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In this work, some novel approximate analytical and numerical solutions to the forced damped driven nonlinear (FDDN)
pendulum equation and some relation equations of motion on the pivot vertically for arbitrary angles are obtained.�e analytical
approximation is derived in terms of the Jacobi elliptic functions with arbitrary elliptic modulus. For the numerical approxi-
mations, the Chebyshev collocation numerical method is introduced for analyzing the equation of motion. Moreover, the
analytical approximation and numerical approximation using the Chebyshev collocation numerical method and the MATH-
EMATICA command Fit are compared with the Runge–Kutta (RK) numerical solution. Also, the maximum distance error to all
obtained approximations is estimated with respect to the RK numerical solution. �e obtained results help many authors to
understand the mechanism of many phenomena related to the plasma physics, classical mechanics, quantum mechanics, optical
�ber, and electronic circuits.

1. Introduction

�e pendulum oscillator and some related equation have
been used as a physical model to solve several natural
problems related to bifurcations, oscillations, and chaos such
as nonlinear plasma oscillations [1–9], Du�ng oscillators
[10–14], and Helmholtz oscillations [12], and many other
applications can be found in [15–24]. �ere are few attempts
for analyzing the equation of motion of the nonlinear
damped pendulum taking the friction forces into account
[25]. �e approximate solution was obtained in form of the
Jacobi elliptic functions. However, there are many others
forces in addition to the friction force that a�ect the motion
of the pendulum such as perturbed and periodic forces.

�ese forces appear in di�erent dynamic systems and cannot
be neglected due to their great impact on the behavior of the
oscillator. For instance, the unforced damped driven non-
linear pendulum equation/or the unforced damped para-
metric driven pendulum equation

φ
.. + 2βφ

. + ϕ(t)sin φ � 0, (1)

has been derived in detail in [26], where ϕ(t) �
ω2
0 − εω2 cos(ct), ω2

0 � g/l, β � μ/2ml, ω1 � c/ml, ω2 � c2/l,
ε≪ 1 is a small parameter, and φ ≡ φ(t) denotes the angular
displacement. In (1), ω0 indicates the eigenfrequency of the
system and β represents the damping coe�cient. Here, the
pendulum is modeled by a sphere of mass m, hanging at the
end of a massless wire with length l and �xed to a supporting
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point “O,” swinging to and from in a vertical plane under the
gravity acceleration “g.”. For (β,ω2, F) � (0, 0, 0), the un-
forced undamped nonlinear pendulum oscillation/the un-
forced undamped Duffing oscillator is recovered [5]. (1) has
only been analyzed numerically via the midpoint scheme,
and based on our comprehensive survey, we did not find any
attempt to find a semi-analytical solution to this equation.
Motivated by the potential applications of the nonlinear
oscillators, the forced damped driven nonlinear (FDDN)
pendulum equation or sometimes called the forced damped
parametric driven pendulum equation will be studied:

φ
..

+ 2βφ
.

+ ϕ(t)sin φ � F cos(Ωt). (2)

Also, some analytical approximations to (2) and some
related equations will be derived for the first time and will be
compared with the Runge–Kutta (RK) numerical solution.
Moreover, the Chebyshev collocation numerical method
[27–29] is introduced for analyzing both (1) and (2). Fur-
thermore, the MATHEMATICA command Fit is devoted
for analyzing the equation of motion. We graphically make a
comparison between the analytical and numerical approx-
imations, and the maximum distance error in the whole time
domain is estimated.

2. Analytical Approximations to the FDDN
Pendulum Equation

Let us now write the evolution equation in the form of the
initial value problem (i.v.p.):

cφ
..

+ 2βφ
.

+ ϕ(t)sin φ � F cos(Ωt),

φ(0) � φ0 andφ′(0) � φ
.

0.

