
Research Article
Simple Paths and Cycles of Directed Graph for Stock Trading
Network Based on STP

Xiaolong Liu 1 and Li Ma2

1School of Management, Yulin University, Yulin 719000, China
2Department of Business, Xi’an Jinhe Investment Management Company Limited, Xi’an 710076, China

Correspondence should be addressed to Xiaolong Liu; lxlwolf@163.com

Received 19 August 2022; Revised 12 September 2022; Accepted 22 September 2022; Published  October 2022

Academic Editor: Heng Liu

Copyright © 2022 Xiaolong Liu and Li Ma. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

The stock trading relationship of buyers and sellers in the stock market can be characterized by a directed graph. It is an important
way to study stock trading network through simple directed paths and cycles. In the present paper, we establish a seeking model of
simple directed paths and cycles, and obtain some necessary and sufficient conditions for simple directed path and cycle in the
directed graph. The algorithms of finding simple directed path and cycle of any specified length are given. The main approach
we used is the semi-tensor product of matrices, which can reduce the search space. An illustrative example is given to show
that the theoretical results and algorithms are effective.

1. Introduction and Preliminaries

Complex systems are composed of multiple interacting com-
ponents, and such systems are ubiquitous in social life, such
as power grids, social networks, economic organization sys-
tems, and so on. Stock market, as a kind of complex system,
is an important component in financial system, such as 3000
stocks affect each other and interact with the other in
China’s A stock market. It is obvious to study the stock mar-
ket from the perspective of complex network. The complex
network is mathematically processed to form a graph [1,
2]. Although networks are everywhere, any network can be
described by graph theory, such as the network of relation-
ships, for example, traffic flow and pipeline transportation
are related to the directed graph.

An NP-hard problem of graph theory is finding a simple
path and cycle [3]. For simple path and cycle finding, an iter-
ative algorithm based on variable adjacency matrix is illus-
trated in [4]. An improved adjacency matrix is obtained

and a modified iteration rule is further given in [5], which
develops the calculation speed. Furthermore, an adjacency
matrix power algorithm is obtained by using Warshall’s the-
orem [6] to exhibit the simple path. An backtrack algorithm
is presented for listing the whole simple paths in a directed
graph [7] and listing the whole cycles in an undirected graph
[8]. The search space algorithms are proposed in [9] for
looking for every simple cycle of a planar graph. A new algo-
rithm is developed to list approximately the cycle in an undi-
rected graph on the basis of Compute Unified Device
Architecture [10]. A new method called semi-tensor product
(STP) of matrices is used to find a simple path and simple
cycle in the undirected graph [11].

In this paper, we investigate the simple directed path and
simple directed cycle in directed graph by STP method. STP
was first proposed in [12, 13], which is a generalization of
the usual matrix multiplication. It is successfully and
maturely applied to Boolean control networks expressed as
a discrete algebraic system [13–16], and is further applied
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to a larger range, such as algebra [17], physics [18], and
graph theory [19, 20]. The main contribution of the present
paper is as follows: (i) we look for the simple directed paths
and cycles by STP method after modeling the stock trading
network as a directed graph, which has the mathematical
formulation advantage by comparing the existing methods
of finding the simple directed path and cycle. (ii) A new
algorithm is derived to list the simple directed path and sim-
ple directed cycle in the directed graph, which can reduce
the search space and is confirmed by an example.

The rest of this paper is organized as follows. The model-
ing of stock trading relationship and the analysis of finding
simple directed path and cycle by STP method are given in
Section 2. In Section 3, a new algorithm is illustrated based
on the results in Section 2, and an illustrative example is pre-
sented to verify the effectiveness of the theoretical results
and algorithms.

2. Modeling and Analysis

In this section, we introduce the modeling of stock trading
relationship and investigate the simple directed path and
cycle of the directed graph by using STP method.

For stock trading, the typical method is to regard every
trader in the stock market as a node and the trading relation-
ship between two investors as an edge. If there is no edge
connection between two nodes, then there is no trade
between the corresponding traders. In this network, the
traders form the node set of a graph, and the trading rela-
tionships among all the investors form the edge set of a
graph. Since there are buyers and sellers in stock trading,
the trading relationship is directional. Therefore, the stock
trading network can be characterized as a directed graph
by assembling nodes and edges.

