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We study the hierarchy commonly defined as an infinite sequence of partial differential equations which begins with the
Korteweg–de Vries equation and its modified version. An important feature of the hierarchy is its highly nonlinear property. In
this regard, obtaining solutions for the members of the hierarchy poses a great problem. In this paper, we propose a method to
allow for the construction of solutions to the full hierarchy. Our approach involves a recursion operator in the conservation law of
the hierarchy. +e efficiency of the method is demonstrated by selected examples. In certain cases, we obtain snoidal solutions.

1. Introduction

+e Korteweg–de Vries (KdV) equation,

ut � uxxx − 6uux, (1)

attributed to the Dutch mathematicians Diederik Korteweg
and Gustav de Vries (1895), is a mathematical model of
waves on shallow water surfaces whose origin has a long
history. To this day, the KdV equation is still considered as
one of the most important nonlinear partial differential
equations as it has a wide variety of applications [1]. It was
originally derived to model the propagation of weakly
dispersive nonlinear water waves and serve as a model
equation for any physical system in consideration [2]. In
most contexts, u(x, t) is the function that denotes the
elongation of the wave at space x and time t [3].

KdV equation (1) naturally extends to an infinite se-
quence of integrable nonlinear partial differential equations
of solitonic characters [4] and can be considered as the
initiator of the KdV hierarchy, denoted by

ut � D
2
x − 4u − 2uxD

− 1
x 

n
ux, n � 1, 2, . . . , (2)

where Dx denotes the total derivative and D− 1
x denotes the

integral with respect to x. +e second member of the hi-
erarchy is given when n � 2 in (2), viz.

ut � uxxxxx − 20uxuxx − 10uuxxx + 30u
2
ux. (3)

Note that, for higher order n, the equations become
increasingly nonlinear and higher order in derivatives.

If the nonlinear term uux in equation (1) is replaced by
umux, then the most important case other than when m � 1,
is when m � 2. +is yields the so-called modified KdV
(mKdV) equation, given by [5, 6]

ut � uxxx − 6u
2
ux, (4)

which may also be connected to the mKdV hierarchy:

vt � D
2
x − 4v

2
− 4vxD

− 1
x v 

n
vx. (5)

Here, the case of n � 2 gives the second member of the
mKdV hierarchy:

vt � 30vxv
4

− 10v
2
vxxx − 40vvxvxx − 10v

3
x + vxxxxx. (6)

Another famous hierarchy is the Burgers’ hierarchy and
its solutions [7, 8].

Completely integrable nonlinear equations, such as those
of the KdV hierarchy, are endowed with many special
mathematical properties. +ey are of interest due to their
infinite conservation laws [9] and symmetries [10], bi- or tri-
Hamiltonian structures, their Painlevé property [11], Lax
pairs [12], etc. +e solving of such equations is deeply
connected to the inverse scattering transform [13, 14] and
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Hirota’s direct method [15]. +e aforementioned impor-
tance of the KdV hierarchy has motivated this study.

+e mKdV equations are related to the KdV equation
through the Miura transformation, which maps the solu-
tions of the KdV equations to the solutions of the mKdV
equations [16].

+e KdV hierarchies are an example of higher-order
water wave models, which are of great significance, and they
play crucial roles especially to study physical systems and the
necessary material properties needed to manipulate waves in
a desired manner [17].

In this paper, we propose a method to solve the full KdV
hierarchy and extend the method to include the mKdV
hierarchy. +is is a novel proposal as, to the best of our
knowledge, no such endeavour has appeared in the litera-
ture. +e entire hierarchy is highly nonlinear and of higher
order in derivatives, thereby posing an extremely chal-
lenging problem to solve. We formulate our method based
on a transformation of variables (derived from the point
symmetries of the hierarchy), effectively reducing the partial
differential hierarchy into an ordinary differential hierarchy.
+e latter is connected to a transformed conservation law of
the hierarchy, and the knowledge of this transformed
conservation law forms a general approach to solving the
hierarchy for all n.