0≤ t≤T,

⎧⎪⎪⎨

⎪⎪⎩
(3)

where φ(t � 0) � φ0 indicates the oscillation amplitude.
Using Chebyshev polynomial approximation, we can

approximate sin φ as

sin φ ≈ φ − λφ3 for − M≤φ≤M, (4)

where

λ ≡ λM �
1
6

+
M

5569
−

M
2

112
+

M
3

1883
. (5)

*e error EM of this approximationmay be estimated via
the following formula:

EM �
3
298

M
3

−
5
378

M
2

+
1
203

M −
1

2837
for

2π
180
≤M≤

π
2

.

(6)

For example, at the angle M � 30°, the exact error equals
Eex � 0.0000608542 while the error according to formula
(6) equals EM � 0.0000455313 and the difference between
them is given by E � Eex − EM � 0.0000153229. *e re-
spective approximation for −30° ≤φ≤ 30° reads as

sin φ ≈ φ − 0.164389φ3 ≈ φ −
9
55
φ3

. (7)

Also, for M � 75°, we obtain λ � 2/13 which will be used
as the default value in the present study. Consequently, i.v.p.
(3) can be reduced to the following variable coefficient
forced damped Duffing i.v.p.

cQ ≡ φ
..

+ 2βφ
.

+ ϕ(t) φ −
2
13
φ3

  − F cos(Ωt) � 0,

φ(0) � φ0 andφ′(0) � φ
.

0.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

Suppose the solution of this problem is given by

cφ � θ + c1 cos(Ωt) + c2 sin(Ωt),

θ(0) ≡ θ0 � φ0 − c1 andφ′(0) ≡ θ1 � φ
.

0 − c2Ω.
 (9)

*e function θ ≡ θ(t) is a solution to the following ode:

θ
..

+ 2βθ
.

+ ϕ(t) θ −
2
13
θ3  � 0. (10)

Accordingly, we get

Q � −
1
26

cos(Ωt)A1 −
1
26

sin(Ωt)A2

−
1
26

12θ2A3 + 6θA4 + A5 ϕ(t),

(11)

where the coefficients A1 − A5 are given in Appendix 1.
Now, for small c, we can define ϕ(t) � ω2

0 − εω2
cos(ct) ≈ ω2

0 − εω2 � κ which leads to

Q ≈ −
1
26

cos(Ωt)B1 −
1
26

sin(Ωt)B2

−
κ
26

12θ2A3 + 6θA4 + A5 ,

(12)

where the coefficients A1 − A3 have the same values given in
Appendix 1 while the values of coefficients of B1 and B2 are
given in Appendix 2.

*e constants c1 and c2 could be determined from the
following system:

c3 c
3
1 + 3c

2
2c1 − 26c1 κ − 52c2βΩ + 26c1Ω

2
+ 26F � 0,

3c
3
2 + 3c

2
1c2 − 26c2 κ + 52c1βΩ + 26c2Ω

2
� 0.

⎧⎪⎨

⎪⎩

(13)

Eliminating c2 from system (13), we have the following
cubic equation:

− 26c1
3F

2κ2 − 3F
2κΩ2 − 416β4Ω4

−104β2κ2Ω2 + 208β2κΩ4 − 104β2Ω6
⎛⎝ ⎞⎠ + 9F

2κ2c31

−624Fβ2Ω2c21 + 78F
3

− 2704Fβ2Ω2 κ + 2704Fβ2Ω4 � 0.

(14)

Also, by eliminating c1 from system (13), we get

10816β4Ω4 + 2704β2κ2Ω2 − 5408β2κΩ4 + 2704β2Ω6 c2

+9F
2κ2c32 + 312FβκΩ3 − 312Fβκ2Ω c

2
2 − 5408Fβ3Ω3 � 0.

(15)
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We choose the least in magnitude pair of real roots
(c1, c2) in (14) and (15). Accordingly, the final form of the
analytical approximation to i.v.p. (3) is given by

φapprox(t) � θ(t) + c1 cos(tΩ) + c2 sin(tΩ), (16)

with

θ(t) �
e

− βt

1 + b2sn(f(t)
��
ω

√
|m)

2

b1dn(f(t)
��
ω

√
|m)sn(f(t)

��
ω

√
|m)

+θ0cn(f(t)
��
ω

√
|m)

⎛⎝ ⎞⎠,

f(t) �
2

��������������

−330β2 − 329κ/κ


%
���
329

√
c

E
tc

2
|

658εω2

330β2 − 329κ
 ,

(17)

where

ω � −
p

2m − 1
,

m �
1
2

1 −
p

���������������

p + qφ2
0 

2
+ 2θ21q

⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

b1 �
δθ1

������
1 − 2m

√

��
p

√ ,

b2 �
p + qφ2

0 − ω
2ω

,

p � κ, q � −
2
13

κ.

