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Total edge-vertex domination is a new total domination-type parameter. In this paper, the author shows that determining the total
edge-vertex domination number in bipartite planar graphs is NP-complete. Also, the author obtains a structural relation between
total domination number and total edge-vertex domination number and characterizes the trees whose total edge-vertex
domination number is equal to total domination number.

1. Introduction

Graphs are indispensable tools in every phase of human
daily life and in many disciplines where mathematics per-
meates [1–3]. Graph theory also has its own invariants. %e
concept of domination is one of the main parameters in
graph theory. %e domination is used in the solution of
many problems and analysis of events in the historical
process of human life. It is also used in solving network
problems. Until now, many types of domination have been
defined. A study on the total variations of two of these
important domination types is conducted here. %eir rela-
tionship with each other is examined in this study.

A graph is usually demonstrated by the symbol G �

(V, E) in which vertices are shown with V and edges are
shown with E. Here, we can express two important defi-
nitions as follows: the set NG(v) � u|uv ∈ E{ } is the open
neighborhood of a vertex v in a graph G. %e set NG[v] �

NG(v)∪ v{ } is the closed neighborhood of v.
%e symbol dG(v) indicates the degree of a vertex v ∈ V

and it is the number of vertices adjacent to v. A vertex with
degree one is named a last vertex. If a vertex has degree at
least two, it is called an internal vertex. A vertex adjacent to a
last vertex is called the remote. %ere are two types of the
remote vertices. Provided that a remote vertex is adjacent to
a last vertex, it is called a weak remote and provided that a
remote vertex is adjacent to at least two last vertices, it is
called a strong remote. An edge of the graph G which is

incident to a last vertex is called an end edge. %e edge
adjacent to an end edge (dissimilar from an end edge) is
called a remote edge. %e distance d(u, v) between any two
vertices u and v is the minimum of the lengths of paths
between u and v. %e diameter of a graph is defined as
max d(u, v){ }. %e eccentricity is specified as the maximum
distance of one vertex from other vertex. If a tree has a even
diameter, the middle vertex of the tree is called a central
vertex. A path and a tree are indicated by the symbols Pn and
T, respectively. %e diameter of a tree T is indicated by
diam(T). Provided that there is an edge e ∈ E(T) such that e

is an edge containing v as an endpoint, any vertex v of the
tree is adjacent to a Pn.

Let B be a subset of vertices set of the graph G. %e subset
B is a dominating set (simply, DS), provided that every
vertex in G either is an element of B or is adjacent to at least
one vertex in B. %e symbol c(G) indicates the domination
number of a graph G and c(G) is equal to the minimum
cardinality of a DS in G. Similarly, a subset B⊆V is a total
dominating set (simply, TDS), provided that every vertex of
V has a neighbor in B. %e symbol ct(G) indicates the total
domination number of a graph G and ct(G) is equal to the
minimum cardinality of a TDS in G [4–7]. We refer to the
book [8] for more details about domination theory.

An edge e ev-dominates a vertex v provided that e is
incident to v or e is incident to a vertex which is adjacent to v.
A subset B⊆E is an edge-vertex dominating set (simply,
EVDS) of G, provided that every vertex of a graph G is
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ev-dominated by at least one edge in B. %e minimum
cardinality of an EVDS is the ev-domination number and
denoted by cev(G). Peters presented the concept of edge-
vertex domination [9]. Lewis made studies that made ad-
ditional contributions about it [10]. %ese two studies
[11, 12] on the edge-vertex domination number of trees also
attract attention.

A vertex v ve-dominates an edge e which is incident to v

and any edge which is adjacent to e. A set B⊆V is a
ve-dominating set (simply, VEDS) provided that all edges of
a graph G are ve-dominated by at least one vertex in B [9].
%e symbol cve(G) indicates ve-domination number of a
graph G and cve(G) is equal to the minimum cardinality of a
VEDS in G.