+is paper is organised as follows. In Section 2, we briefly
present some theoretical considerations, and Section 3
discusses some general properties of the hierarchies. Section
4 contains the main results and a description of our method,
and Section 5 elaborates on some applications of our
method. Section 6 provides some alternate solutions.

2. Preliminaries

+e procedure for determining point symmetries for an
arbitrary system of equations is well known [18]. Consider q

unknown functions uα which depend on p independent
variables xi, i.e., u � (u1, . . . , uq) and x � (x1, . . . , xp), with
indices α � 1, . . . , q and i � 1, . . . , p. Let

Gα x, u
(k)

  � 0 (7)

be a system of nonlinear differential equations, where u(k)

represents the kth derivative of u with respect to x. We
consider the following symmetry:

X � ξi
zxi + ηαzuα , (8)

given by

X Gα x, u
(k)

   � 0,when Gα x, u
(k)

  � 0, (9)

where X is extended to all derivatives appearing in the
equation through an appropriate prolongation. A current
T � (T1, . . . , Tn) is conserved if it satisfies

DiT
i

� 0, (10)

along the solutions of the given equation. Equation (10) is
called a local conservation law.

Suppose that X is a symmetry of system (7) and T is a
conserved vector of (7). +en, if X and T satisfy

X T
i

  + T
i
Dj ξj

  − T
j
Dj ξi

  � 0, (11)

the symmetryX is said to be associated with T [19]. Equation
(11) is closely related to a Noether theorem, but in [19], it was
proved that this result holds without the existence of La-
grangian. +e transformation u � ]x for the KdV equation
enables the construction of a Lagrangian density [20] so that
Noether’s theorem may be applied for its conservation laws.
However, we have opted to study the KdV equation in the
absence of Lagrangian.

3. Generalised Properties of the KdV and
mKdV Hierarchy

A standard calculation of the symmetries of equation (1),
using condition (9), reveals that it has the following four Lie
point symmetries:

X1 � zt,

X2 � zx,

X3 � 6tzx + zu,

X4 � 3tzt − 2uzu + xzx.

(12)

+e second member of the hierarchy, with n � 2, or
equation (3) has the following three symmetries:

X1, X2, X
2
3 � 5tzt + xzx − 2uzu. (13)

If one repeats the Lie symmetry method for higher
members, it is easy to see that hierarchy (2) possesses the Lie
point symmetries

X1, X2, X
n
1 � (2n + 1)tzt − 2uzu + xzx, (14)

for n≥ 2 with Lie bracket relations [A, B] � AB − BA, given
in Table 1.

A similar investigation of mKdV hierarchy (5) gives that
n � 1 has the following three symmetries:

X1,

X2,

X6 �
x

3
zx + tzt −

v

3
zv,

(15)

and n � 2 has the symmetries

X1,

X2,

X7 �
x

5
zx + tzt −

v

5
zv.

(16)

As before, if one repeats the Lie symmetry method for
higher members, it is easy to see that hierarchy (5) possesses
the Lie point symmetries
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X1 � zt, X2 � zx, X
n
2 � tzt −

v

2n + 1
zv +

x

2n + 1
zx, (17)

for n≥ 2 with Lie bracket relations in Table 2.
As for the conservation laws of the above hierarchies, we

notice several interesting properties. +ere exist many ways
to compute conservation laws, and we opt for the multiplier
approach [21].

Below are the cases of the KdV hierarchy when n � 1 and
n � 2, where the conservation laws are Ti � (Tt

i , Tx
i ) where

i � 1, 2, an d 3. Equation (1) has the following three con-
servation laws:

T
t
1 � u,

T
x
1 � 3u

2
− uxx,

(18)

T
t
2 �

u
2

2
,

T
x
2 � 2u

3
+
1
2
u
2
x − uuxx,

(19)

and finally,

T
t
3 �

1
2

tu
2

−
x

6
u,

T
x
3 � −

ux

6
− tuuxx + 2tu

3
−

x

2
u
2

+
t

2
u
2
x +

x

6
uxx.

