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One of the most popular and important tools to deal with imperfect knowledge is the rough set theory. It starts from dividing the
universe to obtain blocks utilizing an equivalence relation. To make it more flexibility and expand its scope of applications, many
generalized rough set models have been proposed and studied. To contribute to this area, we introduce new generalized rough set
models inspired by “maximal union neighborhoods and ideals.” These models are created with the aim to help decision-makers to
analysis and evaluate the given data more accurately by decreasing the ambiguity regions. We confirm this aim by illustrating that
the current models improve the approximations operators (lower and upper) and accuracy measures more than some existing
method approaches. We point out that almost all major properties with respect to rough set model can be kept using the
current models. One of the interesting obtained characterizations of the current models is preserving the monotonic property,
which enables us to evaluate the vagueness in the data and enhance the confidence in the outcomes. Moreover, we compare
the current approximation spaces with the help of concrete examples. Finally, we show the performance of the current models
to discuss the information system of dengue fever disease and eliminate the ambiguity of the medical diagnosis, which
produces an accurate decision.

1. Introduction

Rough set theory was introduced via Pawlak [1, 2], as one of
the representative granular computing models. It offers a
useful mathematical instrument to cope with ambiguity/
uncertainty. Presently, rough set theory has been success-
fully applied to several areas such as approximate reasoning
[3], machine learning [4], incomplete information systems
[5], and decision analysis [6]. Pawlak [1, 2] expressed the
classical rough set theory by two new sets, obtained from
an equivalence relation, called lower and upper approxima-
tions. To know the vagueness size and measure the com-
pleteness of data, the concepts of boundary regions and
accuracy measures were presented. While the boundary
region defined as the difference between the approximation
operators (upper and lower), the accuracy measure repre-

sents a number obtained from the quotient of the cardinali-
ties of lower approximation and upper approximation. To
remove the strict condition imposed in the classical rough
set model, many scholars replaced the equivalence relation
by similarity relation [7], tolerance relation [8], or binary
relation [9, 10].

Additionally, to extend the applications of this theory,
Yao [11, 12] proposed new classes of blocks (or granular
computing) induced from right, left, and the intersection
(union) of left and right neighborhoods with respect to any
binary relation. This matter forms a revolution in rough
set theory and opens a door for studying many types of
neighborhood systems which are identical under an equiva-
lence relation. Following this line, different types of neighbor-
hood systems have been established with the aim to introduce
several generalized rough set models (or approximation
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spaces), minimal left and minimal right neighborhoods [13],
neighborhoods produced by the intersection of minimal left
and right neighborhoods [14], and core neighborhoods [15].
Abu-Donia [16, 17] investigated some sorts of approximation
operators using a family of binary relations instead of one
binary relation. Ciucci [18] investigated different types of
orthopair systems. In 2018, Dai et al. [19] familiarized the
maximal right neighborhoods under a similarity relation and
then applied it to present three different sorts of approxima-
tion spaces. Recently, Al-shami [20] has discussed new seven
kinds of rough maximal neighborhoods and benefited to
introduce new approximation spaces and rank suspected indi-
viduals of COVID-19. He proved that the accuracy measures
kept the monotonic property with respect to any relation.
With the desire to minimize the boundary region and maxi-
mize the accuracy values, the systems of containment neigh-
borhoods [21] and subset neighborhoods [22] were studied
and explored under arbitrary relation.

In 2013, Kandi et al. [23] made use of an abstract struc-
ture called “ideal” to define new rough paradigms called
“ideal approximation spaces.” This paradigm proved its effi-
ciency to enlarge the knowledge obtained from the informa-
tion system, and hence, high the degree of its completeness.
Moreover, it was applied to model some uncertainty phe-
nomena as illustrated in [24–26]. Recently, Hosny [27] has
inserted the ideal structures via topological approximation
spaces and showed how this technique deletes some objects
from the upper approximations and/or adds new objects to
the lower approximations, which means improving the
approximation operators more than their counterparts
induced from topological approximation spaces.

More recently, Al-shami and Hosny [28, 29] have dis-
played new ideal approximation spaces with respect to max-
imal left neighborhood under any binary relation and
showed their advantages compared to the previous ones.
Following this line of research, we propose new generalized
rough set models inspired by “maximal union neighbor-
hoods and ideals.” By these models, we successfully decrease
the ambiguity regions which helps us to evaluate the given
data more accurately. The good performance of the current
approach is illustrated by making comparisons with the
approach introduced in [20].