In [13], Boutrig and Chellali presented the total vertex-
edge domination. A subset B⊆V is a total vertex-edge
dominating set (simply, TVEDS) of G, provided that B is a
VEDS and every vertex in B has a neighbor in B [13]. %e
symbol ct

ve(G) indicates the total ve-domination number of
a graph G and ct

ve(G) is equal to the minimum cardinality of
a TVEDS.

%e total edge-vertex domination was presented in [14].
A subset B⊆E is a total edge-vertex dominating set (simply,
TEVDS) of G, provided that B is an EVDS and every edge in
B shares an endpoint with another edge in B. %e symbol
ct

ev(G) indicates the total ev-domination number of a graph
G and ct

ev(G) is equal to the minimum cardinality of a
TEVDS. In [14], the authors show that determining the total
ev-domination number of bipartite graphs is NP-complete.
In this paper, we extend this result to bipartite planar graphs.
Moreover, we obtain a relation between total domination
number and total ev-domination number and characterize
the trees that provide this property.

2. Preliminaries

First of all, let us start by stating some basic results that we
will use in this study.

Observation 1 Every remote vertex of G is contained in
every TDS of G.

Observation 2 (See [11]). A cev(G)-set can be determined
such that it does not contain any end edge if the diameter of
every connected graph G is at least three.

Observation 3 (See [14]). A ct
ev(T)-set can be determined

such that it does not contain any end edge if the diameter of
every tree T is at least four.

Observation 4 (See [14]). Every remote edge is included by a
minimum total edge-vertex dominating set if the diameter of
every tree is at least four.

Since the graphs with only one edge have no total edge-
vertex dominating set, we will not take into account graphs
like these ones, by the definition of total domination.

Observation 5 (See [14]). For a nontrivial tree T,
cev(T)≤ ct

ev(T).

Lemma 1 (See [14]). For a nontrivial tree T, ct
ev(T)≤ ct(T).

3. Complexity Conclusion

%e NP-completeness conclusion for the total ev-domi-
nation issue in bipartite graphs is here constructed. As
stated below, it is shown that TOTAL EV-DOM is NP-
complete for bipartite planar graphs and VERTEX COVER
is used for this process.

3.1. Vertex Cover

3.1.1. Instance. A graph G � (V, E) and an integer k≤ |V|.

3.1.2. Question. Is there a subset V′ ⊆V such that |V′|≤ k

and, for each edge uv ∈ E, at least one of u and v belongs to
V′ (i.e., a subset of the vertices of the graph which dominates
all of its edges)?

Theorem 1. For bipartite planar graphs, problem TOTAL
EV-DOM is NP-Complete.

Proof. Figure 1(a) illustrates this proof. Consider an in-
stance graph G of Vertex Cover on a planar graph, a known
NP-complete problem [15]. A subdivision graph S1 of G

has V(S1) � V(G)∪E(G) and
E(S1) � (u, uv), (uv, v)|uv ∈ E(G){ }, i.e., S1 is obtained from
G by replacing its edges by paths of size three. Consider a
graph H acquired off the subdivision graph of G by suffixing,
for every V(G)-vertex j in S1 a path of size five with vertices
rj, sj, uj, vj, wj and add an edge between uj, the center of the
P5, and j. A subdivision S1 of G is a bipartite graph, since we
double the size of any cycle of G. Moreover, if G was planar,
S1 remains planar with the same planar representation and
the addition of the P5 with center adjacent to each
V(G)-vertex of S1 clearly maintain the graph both bipartite
and planar.

We claim that G is of a vertex cover set V′ with |V′|≤ k if
and only if H is of a total edge-vertex dominating set D with
|D|≤ 2|V(G)| + k.

Let V′ be a vertex cover set of G with size k. Consider the
set S of edges of H composed by the edges
siui, uivi|i ∈ V(G) ∪ iui|i ∈ V . S is composed of triples of
edges connected to a central vertex ui. Clearly, all P5’s
vertices and all V(G)-vertices of H are dominated by the
edges siui, uivi|i ∈ V . Moreover, since S is a vertex cover set
of G, all E(G)-vertices of H are dominated by the edges
iui|i ∈ V . %erefore, S is a TEVDS set with size
2|V(G)| + k.