(20)

+ese conservation laws can also be found via Noether’s
theorem if the problem is reformulated to possess La-
grangian. +e calculations are straightforward but tedious.
Reports of these quantities or their equivalent appear in
[20, 22], with more in [23].

Equation (3), i.e., n � 2, has the following two conser-
vation laws:

T
t
1 � u,

T
x
1 � − 10u

3
+ 10uuxx + 5u

2
x − uxxxx,

(21)

T
t
2 �

u
2

2
,

T
x
2 � −

15
2

u
4

+ 10u
2
uxx − uuxxxx + uxuxxx −

1
2
u
2
xx.

(22)

As for the mKdV equation, equation (4) has the fol-
lowing two conservation laws:

T
t
1 �

1
2
v
2
,

T
x
1 � − vvxx +

1
2
v
2
x +

3
2
v
4
,

(23)

T
t
2 � v,

T
x
2 � 2v

3
− vxx.

(24)

Similarly, equation (6), n � 2, has the conservation laws

T
t
1 �

1
2
v
2
,

T
x
1 � − 5v

6
+ 10vxxv

3
+ 5v

2
v
2
x − vvxxxx + vxvxxx −

1
2
v
2
xx,

(25)

T
t
2 � v,

T
x
2 � − 6v

5
+ 10v

2
vxx + 10vv

2
x − vxxxx.

(26)

We now establish a result that is the foundation of our
approach and that is the nth conservation law of each hi-
erarchy. As we shall show, such a conservation law can be
manipulated to solve the entire hierarchy for all values of n.
To begin, we establish the nth conserved vector of hierarchy
(2) by the following theorem.

Theorem 1.  e KdV hierarchy possesses the conserved
vector T � (Tt, Tx) � (u, − D− 1

x (D2
x − 4u − 2uxD− 1

x )nux)

along the solutions of equation (2), i.e., a component of the
conserved vector admits a recursion operator.

Proof. Suppose the conservation law is

DtT
t

+ DxT
x

� 0, (27)

where Tt is the conserved density and Tx is the conserved
flux. +en, from equation (2), we have

ut + D
2
x − 4u − 2uxD

− 1
x 

n
ux

� Dt(u) + Dx − D
− 1
x D

2
x − 4u − 2uxD

− 1
x 

n
ux 

� 0,

(28)

along the solutions of equation (2), and the result follows.

Table 1: Lie brackets of symmetries (14).

[,] X1 X2 Xn
1

X1 0 0 (2n + 1)X1
X2 0 0 X2
Xn

1 − (2n + 1)X1 − X2 0

Table 2: Lie brackets of symmetries (17).

[,] X1 X2 Xn
2

X1 0 0 (X1/2n + 1)

X2 0 0 X2
Xn

2 − (X1/2n + 1) − X2 0
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Hence, the conserved density for every member of the
hierarchy is Tt � u, while the conserved flux is
Tx � − D− 1

x (D2
x − 4u − 2uxD− 1

x )nux. +e fluxes for the first
few members of hierarchy (18) for n � 1 and (21) for n � 2
are confirmed by the above theorem.

Similarly, we can prove a result for the mKdV
hierarchy. □

Theorem 2.  e mKdV hierarchy possesses the conserved
vector T � (Tt, Tx) � (v, − D− 1

x (D2
x − 4v2 − 4vxD− 1

x v)nvx)

along the solutions of equation (5), i.e., a component of the
conserved vector admits a recursion operator.

One can easily check that the conserved vectors (24) for
n � 1 and (26) for n � 2 arise from this theorem.

In the next section, we give a method to find solutions of
the entire hierarchy.