Consider a graph G = fV ,Eg with a vertex (node) set
V = fv1, v2,⋯,vng and an edge set E ⊂ fV ×V g. A graph
G is called a directed graph if each edge of V , denoted by
eij = ðvi, vjÞ, is an ordered pair of two vertices. In a directed
graph G , a directed path consists of the ordered edges ei1i2 ,
ei2i3 ,⋯. A directed cycle is a directed path with some first
vertex and last vertex. Simple directed path (cycle) refers to
a path (cycle) with distinct vertices. The k-simple directed
path (cycle) is a simple directed path (cycle) with k vertices,
for example, v1 ⟶ v2 ⟶ v4 ⟶ v5 and v1 ⟶ v2 ⟶ v4
⟶ v1 are 4-simple directed path and 3-simple directed
cycle in Figure 1, respectively.

For the vertex vi, the neighbor vertex set N i is given by

N i = vj ∣ eij = vi, vj
À Á

∈E
È É

: ð1Þ

Then the adjacency matrix A = ½aij� of G is described as

aij =
1, vj ∈N i,

0, vj ∉N i:

(
ð2Þ

For the vertex subset S ⊆V with S = fvi1 , vi2 ,⋯,vikg,
i1, i2,⋯, ik ∈ f1, 2,⋯,ng, the characteristic logical vector of
S is given as V S = ½x1, x2,⋯,xn�, where

xi =
1, vi ∈ S,

0, vi ∉ S:

(
ð3Þ

Then we have the following results.

Theorem 1. Assume that S ⊆V , S = fvi1 , vi2 ,⋯,vikg, k ⩾ 5.
Then the directed subgraph G ½S� induced by vertex set S is a
k-simple directed path if and only if the following assump-
tions hold.

(i) One element of the matrix BS is 0 and the other ele-
ments are 1, where BS is given by

BS = bi1S , b
i2
S ,⋯,bikS

� �
,

bimS = 〠
n

j=1
aim jximxj, m = 1, 2,⋯, k:

ð4Þ

(ii) If aps = aqt = 1 for p ≠ q with p, q, s, t ∈ f1, 2,⋯,kg,
then s ≠ t.

(iii) The subset �S = fvj1 , vj2 ,⋯,vjlg ⊂ S, 3 ⩽ l ⩽ k − 2
satisfies

L�S = 〠
n

i=1
〠
n

j=1
aij�xi�xj ⩽ l − 1, ð5Þ

where

�xi =
1, vi ∈ �S,

0, vi ∉ �S:

(
ð6Þ

Proof (Necessity). If G ½S� is a k-simple directed path, then
the connection relationship of vertices and edges in G ½S�
can be described in Figure 2.

v1 v2

v4

v3

v5

Figure 1: The 4-simple directed path v1 ⟶ v2 ⟶ v4 ⟶ v5 and
3-simple directed cycle v1 ⟶ v2 ⟶ v4 ⟶ v1 in a directed graph.
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In the directed graph in Figure 2, we find that the end
vertex has no adjacent vertex and the remaining vertices
have one adjacent vertex in set S. Then, one element of S sat-
isfies ∑n

j=1aim jximxj = 0 and the other elements of S satisfy
∑n

j=1aim jximxj = 1. That is to say, one element of the matrix
BS is 0 and the other elements are 1.

Assume that aps = aqt = 1 for p ≠ q with p, q, s, t ∈ f1, 2,
⋯,kg. Suppose s = t, then it contradicts the definition of a
simple directed path, and so we have s ≠ t.

For any subset �S = fvj1 , vj2 ,⋯,vjlg, 3 ⩽ l ⩽ k − 2 with l ele-
ments, it is obvious that

L�S = 〠
n

i=1
〠
n

j=1
aij�xi�xj ⩽ l − 1: ð7Þ

(Sufficiency) If one element of the matrix BS is 0 and the
remaining elements are 1, then one element of S meets
∑n

j=1aim jximxj = 0, and k − 1 elements of S meet ∑n
j=1aim jxim

xj = 1. Thus, one vertex of S has no adjacent vertex described
by type I, and the remaining vertices of S have one adjacent
vertex described by type II (see Figure 3). Hence, the vertex
of type I is the end vertex in the directed graph.

