c
2 θ1(1, t) + θ2(1, t) 

+
2(q + c)

4 − c
2 

1

x
θ1t(y, t) + θ2t(y, t) dy,

φ2(x, t) � θ2(x, t).

(6)

By transformation (4) and (5), system (3) is going to be

θtt(x, t) � θxx(x, t), 0<x< 1, t> 0,

θ1(1, t) � θ2(1, t), t≥ 0,

θ1x(1, t) + θ2x(1, t) � −cθ1t(1, t), t≥ 0,

θ1x(0, t) �
4 − c

2

4 + qc
(U(t) + r(t)) −

2(q + c)

4 + qc
θ1t(0, t) + θ2t(0, t)( , t≥ 0,

θ2x(0, t) � 0, t≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)
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By the transformation, the connected antidamping is
moved to the boundary. We give a controller:

U1(t) �
2(q + c)

4 − c
2 θ1t(0, t) + θ2t(0, t) 

+ k
4 + qc

4 − c
2θ1(0, t), k> 0,

(8)

to deal with the antidamping term at point x � 0. Under the
control of

U(t) � U0(t) + U1(t), (9)

where U0(t) is a new control to be designed to contract the
disturbance. System (7) becomes

θtt(x, t) � θxx(x, t), 0<x< 1, t> 0,

θ1(1, t) � θ2(1, t), t≥ 0,

θ1x(1, t) + θ2x(1, t) � −cθ1t(1, t), t≥ 0,

θ1x(0, t) �
4 − c

2

4 + qc
U0(t) + r(t)(  + kθ1(0, t), t≥ 0,

θ2x(0, t) � 0, t≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

We consider system (10) in the Hilbert space

H � u1, v1, u2, v2(  ∈ H
1
(0, 1) × L

2
(0, 1) 

2
|u1(1) � u2(1) .

(11)

With the inner product induced norm, for
∀(u1, v1, u2, v2) ∈H,

u1, v1, u2, v2( 
����

 � 
1

0
u1′(x)



2

+ v1(x)



2

+ u2′(x)



2

+ v2(x)



2

 dx + k u1(0)



2
. (12)

Introduce an unbounded linear operator
A: D(A)( ⊂H)⟶H:

AZ � v1, u1″, v2, u2″( ,∀Z � u1, v1, u2, v2(  ∈ D(A),

D(A) � Z ∈ H∩ H
2
(0, 1) × H

1
(0, 1) 

2


u1′(1) + u2′(1) � −cv1(1),

u1′(0) � ku1(0),

u2′(0) � 0,

v1(1) � v2(1),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

and then, system (10) can be written in the evolution
equation form in H:

d
dt

Z(t) � A θ1(·, t), θ1t(·, t), θ2(·, t), θ2t(·, t)(  −
4 − c

2

4 + qc
B U0(t) + r(t)( 

Z(·, 0) � θ1(·, 0), θ1t(·, 0), θ2(·, 0), θ2t(·, 0)( ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)
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where Z(t) � (θ1(·, t), θ1t(·, t), θ2(·, t), θ2t(·, t)) and B �

(0, δ(x), 0, 0). We get the following two lemmas.

Lemma 1. A generates an exponentially stable
C0-semigroup.

Proof. We will first demonstrate that A generates a
C0-semigroup. A direct computation gives

ReA u1, v1, u2, v2( 
T
, u1, v1, u2, v2( 

T

� 
1

0
v1′(x, t)u1″(x, t) + u1″(x, t)v1(x, t) + v2′(x, t)u2″(x, t) + u2″(x, t)v2(x, t)( dx + kv1(0)u1(0)

� −c v1(1)



2 ≤ 0.

(15)

So, A is dissipative.
For any given (ϕ1,φ1, ϕ2,φ2) ∈H, solveA(u1, v1, u2, v2)

� (ϕ1,φ1,ϕ2,φ2), to obtain

v1(x) � ϕ1(x),

v2(x) � ϕ2(x),
 (16)

which gives

u1(x) � (kx + 1)u1(0) + 
x

0
φ1(η)(x − η)dη ,

u2(x) � u2(0) + 
x

0
φ2(η)(x − η)dη,

u1(0) � −
1
k


1

0
φ1(η) + φ2(η)( dη + cv1(1) ,

u2(0) � (k + 1)u1(0) + 
1

0
φ1(η)(1 − η)dη − 

1

0
φ2(η)(1 − η)dη .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

So, (u1, v1, u2, v2) ∈H is unique. Hence,A− 1 exists, and
from the Sobolev embedding theorem, it is also compact on
H. Using Lumer–Phillips theorem (see [28]), A generates a
C0-semigroup of contractions eAt.