4. A Method to Solve the Full Hierarchy-Type
I Solutions

To proceed, we require a symmetry generator X to be as-
sociated with a conserved vector T of a given equation. Based
on the previous section, (14), and (17), we notice that the
symmetries X1 and X2 are possessed by the respective hi-
erarchies for all n. In particular, we observe that the point
symmetry zt, when applied to condition (11), is

zt u − D
− 1
x D

2
x − 4u − 2uxD

− 1
x 

n
ux  (29)

and for the second symmetry,

zx u − D
− 1
x D

2
x − 4u − 2uxD

− 1
x 

n
ux  (30)

+erefore, both symmetries satisfy the association condi-
tion, and we conclude that they are associated with every
conservation law of +eorem 1, i.e., with any of the nth con-
servation law of the KdV hierarchy member. A similar result
holds for the mKdV hierarchy, and here, we conclude that the
same symmetries are associated with every conservation law of
+eorem 2.

Next, we recall the fundamental theorem on double
reduction [24, 25], which states that there exist functions Tr

such that

DrT
r

� 0. (31)

+e transformed conserved quantity may be expressed as

T
r

�
T

t
Dt(r) + T

x
Dx(r)

Dt(r)Dx(s) − Dx(r)Dt(s)
, (32)

where r and s are similarity variables connected to an as-
sociated symmetry X.

Since X1 and X2 are associated with the conserved vector
T, we consider the linear combination X � X2 + cX1 (c is a
constant) to obtain the similarity transformation

r � cx − t,

s � x,

u(x, t) � u(r),

(33)

for the KdV hierarchy, and similarly,

r � cx − t,

s � x,

v(x, t) � v(r),

(34)

for the mKdV hierarchy.
+erefore, we may establish the following results for Tr.

Theorem 3.  e conserved quantity of KdV hierarchy
equation (2) can be reduced to

u + c D
− 1
r c

2
D

2
r − 4u − 2urD

− 1
r 

n
ur , (35)

where u � u(r).

Proof. Application of (32) gives us

T
r

�
u(− 1) − D

− 1
x D

2
x − 4u − 2uxD

− 1
x 

n
uxc

− 1
(36)

and in the new variables, by transformation (33), equation
(36) transforms to

T
r

� u + c D
− 1
r c

2
D

2
r − 4u − 2urD

− 1
r 

n
ur . (37)

As examples, Tr corresponding to T1 of (18) is given by

T
r

� urr · c
3

− 3u
2
c + u, (38)

for n � 1, and Tr for (21) in the case of n � 2 is

T
r

� urrrr · c
5

− 10uurr · c
3

− 5u
2
r · c

3
+ 10u

3
· c + u (39)

□

Theorem 4.  e conserved quantity of mKdV hierarchy
equation (5) can be reduced to

v + c D
− 1
r c

2
D

2
r − 4v

2
− 4vrD

− 1
r v 

n
vr , (40)

where v � v(r), and the proof is similar to that of  eorem 3.
Also, to this end, examples of Tr for the mKdV hierarchy

include T2 of (24) given by

T
r

� v − 2v
3

· c + vrr · c
3
, (41)

for n � 1, and Tr for T2 of (26) is given by

T
r

� v + 6v
5

· c − 10v
2
vrr · c

3
− 10v

2
v
2
r · c

3
+ vrrrr · c

5
, (42)

for n � 2.
 at is, the above results can be used to find Tr for any

value of n, for both KdV and mKdV hierarchies. Based on
equation (31), we have that Tr � κ, κ is a constant.  erefore,
we have reduced the entire partial differential KdV and
mKdV hierarchies to ordinary differential hierarchies.  ese
ordinary differential hierarchies may then be solved for any n.

5. Type I Solutions

In this section, we illustrate the applicability of the above
method and theory in establishing solutions to members of
the KdV and mKdV hierarchy. +e solutions obtainable via
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our method in Section 4 will be referred to as type I solu-
tions. Below, we set κ � 0 for simplicity.