In what follows, we prove that all vertices of type II can
be described in Figure 3, which shows that G ½S� is a k-simple
directed path.

Suppose, there exist some vertices with type II not
described in Figure 3. Then, either there are two vertices sat-
isfying aps = aqs = 1 for p ≠ q, or there is a subset �S = fvj1 ,
vj2 ,⋯,vjlg, 3 ⩽ l ⩽ k − 2 such that

L�S = 〠
n

i=1
〠
n

j=1
aij�xi�xj = l: ð8Þ

The above results have contradiction with conditions (ii)
and (iii). Therefore, all vertices with type II are described in
Figure 3.

Remark 2. If 3 ⩽ k < 5, then G ½S� is a k-simple directed path if
and only if S satisfies conditions (i) and (ii) in Theorem 1.

Corollary 3. Assume that S ⊆V , S = fvi1 , vi2 ,⋯,vikg, k ⩾ 6.
Then the directed subgraph G ½S� induced by vertex set S is a
k-simple directed cycle if and only if the following assump-
tions hold.

(i) bimS =∑n
j=1aim jximxj = 1,m = 1, 2,⋯, k.

(ii) If aps = aqt = 1 for p ≠ q with p, q, s, t ∈ f1, 2,⋯,kg,
then s ≠ t.

(iii) The subset�S = fvj1 , vj2 ,⋯,vjlg ⊂ S, 3 ⩽ l ⩽ k − 3 satisfies

L�S = 〠
n

i=1
〠
n

j=1
aij�xi�xj ⩽ l − 1, ð9Þ

where

�xi =
1, vi ∈ �S,

0, vi ∉ �S:

(
ð10Þ

Remark 4. If 3 ⩽ k < 6, then G ½S� is the k-simple directed
cycle if and only if S satisfies conditions (i) and (ii) of Corol-
lary 3.

For further discussion, the structure matrices for the
Boolean operators are given as follows (see [19]). The struc-
ture matrices of conjunction operator and dummy operator
are Mc = δ2½1 2 2 2� and Ed = δ2½1 2 1 2�, respectively.

Proposition 5. Eduv = v holds for logical variables u, v ∈ Δ2.

Proposition 6. W ½m,n�XY = YX,W ½n,m�YX = XY , where X ∈
ℝm, Y ∈ℝn, and the element of the swap matrix W ½m,n�,
denoted by wðI,JÞði,jÞ, is given by

w I,Jð Þ i,jð Þ =
1, I = i and J = j,

0, otherwise:

(
ð11Þ

Theorem 7. Assume that S = fvi1 , vi2 ,⋯,vikg ⊆V and YS =

⋉n
i=1yi = δs2n with yi ≔

xi,

1 − xi

 !
. If G ½S� is a k-simple directed

path, then the sth component of the first row in matrix TS is
k − 1, where

TS = 〠
n

i=1
〠
n

j=1
aijTij,

Tij = Tji =Mc Edð Þn−2W 2j ,2n− j½ �W 2i ,2j−i−1½ �:
ð12Þ

Figure 2: The connection relationship of 6-simple directed path.

Figure 3: A directed graph with vertices of type I and type II.
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Proof. When G ½S� is the k-simple directed path, we have

〠
n

i=1
〠
n

j=1
aijxixj = k − 1: ð13Þ

Due to xixj = xjxi, without loss of generality, in this
paper we can assume that i < j. From Propositions 5 and 6,
we have

yiyj = Edð Þn−2yj+1 ⋯ ynyi+1 ⋯ yj−1y1 ⋯ yi−1yiyj

= Edð Þn−2W 2 j ,2n− j½ �yi+1 ⋯ yj−1y1 ⋯ yi−1yiyjyj+1 ⋯ yn

= Edð Þn−2W 2 j ,2n− j½ �W 2 j ,2n− j½ �W 2i ,2 j−i−1½ �y1 ⋯ yi−1yiyi+1 ⋯ yj−1yjyj+1 ⋯ yn

= Edð Þn−2W 2 j ,2n− j½ �W 2 j ,2n− j½ �W 2i ,2 j−i−1½ �YS:

ð14Þ

From (14), we obtain

xixj = xi∧xj = JMcyiyj

= JMc Edð Þn−2W 2 j ,2n− j½ �W 2 j,2n− j½ �W 2i ,2 j−i−1½ �YS,
ð15Þ

where J = ½1, 0�. Thus, it follows from (15) that

k − 1 = 〠
n

i=1
〠
n

j=1
aijxixj

= 〠
n

i=1
〠
n

j=1
aijJMc Edð Þn−2W 2 j ,2n− j½ �W 2 j,2n− j½ �W 2i ,2 j−i−1½ �YS

= JTSYS:

ð16Þ

It follows from YS = δs2n that the sth component of the
first row of matrix TS is k − 1.

Corollary 8. Assume that S = fvi1 , vi2 ,⋯,vikg ⊆V and YS =
⋉n
i=1yi = δs2n . If G ½S� is a k-simple directed cycle, then the sth

component of the first row of matrix TS is k, where

TS = 〠
n

i=1
〠
n

j=1
aijTij,

Tij = Tji =Mc Edð Þn−2W 2j ,2n− j½ �W 2i ,2j−i−1½ �:
ð17Þ

3. Algorithm and Validity

In this section, we give the algorithm for finding the k-sim-
ple directed path (cycle) in the directed graph based on the
above section.

Step 1. It is easy to derive TS by (12). The first row of TS is
obtained by using J = ½1, 0�, described as β = JTS = ½b1, b2,⋯
,b2n �. When bi ≠ k − 1 for all i ∈ f1, 2,⋯,2ng, there exist no
k-simple directed paths and the program is terminated.
When bi = k − 1 for some i, the position numbers where
the element is k − 1 are given by c1, c2,⋯, ct .

Step 2. Each cj, j = 1, 2,⋯, t corresponds to a YS = δ
cj
2n . From

[13], we know that

Sn1 = δ2 1⋯ 1|fflffl{zfflffl}
2n−1

2⋯ 2|fflffl{zfflffl}
2n−1

2
664

3
775,

Sn2 = δ2 1⋯ 1|fflffl{zfflffl}
2n−2

2⋯ 2|fflffl{zfflffl}
2n−2

1⋯ 1|fflffl{zfflffl}
2n−2

2⋯ 2|fflffl{zfflffl}
2n−2

2
664

3
775,

·

·

·

Snn = δ2 12|{z}2 ⋯ 12|{z}
2

⏟|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
2n−1

2
6666666664

3
7777777775
:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð18Þ

Then we obtain

yi = Sni YS = Sni δ
cj
2n , i = 1, 2,⋯, n,

S cj
À Á

= vi ∣ yi = δ12, 1 ⩽ i ⩽ n
È É

:
ð19Þ

When jSðcjÞj ≠ k, there is not k-simple directed path, and
the program is terminated. Otherwise, only the sets with k
vertices are considered.

Step 3. Test whether the above sets SðcjÞ with k vertices sat-
isfy the condition of Theorem 1. The directed subgraphs that
meet the condition of Theorem 1 are all k-simple directed
paths.

Remark 9. In combination with Corollary 3, the algorithm of
looking for all the k-simple directed cycles can be derived in
the same way.

In what follows, we give an example to verify the validity
of algorithm. The given directed graph is shown in Figure 4,
and the MATLAB software is used to search for the simple
directed path and simple directed cycle in the directed
graph. An example with 8-simple directed path is given to
verify that the algorithm above is efficient and reliable.
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The adjacency matrix of the directed graph in Figure 4 is
denoted as

A =

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0 1

1 0 0 0 1 0 1 0 0 0 0 0

0 0 1 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 1 0 0 0

1 0 0 0 0 0 1 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0

2
666666666666666666666666666664

3
777777777777777777777777777775

:

ð20Þ

TS is easily obtained according to Step 1 of the above
algorithm, and the columns whose element is 7 are denoted
by c1, c2,⋯, c345, which are all elements that may form 8-
simple directed paths. According to Step 2 of the algorithm,
there are only 25 sets SðcjÞ with 8 elements. By Step 3, there
is only one 8-simple directed path in the complex directed
graph, which is shown in Table 1, and there is no 9-simple
directed cycle.
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