Conversely, consider a TEVDS of H with size
2|V(G)| + k. We need the edges siui, uivi|v ∈ V(G)  in S to
dominate the vertices ri and wi for every i ∈ V(G). Con-
sequently, S has 2|V(G)| such edges and another k edges
remain. Provided that there exists an edge between a
V(G)-vertex p and E(G)-vertex pq of H, since all
V(G)-vertices are dominated by the already 2|V(G)| chosen
edges, we can pick another total edge-vertex dominating set
S′ of same size by replacing this edge by the edge pup. Now
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the set of edges S′/ siui, uivi|v ∈ V(G)  has size k with edges
of the type pup. Since S′ is a total edge-vertex dominating
set, these edges dominate all E(G)-vertices of H and,
therefore, a set V′ � p|pup ∈ S′  is a vertex cover set of G

with size k. □
Note that we could also relate the domination (and edge

domination) problem of a graph G with total ev-dom of a
variation of the graph H, if we consider the upper and lower
vertices of H as vertices (edges) and there exists an edge
among two vertices of H provided that the upper vertex
dominates the lower vertex, as described in Figure 1(b) and
1(c)). %e same reasoning also applies for an ev-edge
dominating set and ve-dominating set, just consider the
edges between the upper and lower part of the graph if the
upper element dominates the lower element. □

4. Total ev-Dominating Number and Total
Dominating Number

Note that the edges of a minimum TEVDS of a graph G do
not form cycles on the graph. Otherwise, we could remove
one of these edges of the cycle and we would still get a
TEVDS of smaller size. %erefore, the edges of a minimum
TEVDS of G form a forest subgraph of G.

Assume that S is a minimum TEVDS and let T1, . . . , Tp

be the p trees of the forest given by the edges of S. We have
that the |∪ 1≤i≤pE(Ti)| + p vertices of these p trees are a TDS
of G. %erefore, ct(G)≤ ct

ev(G) + p, i.e., ct
ev(G)≥ ct(G) − p.

Consider a minimum TDS, which is shown by B, of G

with size ct(G). Let T1, T2, . . . , Tq be a forest between
vertices of B. If all trees have three or more vertices, then the
edges of these trees are a TEVDS, which is shown by S, of G.
%is holds due to the definition of “total”. Otherwise, we
need to add an additional edge to the trees with two vertices
to it be a TEVDS. For each tree Ti with |V(Ti)| � 2 vertices
in B, we include two edges in S. And for each tree Ti with
|V(Ti)|≥ 3 vertices in B, we include |V(Ti)| − 1 edges of the
tree in S. %erefore, ct

ev(G)≤ ct(G) and the upper bound is
tight only when all trees T1, T2, . . . , Tq have two vertices.
Otherwise, for each tree with three or more vertices, we
increase the gap between ct

ev(G) and ct(G) by one unit. I.e.,
if there are x of such trees with size three or more, then
ct

ev(G) + x≤ ct(G).
Consider now aminimum TEVDS of G. It would be seen

as the minimum value of |S| − u among whole the total
dominating sets S of G (each TDS has a value u given with
the maximum number of trees with three vertices or more
connecting the vertices of S). In the worst case scenario when
u � 0, all trees connecting the vertices of S have two vertices
and we have ct

ev(G) � |S|. Otherwise, each tree with three or
more vertices connecting the vertices of S increase the value
of u in one unit. Since u is upper bounded by |S|/3 (each unit
of u correspond a tree with at least three vertices of S), we
have min 2|S|/3{ }≤min |S| − u{ } � ct

ev(G). And since
ct(G)≤ |S|, we have 2ct(G)/3≤ ct

ev(G).
%erefore, 2ct(G)/3≤ ct

ev(G)≤ ct(G). %is information
is interesting for the following reasons. Since it is hard to
approximate ct(G) [16], it will be also hard to approximate
the value of ct

ev(G).