Next, we show that A is exponentially stable. We
consider the evolution equation:
d
dt

Z(t) � AZ(t), Z(t) � θ1(·, t), θ1t(·, t), θ2(·, t), θ2t(·, t)( ,

(18)

which equals to the following PDE:

θtt(x, t) � θxx(x, t), 0< x< 1, t> 0,

θ1(1, t) � θ2(1, t), t≥ 0,

θ1x(1, t) + θ2x(1, t) � −cθ1t(1, t) t≥ 0,

θ1x(0, t) � kθ1(0, t), t≥ 0,

θ2x(0, t) � 0 t≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

Let V(t) be a function given by

V(t) �
1
2


1

0
θ21x(x, t) + θ21t(x, t) + θ22x(x, t) + θ22t(x, t) dx +

1
2

kθ21(0, t)

+ δ
1

0
θ1x(x, t)θ1t(x, t) + θ2x(x, t)θ2t(x, t) dx

+ δ
1

0
θ1t(x, t)θ2x(x, t) + θ2t(x, t)θ1x(x, t) dx,

(20)

where δ > 0 and δ is sufficiently small.
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From Cauchy–Schwartz and Young’s inequalities, it is
found that, for δ ≤min 1/3, k/3{ }, there exists m1, m2 > 0 so
that m1‖Z(t)‖2 ≤V(t)≤m2‖Z(t)‖2, where

m1 � min
1 − 3δ
2

,
k − 3δ

2
 ,

m2 � max
1 + 3δ
2

,
k + 3δ

2
 ,

‖Z(t)‖
2

� θ1x

����
����
2

+ θ1t

����
����
2

+ θ1(0)
����

����
2

+ θ2x

����
����
2

+ θ2t

����
����
2
.

(21)

Hence, V(t) is a proper Lyapunov function for (23). By
taking the deviation of V(t) in t, we have

_V(t) � 
1

0
θ1x(x, t)θ1xt(x, t) + θ1t(x, t)θ1tt(x, t) + θ2x(x, t)θ2xt(x, t) + θ2t(x, t)θ2tt(x, t) dx

+ kθ1(0, t)θ1t(0, t) + δ
1

0
θ1xt(x, t)θ1t(x, t) + θ1x(x, t)θ1tt(x, t) + θ2xt(x, t)θ2t(x, t) + θ2x(x, t)θ2tt(x, t) dx

+ δ
1

0
θ1tt(x, t)θ2x(x, t) + θ1t(x, t)θ2xt(x, t) + θ2tt(x, t)θ1x(x, t) + θ2t(x, t)θ1xt(x, t) dx,

� 
1

0
θ1x(x, t)θ1xt(x, t) + θ1t(x, t)θ1xx(x, t) + θ2x(x, t)θ2xt(x, t) + θ2t(x, t)θ2xx(x, t) dx

+ kθ1(0, t)θ1t(0, t) + δ
1

0
θ1xt(x, t)θ1t(x, t) + θ1x(x, t)θ1xx(x, t) + θ2xt(x, t)θ2t(x, t) + θ2x(x, t)θ2xx(x, t) dx

+ δ 
1

0
θ1xx(x, t)θ2x(x, t) + θ1t(x, t)θ2xt(x, t) + θ2xx(x, t)θ1x(x, t) + θ2t(x, t)θ1xt(x, t) dx,

� θ1t(1, t)θ1x(1, t) − θ1t(0, t)θ1x(0, t) + θ2t(1, t)θ2x(1, t) − θ2t(0, t)θ2x(0, t)

+ kθ1(0, t)θ1t(0, t) −
δ
2


1

0
θ21x(x, t) + θ21t(x, t) + θ22x(x, t) + θ22t(x, t) dx

+
δ
2

θ21t(1, t) + θ21x(1, t) + θ22t(1, t) + θ22x(1, t)  −
δ
2

θ21x(0, t) + θ21t(0, t) + θ22x(0, t) + θ22t(0, t) 

+ δ θ1x(1, t)θ2x(1, t) − θ1x(0, t)θ2x(0, t) + θ1t(1, t)θ2t(1, t) − θ1t(0, t)θ2t(0, t) ,

� 2 +
c
2

2
 δ − c θ21t(1, t) −

δ
2


1

0
θ21x(x, t) + θ21t(x, t) + θ22x(x, t) + θ22t(x, t) dx

−
δ
2

k
2θ21(0, t) + θ1t(0, t) + θ2t(0, t)( 

2
 .

(22)

Let δ <min 1/3, (k/3)4c/4 + c2  and α � max 1, k2 

δ/2m1, and we get _V(t)≤ − αV(t), which gives the
result. □

Lemma 2. B is admissible to eAt.