5.1. e KdVHierarchy. Let us consider n � 1 in +eorem 3
to get the reduced conserved component (38); that is, we
solve

urr · c
3

− 3u
2
c + u � 0. (43)

We find that this equation has an implicit solution

± 
u(r)

c
2 1

����������������
c C1c

3
+ 2a

3
c − a

2
 

 da − r − C2 � 0. (44)

Suppose we choose the free parameters to be
C1 � 1, C2 � 0, an d c � (1/2); then, the integral in (44) is
evaluated to be

±
�
2

√

2
�������
5

√
− 1


�������
− 2u + 1

√ �����������

− 4u +
�
5

√
+ 1

 ����������

4u +
�
5

√
− 1



EllipticF
�
2

√

�������
5

√
+ 1


�������
− 2u + 1

√
,

2i
�
5

√
− 1

 
1

�����������
8u

3
− 8u

2
+ 1

 ,

(45)

where EllipticF is the incomplete elliptic integral of the first
kind, and the solution to (43) becomes

u(r) �
− 2

�
5

√
− 2

8
JacobiSN

�������
2

�
5

√
− 2


r

2
,

i

2
+

i

2
�
5

√
  

2

−

�
5

√

4
+

����������
− 10 + 10

�
5

√

8
+
1
2

,

(46)

or in the original independent variables, by reversing
transformation (33),

u(x, t) �
− 2

�
5

√
− 2

8

× JacobiSN
�������
2

�
5

√
− 2


(cx − t)

2
,

i

2
+

i

2
�
5

√
  

2

−

�
5

√

4
+

����������
− 10 + 10

�
5

√

8
+
1
2

,

(47)

where JacobiSN is an inverse of elliptic integrals and doubly
periodic elliptic functions. +ese solutions appear graphi-
cally in Figure 1.

Next, we consider the second member of the hierarchy,
n � 2, in+eorem 3 to get the reduced conserved component
(39). +at is, we solve

urrrr · c
5

− 10uurr · c
3

− 5u
2
r · c

3
+ 10u

3
· c + u � 0. (48)

In this case, we find two solutions of the second member
of the hierarchy, viz.

u(x, t) � −
isech2 − C1 + ((1/2) +(i/2))(cx − t)/

�
2

√
c
5/4

  

2
�
c

√ ,

(49)

or secondly,

u(x, t) �
i 5

�
5

√
sech2 − C1 +

�����������������

− i/c5/2  − i
�
5

√
/c5/2 



(cx − t)/2
�
24

√
   + 5 sech2 − C1 +

�����������������

− i/c5/2  − i
�
5

√
/c5/2 



(cx − t)/2
�
24

√
   − 2

�
5

√
 

10
�
2

√ �
c

√ .

(50)

5.2. emKdVHierarchy. +is time, let us consider n � 1 in
+eorem 4 to get the reduced conserved component (41);
that is, we solve

v − 2v
3

· c + vrr · c
3

� 0. (51)

+e solution of (51) is of two cases, namely,

v(r) � ± 2i
�
2

√
c
3
C1

��������������

−
c

1 −

��������

1 − 4c
4
C1






×

JacobiSN
�
2

√
�������������������������������������������������������������������

cC1r
2/1 −

��������

1 − 4c
4
C1



  + 2cC1C2r/1 −

��������

1 − 4c
4
C1



  + cC1C
2
2/1 −

��������

1 − 4c
4
C1



 



1 −

��������

1 − 4c
4
C1



/
��������

1 − 4c
4
C1



+ 1 


 

1 +

��������

1 − 4c
4
C1

 ,

(52)
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and secondly,

v(r) �
C2���������

cC
2
2 − c + 1

 JacobiSN

·
r/c2 

��������
− c(c − 1)


+ C1

���������

cC
2
2 − c + 1

 ,
C2

c − 1
��������
− c(c − 1)


⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(53)

+e latter may be expressed in original variables as

v(x, t) �
C2���������

cC
2
2 − c + 1

 JacobiSN

·
(cx − t)/c2 

��������
− c(c − 1)


+ C1

���������

cC
2
2 − c + 1

 ,
C2

c − 1
��������
− c(c − 1)


⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠.

(54)

+is solution has 2D and 3D plots in Figure 2.