(18)

3. ChebyshevCollocationNumericalSchemefor
Analyzing FDDN Pendulum Equation

Now, the Chebyshev interpolation collocation method is
introduced for analyzing i.v.p. (3) on the time interval [0, T].
To do that, we first solve numerically the ode. Let φ be the RK
numerical solution to the i.v.p. described by (3). *en, we
assume that the solution is given in terms of Chebyshev
polynomials:

φ(t) � 
n

k�0
ckTk

2t

T
− 1 , (19)

where Tk(t) stands for the Chebyshev polynomial of the first
kind and n denotes the highest degree of the Chebyshev
polynomials involved in the linear combination.

*e collocation points tk are defined as

tk �
1
2

T 1 + cos
4k + 1
2(n + 1)

π   , (20)

for k � 1, 2, 3, . . . , n.

*e additional equations are required for determining
the values of ck. *us, the values of the coefficients ck are
found from the following linear system:

φ(0) � φ0,

φ′(0) � φ
.

0,

φ′′(0) � φ′′(0).

φ(T) � φ(T),

φ′(T) � φ′(T),

φ′′(T) � φ′′(T).

φ tk(  � φ tk(  for k � 5, 6, . . . , n.

(21)

In general, increasing the value of n will not guarantee
good approximations. *us, we must choose some optimal
value for n to our approximations. To this end, we define a
range for possible n values, say

7≤ nmin ≤ n≤ nmax. (22)

We then find the optimal value for n within this range.
Let φn(t) be the solution using formula (19) and let φRK(t) be
the RK numerical solution to i.v.p. (3) on the interval
0≤ t≤T. *e following maximum distance error with re-
spect to the RK numerical solution is defined:

ET,n � max0≤t≤T φn(t) − φRK(t)


. (23)

*e optimal value for n on the range nmin ≤ n≤ nmax will
then be that for which the error ET,n is as small as possible. o
verifies the validity of this claim. Let us use the following
data: (β, c,ω0,ω2, ε,Ω, F,φ0,φ

.

0) � (0.2, 0.2, 1, 1, 0.2, 1, 0.1,

0, 0), as an example in i.v.p. (3). By solving this problem via
both RK and Chebyshev collocation numerical methods in
the interval 0≤ t≤ 50 and estimating the error ET,n based on
relation (23) for 7≤ n≤ 60, we finally get the error ET,n

associated with each number n as shown in Table 1. *e
results in Table 1 illustrate that the optimal value of n based
on the mention data for (β, c,ω0, ω2, ε,Ω, F,φ0,φ

.

0) equals
n � 45 and the error value corresponding to n � 45 equals
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E50,45 � 0.000964248. Also, the optimal polynomial
according to the mentioned data reads as