This manuscript is structured as follows. Section 2 is
dedicated to the basic concepts and properties on rough
neighborhood systems and ideals. The goal of Section 3 is
to introduce new four ideals approximation spaces and their
essential characterizations are explored. In Section 4, with
the help of illustrated examples, the comparisons between
these models are studied as well as the comparison of the
first kind of these models with its counterpart in [20] is
investigated. The significance of the proposed paradigms
with a medical diagnosis of dengue fever disease is demon-
strated in Section 5. Finally, a summary of the obtained find-
ings is given and upcoming works are proposed in Section 6.

2. Preliminaries

In this section, we briefly recall the essential of approxima-
tion spaces defined with respect to equivalence relations or

arbitrary binary relations. Also, we mention the main prop-
erties of ideal structures.

Definition 1 (see [1, 2]). Take R as an equivalence relation on
a universe E and let ½e�R be the equivalence class containing e.
For any subset F of E, the lower and upper approximations
and accuracy measure are defined, respectively, by

apr Fð Þ = e ∈ E : e½ �R ⊆ F
� �

; ð1Þ

�apr Fð Þ = e ∈ E : e½ �R ∩ F ≠ ϕ ;
�

and ð2Þ

AccR Fð Þ =
apr Fð Þ
���

���
�apr Fð Þj j :

ð3Þ

The main properties of these approximations (known as
Pawlak’s properties) are the following.

(L1) apr ðFcÞ = ½ �aprðFÞ�c, where Fc is the complement
of F:

(L2) apr ðEÞ = E.
(L3) apr ðϕÞ = ϕ:

(L4) apr ðFÞ ⊆ F:
(L5) apr ðF ∩ GÞ = apr ðFÞ ∩ apr ðGÞ
(L6) apr ðF ∪ GÞ ⊇ apr ðFÞ ∪ apr ðGÞ
(L7) F ⊆ G⇒ apr ðFÞ ⊆ apr ðGÞ:
(L8) apr ðapr ðFÞÞ = apr ðFÞ:
(L9) �aprðFÞ ⊆ apr ð �aprðFÞÞ:
(U1) �aprðFcÞ = ½apr ðFÞ�c:
(U2) �aprðEÞ = E.
(U3) �aprðϕÞ = ϕ:
(U4) F ⊆ �aprðFÞ:
(U5) �aprðF ∪ GÞ = �aprðFÞ ∪ �aprðGÞ:
(U6) �aprðF ∩ GÞ ⊆ �aprðFÞ ∩ �aprðGÞ:
(U7) F ⊆ G⇒ �aprðFÞ ⊆ �aprðGÞ:
(U8) �aprð �aprðFÞÞ = �aprðFÞ:
(U9) �aprðapr ðFÞÞ ⊆ apr ðFÞ:

Definition 2 (see [20]). If the relations R1 and R2 are equiva-
lence on a universe E such that R1 ⊆ R2. Then, the approxi-
mations inspired by these relations have the property of
monotonicity (monotonic property) if AccR2

ðFÞ ≤AccR1
ðFÞ

for each F ⊆ E.

Definition 3 (see [11, 19, 20]). The next neighborhoods of an
element e of a finite set E ≠∅ are defined with respect to any
arbitrary binary relation R as follows.

(1) The right neighborhood of e, symbolized by NrðeÞ, is
given by NrðeÞ = fa ∈ E : ðe, aÞ ∈ Rg

(2) The left neighborhood of e, symbolized by NlðeÞ, is
given by NrðeÞ = fa ∈ E : ða, eÞ ∈ Rg

(3) μrðeÞ is the union of all right neighborhoods con-
taining e
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(4) μlðeÞ is the union of all left neighborhoods con-
taining e

(5) μuðeÞ = μrðeÞ ∪ μlðeÞ

Theorem 4 [20]. Let E be a universal set and R1, R2 be two
binary relations on E: If R1 ⊆ R2, then, μ1uðeÞ ⊆ μ2uðeÞ,
∀e ∈ E:

Definition 5 (see [20]). Let R be a binary relation on a non-
empty set E. The lower and upper approximations, bound-
ary region, accuracy, and roughness of a nonempty subset
F of E are defined, respectively, by

R⋆ Fð Þ = e ∈ E : μu eð Þ ⊆ Ff g, ð4Þ

R⋆ Fð Þ = e ∈ E : μu eð Þ ∩ F ≠ ϕf g, ð5Þ
B⋆
R Fð Þ = R⋆ Fð Þ − R⋆ Fð Þ, ð6Þ

Acc⋆R Fð Þ = R⋆ Fð Þ ∩ F
R⋆ Fð Þ ∪ F

����
����, ð7Þ

Rough⋆R Fð Þ = 1 −Acc⋆R Fð Þ: ð8Þ

Definition 6 (see [30]). An ideal J on a set E ≠ ϕ is non-
empty collection of subsets of E that is closed under finite
unions and subsets; i.e., it satisfies the following conditions:

(1) F ∈ J and H ∈ J ⇒ F ∪H ∈ J

(2) F ∈ J and H ⊆ F ⇒H ∈ J

Definition 7 (see [26]). For two ideals on a nonempty set E,
the smallest collection generating by J 1, J 2, denoted by
J 1∨J 2, is given by

J 1∨J 2 = G ∪ F : G ∈ J 1, F ∈ J 2f g: ð9Þ
Proposition 8 (see [26]). If J 1, J 2 are ideals on a nonempty
set E, and F,H are subsets of E. Then, the collection J 1∨J 2
satisfies the next conditions:

(1) J 1∨J 2 ≠ ϕ

(2) F ∈ J 1∨J 2,H ⊆ F ⇒H ∈ J 1∨J 2

(3) F,H ∈ J 1∨J 2 ⇒ F ∪H ∈ J 1∨J 2

It means that the collection J 1∨J 2 is an ideal on E:

3. Some Novel Rough Set Paradigms
Produced by μuðeÞ-Neighborhoods and Ideals

In this section, we display four paradigms of approximation
spaces induced from R̆ < x > R̆-neighborhoods and ideals.
With the aid of elucidative examples and counterexamples,
we point out some directions that are invalid in the obtained
findings and relationships.

3.1. The First Method of the Improvement of the
Approximations and Accuracy Measure of Subsets

Definition 9. Let R and J be, respectively, binary relation
and ideal on a nonempty set E. The first kind of the
improvement of lower and upper approximations, boundary
region, accuracy, and roughness of a nonempty subset F of E
induced from R and J is defined, respectively, by

RJ
⋆ Fð Þ = e ∈ E : μu eð Þ ∩ Fc ∈ Jf g, ð10Þ

R⋆J Fð Þ = e ∈ E : μu eð Þ ∩ F∈Jf g, ð11Þ

BND⋆
R
J Fð Þ = R⋆J Fð Þ − RJ

⋆ Fð Þ, ð12Þ

ACC⋆
R
J Fð Þ = RJ

⋆ Fð Þ ∩ F
�� ��
R⋆J Fð Þ ∪ F
�� �� , ð13Þ

Rough⋆R
J Fð Þ = 1 −ACC⋆

R
J Fð Þ: ð14Þ

Proposition 10. Consider F,H ⊆ E and let J ,K be ideals
and R be a binary relation on E. Then,

(1) R⋆J ðϕÞ = ϕ

(2) F ⊆H ⇒ R⋆J ðFÞ ⊆ R⋆J ðHÞ
(3) R⋆J ðF ∩HÞ ⊆ R⋆J ðFÞ ∩ R⋆J ðHÞ
(4) R⋆J ðF ∪HÞ = R⋆J ðFÞ ∪ R⋆J ðHÞ
(5) R⋆J ðFÞ = ðRJ

⋆ ðFcÞÞc

(6) If F ∈ J , then R⋆J ðFÞ = ϕ

(7) If J ⊆K , then R⋆KðFÞ ⊆ R⋆J ðFÞ
(8) If J = PðEÞ, then R⋆J ðFÞ = ϕ

(9) R⋆J∩KðFÞ = R⋆J ðFÞ ∪ R⋆KðFÞ
(10) R⋆J∨KðFÞ = R⋆J ðFÞ ∩ R⋆KðFÞ

Proof.

(1) R⋆J ðϕÞ = fe ∈ E : μuðeÞ ∩ ϕ∈Jg: = ϕ

(2) Let e ∈ R⋆J ðFÞ. Then, μuðeÞ ∩ F∈J . Since, F ⊆H
and J is an ideal. Thus, μuðeÞ ∩H∈J : Therefore,
e ∈ R⋆J ðHÞ. Hence, R⋆J ðFÞ ⊆ R⋆J ðHÞ

(3) Immediately by part (2)