Proof. By direct computation, we obtain

A
∗

u1, v1, u2, v2(  � −v1, −u1″, −v2, −u2″( ,

D A
∗

(  � u1, v1, u2, v2(  ∈ H∩ H
2
(0, 1) × H

1
(0, 1) 

2
|u1′(1) + u2′(1) � cv1(1), u1′(0) � ku1(0), u2′(0) � 0, v1 � v2 .

⎧⎪⎨

⎪⎩

(23)
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*e dual system of (10) is

θ∗tt(x, t) � θ∗xx(x, t), 0< x〈1, t〉0,

θ∗1(1, t) � θ∗2(1, t), t≥ 0,

θ∗1x(1, t) + θ∗2x(1, t) � cθ∗1t(1, t), t≥ 0,

θ∗1x(0, t) � kθ∗1(0, t), t≥ 0,

θ∗2x(0, t) � 0, t≥ 0,

y(t) � −
4 − c

2

4 + qc
θ∗1t(0, t).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)

A generates a C0-semigroup, so A∗ generates a
C0-semigroup.

*e energy of system (25) is

E(t) �
1
2


1

0
θ∗1x(x, t)

2
+ θ∗1t(x, t)

2
+ θ∗2x(x, t)

2


+ θ∗2t(x, t)
2
dx + kθ∗1(0, t)

2
.

(25)

*en, E(t)≤E(0). Let ρ(t) � 
1
0(x − 1)θ∗1x(x, t)θ∗1t(x, t)

+ xθ∗2x(x, t)θ∗2t(x, t)dx. Differentiate ρ(t) with respect to t to
yiel

_ρ(t) �
1
2

θ∗21x(0, t) + θ∗21t (0, t) + θ∗22x(1, t) + θ∗22t (1, t) dx

− E(t) +
1
2

kθ∗ 21 (0, t).

(26)

We, thus, have


T

0
|y(t)|

2dt �
4 − c2

4 + qc
 

2


T

0
θ∗1t(0, t)



2dt

≤ 2T
4 − c2( 

4 + qc
 

2

E(0).

(27)

Similar to the computation of A− 1

A
∗− 1

u1

v1

u2

v2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

(1 + kx)a − 
x

0
v1(η)(x − η)dη

−u1(x)

b − 
x

1
v2(η)(x − η)dη

−u2(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

∀

u1

v1

u2

v2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈H,

(28)

where

a �
1
k


1

0
φ1(η) + φ2(η)( dη − cv1(1) ,

b � (k + 1)a − 
1

0
φ1(η)(1 − η)dη

+ 
1

0
φ2(η)(1 − η)dη,

B
∗
A
∗− 1

u1

v1

u2

v2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� −u1(0).

(29)

*erefore, on HB∗A∗− 1 is bounded. Combined with
(26), we show that B is admissible to eAt (see [29, 30]).

From the two lemmas above, the evolution equation (14)
has a unique weak solution in H. *erefore, for
∀(θ1(., t), θ1t(., t), θ2(., t), θ2t(., t))T ∈H, U0 ∈ L2

loc(0,∞),
system (10) has a unique weak solution
(θ1(x, t), θ1t(x, t), θ2(x, t), θ2t(x, t))T ∈H,
∀(u1, v1, u2, v2)

T ∈ D(A∗),

d
dt
〈

θ1

θ1t

θ2

θ2t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

u1

v1

u2

v2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

〉 �〈

θ1

θ1t

θ2

θ2t

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,A
∗

u1

v1

u2

v2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

〉

− g1(0)
4 − c

2

4 + qc
U0(t) + r(t) ,

(30)
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that is,

d
dt


1

0
θ1x(x, t)u1′(x) + θ1t(x, t)v1(x) + θ2x(x, t)u2′(x) + θ2t(x, t)v2(x) dx

� 
1

0
−θ1x(x, t)v1′(x) − θ1t(x, t)u

2
1(x) − θ2x(x, t)v2′(x) − θ2t(x, t)u

2
2(x) dx

− v1(0)
4 − c

2

4 + qc
U0(t) + r(t) .

(31)

Next, we will reject the disturbance d. An observer is
chosen as

y1(t) � 
1

0
θ1t(x, t) +

1
2

cxθ1x(x, t) + θ2t(x, t) +
1
2

cxθ2x(x, t) dx, t≥ 0,

y2(t) � 
1

0
θ1t(x, t) + θ2t(x, t)( dx, t≥ 0.