Now, we qualify whole trees on the equality
ct(T) � ct

ev(T). We will use a family F of trees T � Tq.
Suppose that T1 � P3, P4, P7, P8, P12  and for a q ∈ Z+, Tq+1
is a tree repetitively acquired over Tq per one of the three
processes mentioned below:

Process O1: suffix a vertex by joining it to any remote
vertex of Tq or an internal vertex adjacent to a remote
vertex.
Process O2: suffix a path P3 by joining one of its last
vertices to a vertex of Tq which is adjacent to a path P3.
Process O3: suffix a path P4 by joining one of its last
vertices to an internal vertex of Tq for which is not a
remote vertex.

We can give an example of the implementation of these
processes as shown in Figure 2.

%ere is an exceptional situation in the familyF because
of the structure of the tree P4. P4 is the only path which has
two adjacent remote vertices and has not an internal vertex
other than these remote vertices. %us, if a path P4 is at-
tached by joining one of its last vertices to a remote vertex of
R′ � T1 � P4, it is found as ct(T) � ct

ev(T) and T ∈F. %e
two examples of trees for the exceptional situation are
depicted in Figure 3.

Theorem 2. Let T be a tree. If T ∈F, then ct(T) � ct
ev(T).

Proof. %e induction is operated over the number q of
processes used to build the tree T � Tq+1. Provided that
T � T1 ∈ P3, P4, P7, P8, P12 , then ct(P3) � 2 � ct

ev(P3),
ct(P4) � 2 � ct

ev(P4), ct(P7) � 4 � ct
ev(P7),

ct(P8) � 4 � ct
ev(P8), and ct(P12) � 6 � ct

ev(P12). %en,
suppose that the equality is achieved provided each R′ � Tq

that is a component of F acquired through q − 1 processes.
First suppose that T � Tq+1 is gotten over R′ through

Process O1. Assume that a is a vertex suffixed to a remote
vertex or an internal vertex h of R′ which is adjacent to a
remote vertex. Let B′ is a TDS of R′. B′ is also a TDS of T by
Observation 1. %us, we have ct(T)≤ ct(R′). Moreover, we
know that ct

ev(R′)≤ ct
ev(T). So,

ct(T)≤ ct(R′) � ct
ev(R′)≤ ct

ev(T). By Lemma 1
ct

ev(T)≤ ct(T). As a result, ct
ev(T) � ct(T).

Suppose that T � Tq+1 is gotten over R′ per Process O2.
Now we assume that Process O2 is applied a vertex h that is
adjacent to a path P3 xyz. Let abc is suffixed by joining a to
h. Let B′ be a ct(R′)-set. z and c are dominated. %en, the
remote vertices b, y and the neighbors of these remote
vertices a, x are included by a ct(T)-set. Consequently,
B′ ∪ a, b{ } is a ct(T)-set and ct(T)≤ ct(R′) + 2. Also, to
ev-dominate the vertices c and z, the edges ab, xy and the
neighbors of these edges ha, hx are included by a ct

ev(T)-set.
In this way, provided that B is a ct

ev(T)-set, B/ ha, ab{ } is a
ct

ev(R′)-set. We get that ct
ev(T)≥ ct

ev(R′) + 2. Consequently,
ct(T)≤ ct(R′) + 2 � ct

ev(R′) + 2≤ ct
ev(T) − 2 + 2 � ct

ev(T).
From the result and Lemma 1, we obtain that
ct

ev(T) � ct(T).
Suppose that T � Tq+1 is acquired over R′ per Process

O3. We assume a path P4 abcl is suffixed by joining a to an
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internal vertex x of T � Tq that is not a last vertex. Consider
that B′ be a ct(R′)-set. To dominate l, the remote vertex c

and its neighbor b are included by a ct(T)-set. So, B′ ∪ b, c{ }

is a ct(T)-set and ct(T)≤ ct(R′) + 2. Also, to ev-dominate
the vertex l, the edge bc and its neighbor ab are included by a
ct

ev(T)-set. So, provided that B is a ct
ev(T)-set, B∖ ab, bc{ } is a

ct
ev(R′)-set. We obtain that ct

ev(T)≥ ct
ev(R′) + 2.