6. Type II Solutions

As seen above, both hierarchies admit conservation laws,
such as (19) or (22), independent of+eorems 1 and 2. Now,
we cannot transcribe these conservation laws to theorems
with a recursion operator as was done in +eorems 1 and 2.
Nonetheless, a Tr function may still be obtained in such
cases, using the same formula (32) and transformation (33)
or (35). +is will lead to other solutions, which we call type
II.

For example, in the KdV hierarchy, Tr for T2 of (19) is
given by

T
r

� uurr · c
3

−
1
2
u
2
r · c

3
− 2u

3
c +

u
2

2
, (55)

for n � 1, and Tr for T2 of (22) is given by

T
r

�
15
2

u
4

· c − 10uurr · c
3

+ uurrr · c
4

− ururrr · c
5

+
1
2
u
2
rr · c

5
+

u
2

2
,

(56)

for n � 2.
As for the mKdV hierarchy, for n � 1, we have Tr for T1

of (23) which is given by

T
r

�
1
2
v
2

+ vvrr · c
3

−
1
2
v
2
r · c

3
−
3
2
v
4

· c, (57)

and Tr for T1 of (25) is given by

T
r

�
1
2
v
2

+ 5v
6

· c − 10v
3
vrr · c

3
− 5v

2
v
2
rr · c

5

+ vvrrrr · c
5

− vrvrrr · c
5

+
1
2
v
2
rr · c

5
,

(58)

for n � 2. Below, we explore some solutions that arise out of
these Tr functions.

6.1. Type II Solution to the KdVHierarchy. A type II solution
corresponding to solving (55) yields an implicit solution

± 
u(r)

c
2 1

�����������������
ca C1c

3
+ 2 a

2
c − a 

 da − r − C2 � 0. (59)

Here, the above integral is equal to

0.6

0.4

0.2

–10 –5 0 5
r

10

–0.2

–0.4

0.6

0.4

0.2

0

-0.2

-0.4

0

8 6 4
x

2 0

2
4

t 6
8

10

Figure 1: 2D and 3D evolutions of solutions from (46) and (47), respectively.
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1
2

c − 1 +

���������

− 8C1c
4

+ 1


 
�
2

√

��������������������������
cu(r) C1c
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(60)

Suppose we let C1 � 1, C2 � 0, and c � (1/2); then, the
explicit solution to (59) is

u(r) �
(− 2 +

�
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√
)

4

× JacobiSN r
�
24

√
,

i

2

�������
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�
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(61)

or in original variables,

u(x, t) �
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�
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√
)

4
× JacobiSN (cx − t)

�
24

√
,
i

2

�������

2 −
�
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√ �
24

√
  

2
− 1 . (62)

+e progression of these solutions appears in Figure 3,
and they are visibly periodic in nature.

6.2. Type II Solution to the mKdV Hierarchy. A type II so-
lution corresponding to solving (57) has an implicit solution
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Figure 2: Evolution of solutions corresponding to (53) and (54), respectively.
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Figure 3: 2D and 3D progression of solutions corresponding to (61) and (62), respectively.
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+e integral is evaluated to be
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(64)

Suppose we let C1 � 1, C2 � 0, and c � (1/2); then, the
solution to (63) is

v(r) � ±
1

tan(r)

�����������

(tan(r))
2

+ 1


, (65)

or

v(x, t) � ± csc(cx − t), (66)

whose graphical representation appears in Figure 4.

7. Conclusions

In the study of differential equations, equations that are
highly nonlinear and that possess higher-order derivatives
are almost impossible to solve. We have proposed a scheme
to overcome this problem and aid the solution of, in par-
ticular, the KdV and mKdV infinite hierarchy.

+e well-known (solitary wave) solution of the KdV
equation involves the hyperbolic secant function [26], but
Korteweg and de Vries were interested in cnoidal solutions,
expressible in terms of Jacobi’s elliptic CN functions [27].
Given the mathematical relations between the Jacobi SN and
CN solutions, sin , cos, sech, and tanh functions, our above
solutions for KdV n � 1 may be related to the known ones,
but in that case, the recovery of known or related solutions
validates our approach. As for our solutions for KdV n � 2,
we find no connection to any known results. It is possible to
find many more solutions.