φ45(t) � 0.0511403t
2

− 0.0177057t
3

+ 0.0340205t
4

− 0.0823837t
5

+ 0.109124t
6

− 0.0998239t
7

+ 0.0677353t
8

− 0.0353909t
9

+ 0.0146451t
10

− 0.00490664t
11

+ 0.00135445t
12

− 0.000312451t
13

+ 0.0000609427t
14

− 0.0000101493t
15

+ 1.45518 × 10− 6
t
16

− 1.80894 × 10− 7
t
17

+ 1.96141 × 10− 8
t
18

− 1.86462 × 10− 9
t
19

+ 1.561 × 10− 10
t
20

− 1.15515 × 10− 11
t
21

+ 7.57989 × 10− 13
t
22

− 4.42193 × 10− 14
t
23

+ 2.29822 × 10− 15
t
24

− 1.06583 × 10− 16
t
25

+ 4.41541 × 10− 18
t
26

− 1.63491 × 10− 19
t
27

+ 5.41107 × 10− 21
t
28

− 1.6 × 10− 22
t
29

+ 4.22221 × 10− 24
t
30

− 9.92634 × 10− 26
t
31

+ 2.07398 × 10− 27
t
32

− 3.83854 × 10− 29
t
33

+ 6.26651 × 10− 31
t
34

− 8.97497 × 10− 33
t
35

+ 1.11996 × 10− 34
t
36

− 1.2071 × 10− 36
t
37

+ 1.1112 × 10− 38
t
38

− 8.60994 × 10− 41
t
39

+ 5.50647 × 10− 43
t
40

− 2.82885 × 10− 45
t
41

+ 1.12172 × 10− 47
t
42

− 3.22145 × 10− 50
t
43

+ 5.96106 × 10− 53
t
44

− 5.33464 × 10− 56
t
45

.

(24)

Polynomial (24) allows us to estimate the cuts with the
horizontal axis as well as the maxima and minima to the
crest and the trough, respectively, as shown in Figure 1 and

Table 2. Using the MATHEMATICA command Fit gives the
following solution φMath(t) ≡ φMathematica(t) for
(β, c,ω0,ω2, ε,Ω, F,φ0,φ

.

0) � (0.2, 0.2, 1, 1, 0.2, 1, 0.1, 0, 0):

φMath(t) � e
− t/5 t

6

365
−
2t

5

23
+
125t

4

94
−
229t

3

32
−
21045t

2

619
+
33029t

74
−
63445
76

 sin(t)

+
e

− t/5

787321464

2193096t
6

− 17115684t
5

− 426465793t
4

+ 10891280252t
3

−83720431296t
2

+ 147163503646t + 393199198728
⎛⎜⎝ ⎞⎟⎠cos(t)

+
e

− t/5

1544400

−3575t
7

+ 93600t
6

− 1480050t
5

+ 12725856t
4

−38075400t
3

− 118006200t
2

+ 1213821180t + 294883875
⎛⎜⎝ ⎞⎟⎠ −

11736
17

,

(25)

with error E � 0.000213725. Figure 2 demonstrates the
comparison between the approximations of i.v.p. (3)
using RK numerical solution with MATHEMATICA
command Fit (here, polynomial (25)) and Chebyshev
collocation numerical solution (24). It is noted that all
used techniques give highly accurate approximations
with low errors as compared to the RK numerical
solutions.

*e semi-analytical solution (16) to i.v.p. (3) could be
recovered as follows.

Case (1). For (β,ω2, F) � (0, 0, 0.1), the different ap-
proximations to the forced undamped Duffing os-
cillator with constant coefficients are introduced in
Figure 3 with (c,ω0, ε,Ω,φ0,φ

.

0) � (0.1, 1, 0.1, 2, 0, 0).
*e comparison between the RK method and the

analytical approximation (15) is presented in
Figure 3(a). *e approximate solutions using the
MATHEMATICA command Fit and RK method are
displayed in Figure 3(b). In Figure 3(c), both RK and
Chebyshev collocation numerical approximations
are presented. Also, the maximum error for the
analytical approximation (15) and MATHEMATICA
command Fit and Chebyshev collocation numerical
solutions as compared to the RK numerical ap-
proximation is estimated based on the following
relation:
E∞|Type−solution � max0≤t≤30 φType−solution − φRK



. (26)

Accordingly, the maximum error of the three ap-
proximations for the present case is estimated as
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Table 1