Consequently, ct(T)≤ ct(R′) + 2 � ct
ev(R′) + 2≤ ct

ev(T) −

2 + 2 � ct
ev(T). From Lemma 1, we obtain that

ct
ev(T) � ct(T). □

Theorem 3. Let T be a tree. If ct
ev(T) � ct(T), then T ∈ F.

Proof. %ere is no TEVDS in a graph that possesses a single
edge. %us, we consider trees with at least two edges. If
diam(T) � 2, then T is a star. If T � P3, then T ∈ F. If T is a
star different from P3 then it can be obtained from T � T1 by
Process O1. %erefore, T ∈F. Now, assume that diam(T) is
at least three and the result is true for each tree R′ � Tq with
order 4≤ n′ < n.
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z t
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Figure 2: A tree T ∈F which is obtained from T1: xyztuvw, by
adding the vertices y1, z1, u1, v1 with ProcessO1, by adding the path
P3: prs, with Process O2 and by adding the paths
P4: abc d, klmn, efgh, with Process O3 such
thatct(T) � ct

ev(T) � 12.

H1 H2

Figure 3: %e two exceptional trees H1, H2 obtained from T1 � P4
such that ct(H1) � ct

ev(H1) � 4 and ct(H2) � ct
ev(H2) � 6.
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Figure 1: Planar graphs used for %eorem 1.
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First assume some remote vertex of T, for example x, is
strong. Let y be a last vertex adjacent to x and R′ � T − y.
Let B′ be a ct

ev(R′)-set. By Observation 3, a ct
ev(T)-set can be

determined such that it does not contain any end edge. So, B′
is a ct

ev(T)-set and ct
ev(T)≤ ct

ev(R′). Consequently,
ct(R′)≤ ct(T). We have ct(R′)≤ ct(T) � ct

ev(T)≤ ct
ev(R′).

From Lemma 1, ct
ev(R′)≤ ct(R′). %us, we obtain that

ct
ev(R′) � ct(R′). According to the inductive hypothesis, we

obtain thatR′ ∈ F andT can be obtained fromR′ by Process
O1. %us, from now on, we assume that every remote vertex
of T is weak.

Now, we root T at a vertex r of maximum eccentricity
diam(T). Consider that t is a last vertex at maximum dis-
tance from r, v is parent of t, h is parent of v, g is parent of h,
provided that diam(T)≥ 5, l is parent of g and provided that
diam(T)≥ 6, e is parent of l in the rooted tree.%e symbolTx

indicates the subtree induced by a vertex x and its de-
scendants in the rooted tree T. Assume that B is a ct

ev(T)-set.
B′ is a ct

ev(R′)-set. Likewise, let S be a ct(T)-set, S′ is a
ct(R′)-set. □

Case 1. We observed the situations over v. Let dT(v) be
equal to 2. Due to the choice of the diametrical path, h is of a
remote vertex else v or h has a last vertex.

Subcase 1.1. Assume that some child of h is a last vertex and
it is indicated by x. As a result, it is found that h is a remote
vertex. Let R′ � T − x. From Observation 3, there exists a
ct

ev(T)-set that includes no end edge. %us, the vertex x is
ev-dominated by hv and ct

ev(T)≤ ct
ev(R′). Furthermore, the

vertices h and v are included by every ct(T)-set according to
Observation 1. %us, ct(R′)≤ ct(T). %erefore,
ct(R′)≤ ct(T) � ct

ev(T)≤ ct
ev(R′) and by Lemma 1,

ct
ev(R′)≤ ct(R′). Consequently, we obtain that

ct
ev(R′) � ct(R′). According to the inductive hypothesis, we

obtain that R′ ∈ F and T can be obtained over R′ by Process
O1.