(32)

From equality (31), we have

_y1(t) � −
c

2
y2(t) −

4 − c
2

4 + qc
U0 + r(t)( . (33)

We choose the high gain estimator to be (see [23])

_y(t) � −
4 − c

2

4 + qc
U0(t) + r(t)(  −

c

2
y2(t) −

1
ε

y(t) − y1(t)( ,

_r(t) �
1
ε2

4 + qc

4 − c
2 y(t) − y1(t)( ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(34)

where ε> 0 is the design small parameter and r is the ap-
proximation of disturbance r. Let

y(t) � y(t) − y1(t), r(t) � r(t) − r(t), (35)

be the errors. *en, y and r satisfy

d
dt

y(t)

d(t)

⎛⎝ ⎞⎠ �

−
1
ε

−
4 − c

2

4 + qc)

1
ε2

4 + qc

4 − c
2 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

y(t)

d(t)

⎛⎝ ⎞⎠ +

0

−1
⎛⎝ ⎞⎠ _d(t) � A

y(t)

d(t)

⎛⎝ ⎞⎠ + B _d(t). (36)

*e collocated feedback controller of (10) is designed to
be

U0(t) � −sat(r(t)), (37)

where sat(x) �

M, x≥M + 1,

x, x ∈ (−M − 1, M + 1),

−M, x≤ − M − 1.

⎧⎪⎨

⎪⎩
with controller

U0(t) � U0(t) + U1(t); the closed-loop system of (10) is

8 Journal of Mathematics



θtt x, t � θxx(x, t)( , 0< x< 1, t> 0,

θ1(1, t) � θ2(1, t), t≥ 0,

θ1x(1, t) + θ2x(1, t) � cθ1t(1, t), t≥ 0,

θ1x(0, t) �
4 − c

2

4 + qc
(−sat(r(t) + r(t)) + r(t)) + kθ1(0, t), t≥ 0,

θ2x(0, t) � 0, t≥ 0,

y(t) � −
4 − c

2

4 + qc
(−sat(r(t)) + r(t)) −

c

2
y2(t) −

1
ε

y(t) − y1(t)( , t≥ 0,

r(t) �
1
ε2

4 − qc

4 + c
2 (y(t) − y(t)), t≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(38)

We get the following theorem concerning the stability
when disturbance in involved. □

Theorem 1. If |r| and | _r| are bounded measurable, then, for
any initial value θ(·, t) ∈H, there exists a unique solution
(θ, θt) ∈ C(0,∞;H) for the closed-loop system (39) of (7):

θtt x, t � θxx(x, t)( , 0<x< 1, t> 0,

θ1(1, t) � θ2(1, t), t≥ 0,

θ1x(1, t) + θ2x(1, t) � cθ1t(1, t), t≥ 0,

θ1x(0, t) �
4 − c

2

4 + qc
(−sat(r(t) + r(t)) + r(t)) + kθ1(0, t), t≥ 0,

θ2x(0, t) � 0, t≥ 0,

y(t) � −
1
ε
y(t) −

4 − c
2

4 + qc
r(t), t≥ 0,

r(t) �
1
ε2

4 − qc

4 + c
2 y(t) − r(t), t≥ 0,

y1(t) � 
1

0
θ1t(x, t) +

1
2

cxθ1x(x, t) + θ2t(x, t) +
1
2

cxθ2x(x, t) dx, t≥ 0,

y2(t) � 
1

0
θ1t(x, t) + θ2t(x, t)( dx, t≥ 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(39)

Moreover, the solution of (39) converges to any arbitrary
given neighborhood of zero when t⟶∞ and ε⟶ 0.

For the proof of *eorem 1, we omit the proof, since it
can be easily proved followed by [19, 24].

3. Numerical Simulations

In this section, we compute the state for the closed-loop
system (39) by the finite difference method [19]. Here,
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Figure 2: (a) *e displacement of θ1; (b) the displacement of θ2.
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Figure 3: (a) *e velocity of θ1t; (b) the velocity of θ2t.
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q � 5, c � 1.5, k � 5, and d � 3 sin(2t). Figure 2 shows that
the displacement of θ1 and θ2 converges to zero. Figure 3
shows the velocity of θ1t and θ2t tend to zero. Figure 4 shows
the estimation of r fits well with the value of r. *us, the
control law is effective.

4. Conclusion

A virtual connected string system with midway discontinue
vertical force model is proposed for the underground
multirobot system, and the Lyapunov-based stabilization
control approach for virtual connected string is studied in
the paper. *e system is with Riemannian boundary. *e
backstepping is used to move the antistable term to the
boundary thus to give the controller and Lyapunov approach
is used to analyze the stability for the closed-loop system
when the disturbance is absent. *en, ADRC is used to
estimate and reject the disturbance. We can study the n
stings with discontinue vertical force in the further research.
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