N ET;n
7 12:7318
8 8:18709
9 5:34902
10 3:73001
11 2:47806
12 5:99151
13 15:6472
14 19:1789
15 11:4247
16 12:9725
17 44:5793
N ET;n
18 56:0277
19 22:7408
20 45:8666
21 86:0102
22 41:4478
23 54:48:00
24 81:8262
25 9:2908
26 50:9774
27 35:2609
28 7:88678
N ET;n
29 24:0096
30 11:8633
31 11:9267
32 13:0699
33 16:4155
34 160:44:00
35 1021:51:00
36 455:30:00
37 293:27:00
38 62:37:00
39 594:34:00
N ET;n
40 1011:59:00
41 1016:07:00
42 193:44:00
43 978:08:00
44 154:12:00
45 779:04:00
46 584:21:00
47 655:31:00
48 1042:34:00
49 04:05:00
50 1060:25:00
N ET;n
51 135:10:00
52 626:08:00
53 401:51:00
54 666:50:00
55 999:51:00
56 893:24:00
57 622:23:00
58 199:58:00
59 7:1974
60 30:729

Journal of Mathematics 5



RK4
Chebyshev

-0.2

-0.1

0.0

0.1

0.2

φ

10 20 30 40 500
t

Out[ ]=

Figure 1: �e Chebyshev collocation and RK numerical approximations to i.v.p. (3) for (β, c,ω0,ω2, ε,Ω,φ0, _φ0) �
(0.2, 0.2, 1, 1, 0.2, 1, 0.1, 0, 0) and with n � 45 is plotted in the (φ, t) plane and the cuts with the horizontal axis as well as the maxima and
minima to the crest and the trough is determined.

Table 2

Zeros of the polynomial solution ’45(t) Zeros of the derivative ’045(t)
K Tk k tk k tk k tk
1 3:1993 11 34:9609 1 1:99978 11 26:6741
2 6:39594 12 38:0328 2 4:93036 12 30:43:00
3 9:46288 13 41:1493 3 7:98259 13 30:43:00
4 12:4583 14 43:9479 4 10:9844 14 33:3364
5 15:4562 15 46:912 5 13:9641 15 36:4941
6 18:5134 16 49:9492 6 13:9645 16 36:4941
7 21:6812 7 16:98 17 39:5245
8 24:8139 8 20:0903 18 42:4811
9 28:3547 9 23:3291 19 45:4226
10 31:7165 10 26:674 20 48:4281

RK4
Mathematica

-0.2

-0.1

0.0

0.1

0.2

φ

10 20 30 40 500
t

Out[ ]=

(a)

RK4
Chebyshev

-0.2

-0.1

0.0

0.1

0.2

φ

10 20 30 40 500
t

(b)

Figure 2: �e comparison between the approximations of i.v.p. (3) using RK numerical solution with MATHEMATICA command Fit
(here, polynomial (25)) and Chebyshev collocation numerical solution (24) for (β, c,ω0,ω2, ε,Ω,φ0, _φ0) � (0.2, 0.2, 1, 1, 0.2, 1, 0.1, 0, 0) and
n � 45.
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E|semi−analy � 0.000214826,

E|Mathematica � 0.00856153,

En�47|Chebyshev � 0.0000389093.

(27)

Case (2). For (β,ω2, F) � (0, 1, 0.1), the comparison
between the analytical approximation (16) and the
numerical approximations using the RK, MATHE-
MATICA command Fit, and Chebyshev collocation
numerical methods to the forced undamped Du�ng
equation with variable coe�cients is considered as
shown in Figure 4 with (c,ω0, ε,Ω,φ0,φ

.
0) �

(0.1, 1, 0.1, 2, 0, 0). �e maximum error of the three
approximations to the present case is calculated as

E|semi−analy � 0.00344896,

E|Mathematica � 0.0100608,

En�47|Chebyshev � 0.0000237867.

(28)

Case (3). For (β,ω2, F) � (0.1, 1, 0), the unforced
damped Du�ng equation with variable coe�cients is
recovered and its semi-analytical solution (16) is
compared with the numerical approximations using
RK, MATHEMATICA command Fit, and Chebyshev
collocation numerical methods as demonstrated in
Figure 5 with (c,ω0, ε,Ω,φ0,φ

.
0) � (0.1, 1, 0.1, 2, 0, 0.1).

In addition, the maximum error to the three approx-
imations as compared to RK numerical approximation
is estimated as

E|semi−analy � 0.000447172,

E|Mathematica � 0.00133459,

En�47|Chebyshev � 2.05447 × 10− 6.