Subcase 1.2. Suppose that within the children of h there
exists a remote vertex x, else v. Assume that R′ � T − Tv. By
Observation 4 the edges hv, hx are included by a minimum
TEVDS of T. %us, B′ ∪ hv{ } is a ct

ev(T)-set. In this case, B′ is
not a TEVDS but the edge hx has not a neighbor in B′ for
this situation. In order to attain the totality of B′, the edge gh

has to be included by B′. So, (B/ hv{ })∪ gh  is a ct
ev(R′)-set

and ct
ev(R′) � ct

ev(T). Moreover, the vertices h, v, x are
included by S. %en, S/ v{ } is a ct(R′)-set, we obtain that
ct(T)≥ ct(R′) + 1. Consequently, ct(R′)≤ ct(T) − 1 �

ct
ev(T) − 1 � ct

ev(R′) − 1< ct
ev(R′).

Case 2. Let dT(h) be equal to 2. Due to the choice of the
diametrical path, g is of a child else h, e.g., x such that the
distance of g to the farthest vertex of Tx is one or two or
three.

Subcase 2.1. Suppose that some child of g is a last vertex and
it is shown by x. Consider that R′ � T − x. From Obser-
vation 3, a ct

ev(T)-set can be determined such that it does not
contain any end edge. %us, the vertex x is ev-dominated by

lg and ct
ev(T)≤ ct

ev(R′). Furthermore, to dominate x, the
vertex g is included by every ct(T)-set. So, S′ � S − g  is a
ct(R′)-set, ct(R′)≤ ct(T) − 1. %erefore, ct(R′)≤ ct(T) −

1 � ct
ev(T) − 1≤ ct

ev(R′) − 1< ct
ev(R′).

Subcase 2.2. A remote vertex x can be determined within the
children of g, where Tx: xy. Consider that R′ � T − Tg. To
ev-dominate the vertices y, t the edges gx, gh and hv are
included by a minimal TEVDS of T. So, B′ ∪ gx, gh, hv  is a
ct

ev(T)-set. ct
ev(T)≤ ct

ev(R′) + 3. Moreover, the remote
vertices x, v and their neighbors g, h are included by S. So,
S/ x, g, h, v  is a ct(R′)-set, we obtain that
ct(T)≥ ct(R′) + 4. %erefore, ct(R′)≤ ct(T) − 4 � ct

ev(T) −

4 � ct
ev(R′) + 3 − 4< ct

ev(R′).

Subcase 2.3. A vertex x can be determined within the
children of g, where Tx: xyz. Consider that R′ � T − Th. So,
B′ ∪ gh, hv  is a ct

ev(T)-set. ct
ev(T)≤ ct

ev(R′) + 2. Also,
S/ h, v{ } is a ct(R′)-set and ct(T)≥ ct(R′) + 2. %en,
ct(R′)≤ ct(T) − 2 � ct

ev(T) − 2≤ ct
ev(R′) + 2 − 2 � ct

ev(R′).
From Lemma 1, we obtain that ct(R′) � ct

ev(R′) and
according to the inductive hypothesis, R′ ∈ F and T is
acquired off R′ per Process O2.

Case 3. Let dT(g) be equal to 2. Due to the choice of the
diametrical path, l is of a child else g, e.g., x such that the
distance of l to the farthest vertex of Tx is one or two or three
or four.

Subcase 3.1. Consider that some child of l is a last vertex. It is
shown by x. Consider that R′ � T − Tg. In order to
ev-dominate the vertices x and t, the edges lg, gh, hv are
included by a ct

ev(T)-set. We obtain that B′ ∪ lg, gh, hv  is a
ct

ev(T)-set and ct
ev(T)≤ ct

ev(R′) + 3. Furthermore, to dom-
inate x and t, the remote vertices l, v and their neighbors g, h
are included by every ct(R′)-set. So, S′ � S − l, g, h, v  is a
ct(R′)-set. ct(R′)≤ ct(T) − 4. %erefore,
ct(R′)≤ ct(T) − 4 � ct

ev(T) − 4≤ ct
ev(R′) + 3 − 4< ct

ev(R′).
If R′ � P4, then there exists an exceptional situation in

here. Since P4 do not contain internal vertices out of remote
vertices, after a path P4 is attached to R′ � P4 we obtain that
ct(T) � ct

ev(T) � 4 and T ∈F.