In the analysis of our solutions, we divided our solutions
to be of two types: type I and type II. Type I is the most
interesting solution as it is derived from a recursion operator
within the conservation law of the KdV and mKdV infinite
hierarchy. In both solution types, the knowledge of asso-
ciation between symmetry and conserved components was
exploited and formed the basis of our approach to reduce the
order of the partial differential hierarchy to an ordinary
differential hierarchy. Consequently, our method has many
significant uses and can be extended to solve other infinite
hierarchies. Specifically, it may be applied to any hierarchy in
possession of a recursion operator, for example, the
Kaup–Kupershmidt hierarchy. Furthermore, it would be
interesting to attempt a study of systems of nonlinear

equations with known recursion operators, such as the
Hirota–Satsuma system or the nonlinear Schrödinger sys-
tem of real equations.

An advantage of our approach is that it can easily be
implemented into computer algebra programs such as
Maple or Mathematica. A disadvantage is that, at higher-
order members of the hierarchy, one may struggle to solve
the reduced conservation laws, simply because the com-
putations are too involved and computer algebra programs
may run out of memory to complete the necessary
calculations.

In the known literature, there are numerous methods to
solve members of the KdV hierarchy, for example, the
generalized Kudryashov method [28], the double Laplace
transform [29, 30], the differential transform method [31],
the tanh-expansion method [32], the exp-function method
[33], and the G′/G-expansion method [34]. Our approach
involves a recursion operator and conservation law to aid the
analysis of the nonlinear partial differential hierarchy. To the
best of our knowledge, this is the first time that a study has
conceived an approach for dealing with the entire KdV
hierarchy.
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[24] A. Sjöberg, “Double reduction of PDEs from the association of
symmetries with conservation laws with applications,” Ap-
plied Mathematics and Computation, vol. 184, Article ID
608616, 2007.

[25] A. H. Bokhari, A. Y. Al-Dweik, F. D. Zaman, A. H. Kara, and
F. M. Mahomed, “Generalization of the double reduction
theory,” Nonlinear Analysis: Real World Applications, vol. 11,
no. 5, pp. 3763–3769, 2010.

[26] J. S. Russel, “Report on Waves,” Report of the 14th Meeting of
the British Association For the Advancement of Science, John
Murray, London, UK, 1844.

[27] P. G. Drazin and R. S. Johnson, Solitons: An Introduction,
Cambridge University Press, Cambridge, England, 1989.

[28] N. A. Kudryashov, “On types of nonlinear nonintegrable
equations with exact solutions,” Physics Letters A, vol. 155,
no. 4-5, pp. 269–275, 1991.

[29] T. A. Estrin and T. J. Higgins, “+e solution of boundary value
problems by multiple Laplace transformations,” Journal of the
Franklin Institute, vol. 252, no. 2, pp. 153–167, 1951.

[30] L. Debnath, “+e double Laplace transforms and their
properties with applications to functional, integral and partial
differential equations,” International Journal of Algorithms,
Computing and Mathematics, vol. 2, no. 2, pp. 223–241, 2016.

[31] K. Zhou, Differential Transformation and its Application for
Electrical Circuits, Huarjung University Press, Wuuhahn,
China, 1986, in Chinese.

[32] W. Malfliet and W. Hereman, “+e tanh method: I. Exact
solutions of nonlinear evolution and wave equations,” Physica
Scripta, vol. 54, no. 6, pp. 563–568, 1996.

[33] J.-H. He and X.-H. Wu, “Exp-function method for nonlinear
wave equations,” Chaos, Solitons & Fractals, vol. 30, no. 3,
pp. 700–708, 2006.

[34] M. Wang, X. Li, and J. Zhang, “+e G′/G-expansion method
and travelling wave solutions of nonlinear evolution equa-
tions in mathematical physics,” Physics Letters A, vol. 372,
no. 4, pp. 417–423, 2008.

10 Journal of Mathematics