(29)

�eMATHEMATICA code for the RK and Chebyshev
collocation numerical approximations with the maxi-
mum error is given in Appendix 3.

RK4
Trigonometric

-0.06

-0.04

-0.02

0.00

0.02

0.04

φ

(β,ω0,ω2,Ω,γ,ε,φ0,φ0,F)=(0,1,0,2,0.1,0.1,0,0,0.1)

5 10 15 20 25 300
t

Out[ ]=

(a)

RK4
Mathematica

-0.06

-0.04

-0.02

0.00

0.02

0.04

φ

(β,ω0,ω2,Ω,γ,ε,φ0,φ0,F)=(0,1,0,2,0.1,0.1,0,0,0.1)

5 10 15 20 25 300
t

Out[ ]=

(b)

RK4
Chebyshev

-0.06

-0.04

-0.02

0.00

0.02

0.04

φ

(β,ω0,ω2,Ω,γ,ε,φ0,φ0,F)=(0,1,0,2,0.1,0.1,0,0,0.1)

0 10 15 20 25 305
t

Out[ ]=

(c)

Figure 3: �e comparison between the semi-analytical solution (analytical approximation) (16) and the numerical approximations using
the Chebyshev collocation method and RK numerical method as well as the MATHEMATICA command Fit to i.v.p. (3) for case (1):
(β,ω2, F) � (0, 0, 0.1).
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RK4
Trigonometric

-0.06
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-0.02

0.00
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φ

(β,ω0,ω2,Ω,γ,ε,φ0,φ0,F)=(0,1,1,2,0.1,0.1,0,0,0.1)

5 10 15 20 25 300
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Out[ ]=

(a)

RK4
Mathematica

-0.06
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0.00

0.02

0.04

φ

(β,ω0,ω2,Ω,γ,ε,φ0,φ0,F)=(0,1,1,2,0.1,0.1,0,0,0.1)
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Out[ ]=

(b)

RK4
Chebyshev
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Out[ ]=

(c)

Figure 4: �e comparison between the analytical approximation (16) and the numerical approximations using the Chebyshev collocation
method and RK numerical method as well as the MATHEMATICA command Fit to i.v.p. (3) for case (2):(β,ω2, F) � (0, 1, 0.1).
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Figure 5: Continued.
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Figure 5: �e comparison between the analytical approximation (16) and the numerical approximations using the Chebyshev collocation
method and RK numerical method as well as the MATHEMATICA command Fit to i.v.p. (3) for case (3):(β,ω2, F) � (0.1, 1, 0).
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Figure 6: �e comparison between the analytical approximation (16) and the numerical approximations using the Chebyshev collocation
method and RK numerical method as well as the MATHEMATICA command Fit to i.v.p. (3) for case (4):(β,ω2, F) � (0.1, 1, 0.1).
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Case (4). For (β,ω2, F) � (0.1, 1, 0.1), the general
analytical approximation (16) to the forced damped
parametric driven pendulum i.v.p. (3) is compared
with the RK, MATHEMATICA command Fit, and
Chebyshev collocation numerical solutions as elu-
cidated in Figure 6. �e in¤uence of β on the am-
plitude of the semi-analytical solution (16) is
investigated as shown in Figure 7. It is noted that the
amplitude of the analytical approximation (15) de-
creases with the increase of β. Also, the maximum
error according to relation (23) to the analytical
approximation (16) and MATHEMATICA com-
mand Fit, and Chebyshev collocation numerical
solutions as compared to the RK numerical solution
is estimated as follows:

E|semi−analy � 0.00326255,

E|Mathematica � 0.0128206,

En�47|Chebyshev � 0.000155082.

(30)

In all mentioned cases, it is observed that analytical
approximation (16) to i.v.p. (3) and its related equations
(here we mean the four mentioned cases) give highly ac-
curate results as compared to the numerical approximations.
It is observed that analytical approximation (16) is better
than the MATHEMATICA approximation but less than the
Chebyshev collocation numerical solution for all mentioned
cases. However, in the fourth case, i.e., the forced damped
parametric driven pendulum i.v.p. (3), the MATHEMA-
TICA approximation is better than the analytical approxi-
mation (16). In general, all obtained approximations are
characterized by their high accuracy. However, semi-ana-
lytical solution (16) is more stable than the Chebyshev
collocation numerical solution against all relevant physical
variables.