Subcase 3.2. A remote vertex x can be determined among
the children of l, where Tx: xy. Consider that R′ � T − Tg.
To ev-dominate the vertices y, t, the edges lx, hv and their
neighbors el, gh are included by a minimal TEVDS of T.
%en, B′ ∪ gh, hv  is a ct

ev(T)-set and ct
ev(T)≤ ct

ev(R′) + 2.
Hence, to dominate the last vertices y, t, the remote vertices
x, v and their neighbors l, h are included by S. Consequently,
S/ h, v{ } is a ct(R′)-set, we obtain ct(T)≥ ct(R′) + 2. So,
ct(R′)≤ ct(T) − 2 � ct

ev(T) − 2 � ct
ev(R′) + 2 − 2≤ ct

ev(R′).
According to the inductive hypothesis, we obtain that
R′ ∈ F and T can be obtained from R′ by Process O3.

Subcase 3.3. A vertex x can be determined within the
children of l, where Tx: xyz. Consider that R′ � T − Tg. To
ev-dominate the vertices z, t, the remote edges xy, hv and
their neighbors lx, gh are included by a minimal TEVDS of
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T. So B′ ∪ gh, hv  is a ct
ev(T)-set and ct

ev(T)≤ ct
ev(R′) + 2.

To dominate the last vertices z, t, the remote vertices y, v and
their neighbors x, h are included by S. Consequently, S/ h, v{ }

is a ct(R′)-set. We obtain ct(T)≥ ct(R′) + 2. %en,
ct(R′)≤ ct(T) − 2 � ct

ev(T) − 2 � ct
ev(R′) + 2 − 2≤ ct

ev(R′).
Per Lemma 1, we obtain that ct

ev(R′) � ct(R′) and according
to the inductive hypothesis, we obtain that R′ ∈F and T can
be obtained from R′ by Process O3.

Subcase 3.4. A vertex x can be determined among the
children of l, where Tx: xyzs. Consider that R′ � T − Tg. To
ev-dominate the vertices s, t, the remote edges yz, hv and
their neighbors xy, gh are included by a minimal TEVDS of
T. So B′ ∪ gh, hv  is a ct

ev(T)-set and ct
ev(T)≤ ct

ev(R′) + 2.
To dominate the last vertices s, t, the remote vertices z, v and
their neighbors y, h are included by S. Consequently, S/ h, v{ }

is a ct(R′)-set. We obtain ct(T)≥ ct(R′) + 2. Hence,
ct(R′)≤ ct(T) − 2 � ct

ev(T) − 2 � ct
ev(R′) + 2 − 2≤ ct

ev(R′).
From Lemma 1, we obtain that ct

ev(R′) � ct(R′) and
according to the inductive hypothesis, we obtain that R′ ∈F
and T can be obtained from R′ by Process O3.

Case 4. Let dT(l) be equal to 2. We obtain that T � P6 ∉F
provided that dT(e) � 1. Now assume that dT(e)≥ 3. Let
R′ � T − Tl. In this case, B′ ∪ gh, hv  is a ct

ev(T)-set. We
have ct

ev(T)≤ ct
ev(R′) + 2. On the other hand, g, h, v are

contained in a TDS of T. Finally, S′ � S/ g, h, v  is a
ct(R′)-set. ct(R′) + 3≤ ct(T). %us, ct(R′)≤ ct(T) − 3 �

ct
ev(T) − 3≤ ct

ev(R′) + 2 − 3< ct
ev(R′).
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