4. Conclusions

In this work, some e�ective and accurate analytical and
numerical approximations to the forced damped parametric
driven pendulum equation have been derived and investi-
gated.�ementioned equation ofmotion has been reduced to
the forced damped Du�ng equation with variable coe�cients
in order to �nd its analytical solution. In terms of the Jacobi
elliptic functions, the analytical approximation has been
derived. For the numerical approximations, the Chebyshev
collocation method has been used for analyzing the equation
of motion and some related equations. It was noted that the
analytical approximation could recover some special cases to
the nonlinear pendulum oscillators. For instance, for
undamping case, i.e., for β � 0, the solution to the forced
undamped Du�ng equation with variable coe�cients has
been recovered and examined. Also, for (β,ω2) � (0, 0), the
solution to the forced undamped Du�ng equation with
constant coe�cients has been recovered and discussed. �e
obtained approximations were compared with the RK nu-
merical approximation and the MATHEMATICA command
Fit approximation. Also, the maximum distance error has
been estimated for all approximations as compared to the RK
numerical approximation. It was found that the analytical
approximation gives good results with high accuracy as
compared to the numerical approximations. Furthermore, it
was observed that the analytical approximation is better than
the MATHEMATICA approximation but less than the
Chebyshev collocation numerical solution for all mentioned
cases except the case of the forced damped parametric driven
pendulum i.v.p. (3), the MATHEMATICA approximation is
slowly better than the analytical approximation (16). �e
methods used in this study could be extended to solve many
nonlinear equations that control the di�erent cases of pen-
dulum oscillations [30–33]. In addition, the obtained results/
solutions are useful for investigating several physical

-0.05

0.00

0.05

φ

β=0.1
β=0.2

5 10 15 20 25 300
t

Figure 7: �e analytical approximation (16) to i.v.p. (3) plotted in the (φ, t)plane for di�erent values to the coe�cient of the damping term
β.
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problems related to the oscillations in plasma physics, fluid
mechanics, field theory, engineering science, solid state
physics, and quantum mechanics.

Appendices

Appendix A

*e coefficients A1 − A5 of equation (11):

A1 �
ϕ(t) 3c

3
1 + 3c

2
2c1 − 26c1 

−52c2βΩ + 26c1Ω
2

+ 26F

⎡⎢⎣ ⎤⎥⎦,

A2 �
ϕ(t) 3c

3
2 + 3c

2
1c2 − 26c2 

+ 52c1βΩ + 26c2Ω
2

 

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

A3 � c2 sin(Ωt) + c1 cos(Ωt)( ,

A4 �
c
2
1 − c

2
2 cos(2Ωt)

+c
2
1 + c

2
2 + 2c2c1 sin(2Ωt)

⎡⎢⎣ ⎤⎥⎦,

A5 � c2 3c
2
1 − c

2
2 sin(3Ωt) + c1 c

2
1 − 3c

2
2 cos(3Ωt) .

(A.1)

Appendix B

*e coefficients B1 and B2 of equation (12):

B1 �
κ 3c

3
1 + 3c

2
2c1 − 26c1 

−52c2βΩ + 26c1Ω
2

+ 26F
⎡⎣ ⎤⎦,

B2 �
κ 3c

3
2 + 3c

2
1c2 − 26c2 

+ 52c1βΩ + 26c2Ω
2

 
⎡⎢⎣ ⎤⎥⎦.

(B.1)

Appendix C

MATHEMATICA Code for Chebyshev Collocation Numer-
ical Method to Figure 5(c). Note that this is general code
which can be used and applied for analyzing many oscil-
lators related to the present evolution equation.

Clear[a, b, m, h, x, \ [CurlyPhi], n, \ [Chi]]; \{a� 0,
b� 30, m� 45\};

\ [Beta]� 0.1; [CapitalOmega]� 2; \ [Omega]0�1; \

[Omega]2�1; \ \ [CurlyEpsilon]� 0.1; \ [Gamma]� 0.1;
x0� 0; x1� 0.1;

\ [Phi][t_]:� \ [Omega]0̂2 - \ [CurlyEpsilon] \ [Omega]
2 Cos[ \ [Gamma] \

t]; F� 0;
rk�NDSolve[
y”[t] + 2 \ [Beta] y’[t] + \ [Phi][t] Sin[y[t]]� �

F Cos[ \ [CapitalOmega] t] && y[a]� � x0 && y’[a]� �

x1,
y, \{t, 0, 100\}][[1, 1, 2]];
Plot[Evaluate[\{rk[t]\}], \{t, a, b - 10\}, PlotRange - >rbin

All.
PlotStyle - >rbin \{\{Black, *in\}\}]
h � (b - a)/m;
x[t_]:� Sum[
Subscript[c, k] ChebyshevT[k, (a + b - 2 t)/(a - b)], \{k, 0,

m\}];

R[t_]:� x”[t] + 2 \ [Beta] x’[t] + \ [Phi][t]∗Sin[x[t]] -
F Cos[ \ [CapitalOmega] t];
\ [Xi][j_]:�1/2 (a + b+ (-a + (b) Cos[( \ [Pi] + 4 j \ [Pi])/

(2 + 2m)])
solc� Flatten[Solve[sys0]];
x[t_]:� Sum[
Subscript[c, k] ChebyshevT[k, (a + b - 2 t)/(a - b)]//. solc,

\{k.
0, m\}];
\ [Chi][m_][t_]:�
Sum[Subscript[c, k] ChebyshevT[k, (a + b - 2 t)/(a - b)]//

.
solc, \{k, 0, m\}];
er[m_]:�Max[Table[Abs[rk[t] - \ [Chi][m][t]], \{t, a, b,

0.1\}]];
error[m_]:� Module[\{ \ [Xi], \ [Chi], R, sys, solc, err\},
\{ \ [Xi][j_]:�
1/2 (a + b+ (-a + (b) Cos[( \ [Pi] + 4 j \ [Pi])/(2 + 2m)]); \

[Chi][tt_]:�
Sum[Subscript[c, k] ChebyshevT[k, (a + b - 2 tt)/(a - b)],

\{k, 0,
m\}]; R[t_]:� \ [Chi]”[tt] +
2 \ [Beta] \ [Chi]’[tt] + \ [Phi][tt]∗Sin[ \ [Chi][tt]] -
F Cos[ \ [CapitalOmega] tt];
sys�

Flatten[Join[
Table[rk[ \ [Xi][j]]� � \ [Chi][ \ [Xi][j]], \{j, 5,
m\}], \{\{ \ [Chi][a] - x0� � 0, \ [Chi]’[a] - x1� � 0, \

[Chi][b] - rk[b]� � 0, \ [Chi]’[b] - rk’[b]� �

0, \ [Chi]”[b] - rk”[b]� � 0\}\}]];
solc� Flatten[NSolve[sys]]; \ [Chi][tt_]:�
Sum[Subscript[c, k] ChebyshevT[k, (a + b - 2 t)/(a - b)],

\{k, 0,
m\}]//. solc;
err�Maximize[\{Abs[rk[t] -[Chi][t]], 0� t� b\}, t][[1]];
\};
\{err, \ [Chi][t]\}
];
nmin � 7; nmax � 60;
opt� Sort[Table[\{error[jj][[1]], jj\}, \{jj, nmin, nmax\}]]

[[1]];
n� opt[[2]];
OPtimalnValue� � n
errx� error[n];
Error� � errx[[1]]
poly� errx[[2]];
Cheb�Plot[Evaluate[\{rk[t], poly\}], \{t, a, b\}, Plo-

tRange - > All.
PlotStyle - > \{\{Dashing[0.05],*ick, Black\}, \{Dotted,

*ick, Blue\}\},
PlotLegends - > Placed[\{“RK4″, “Chebyshev”\}, Frame

- > True].
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