(4) R⋆J ðFÞ ∪ R⋆J ðHÞ ⊆ R⋆J ðF ∪HÞ by part (2). Let e
∈ R⋆J ðF ∪HÞ. Then, μuðeÞ ∩ ðF ∪HÞ∈J . It fol-
lows that ððμuðeÞ ∩ FÞ ∪ ðμuðeÞ ∩HÞÞ∈J . There-
fore, μuðeÞ ∩ F∈I or μuðeÞ ∩H∈J , that means
e ∈ R⋆J ðFÞ or e ∈ R⋆J ðHÞ. Then, e ∈ R⋆J ðFÞ ∪
R⋆J ðHÞ: Thus, R⋆J ðF ∪HÞ ⊆ R⋆J ðFÞ ∪ R⋆J ðHÞ:
Hence, R⋆J ðF ∪HÞ = R⋆J ðFÞ ∪ R⋆J ðHÞ
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(5) ðRJ
⋆ ðFcÞÞc = ðfe ∈ E : μuðeÞ ∩ F ∈ JgÞc: = fe ∈ E :

μuðeÞ ∩ F∈Jg: = R⋆J ðFÞ
(6) Immediately obtains by Definition 9

(7) Let e ∈ R⋆KðFÞ. Then, μuðeÞ ∩ F∈K : Since, J ⊆K .
Thus, μuðeÞ ∩ F∈J : Therefore, e ∈ R⋆J ðFÞ. Hence,
R⋆KðFÞ ⊆ R⋆J ðFÞ

(8) Immediately obtains by Definition 9

(9) R⋆J∩KðFÞ = fe ∈ E : μuðeÞ ∩ F∈J ∩Kg: = fe ∈ E :
μuðeÞ ∩ F∈Jg or fe ∈ E : μuðeÞ ∩ F∈Kg: = fe ∈ E :

μuðeÞ ∩ F∈Jg ∪ fe ∈ E : μuðeÞ ∩ F∈Kg: = R⋆J ðFÞ
∪ R⋆KðFÞ

(10) R⋆J∨KðFÞ = fe ∈ E : μuðeÞ ∩ F∈J∨Kg: = fe ∈ E :

μuðeÞ ∩ F∈J ∪Kg: = fe ∈ E : μuðeÞ ∩ F∈Jg and fe
∈ E : μuðeÞ ∩ F∈Kg: = fe ∈ E : μuðeÞ ∩ F∈Jg ∩ fe
∈ E : μuðeÞ ∩ F∈Kg: = R⋆J ðFÞ ∩ R⋆KðFÞ

Proposition 11. Consider F,H ⊆ E and let J ,K be ideals
and R be a binary relation on E. Then,

(1) RJ
⋆ ðEÞ = E

(2) F ⊆H ⇒ RJ
⋆ ðFÞ ⊆ RJ

⋆ ðHÞ
(3) RJ

⋆ ðFÞ ∪ RJ
⋆ ðHÞ ⊆ RJ

⋆ ðF ∪HÞ
(4) RJ

⋆ ðF ∩HÞ = RJ
⋆ ðFÞ ∩ RJ

⋆ ðHÞ
(5) RJ

⋆ ðFÞ = ðR⋆J ðFcÞÞc

(6) If Fc ∈ J , then RJ
⋆ ðFÞ = E

(7) If J ⊆K , then RJ
⋆ ðFÞ ⊆ RK

⋆ ðFÞ
(8) If J = PðEÞ, then RJ

⋆ ðFÞ = E

(9) RJ∩K
⋆ ðFÞ = RJ

⋆ ðFÞ ∩ RK
⋆ ðFÞ

(10) RJ∨K
⋆ ðFÞ = RJ

⋆ ðFÞ ∪ RK
⋆ ðFÞ

Proof.

(1) RJ
⋆ ðEÞ = fe ∈ E : μuðeÞ ∩ ϕ ∈ Jg: = E

(2) Let e ∈ RJ
⋆ ðFÞ. Then, μuðeÞ ∩ Fc ∈ J . Since, Hc ⊆ Fc

and J is an ideal. Thus, μuðeÞ ∩Hc ∈ J : Therefore,
e ∈ RJ

⋆ ðHÞ. Hence, RJ
⋆ ðFÞ ⊆ RJ

⋆ ðHÞ
(3) Immediately by part (2)

(4) RJ
⋆ ðFÞ ∩ RJ

⋆ ðHÞ ⊇ RJ
⋆ ðF ∩HÞ by part (2). Let e ∈

RJ
⋆ ðFÞ ∩ RJ

⋆ ðHÞ. Then, μuðeÞ ∩ Fc ∈ J and μuðeÞ
∩Hc ∈ J : It follows that ðμuðeÞ ∩ ðFc ∪HcÞÞ ∈ J .
So, ðμuðeÞ ∩ ðF ∩HÞcÞ ∈ J : Therefore, e ∈ RJ

⋆ ðF ∩

HÞ. Thus, RJ
⋆ ðFÞ ∩ RJ

⋆ ðHÞ ⊆ RJ
⋆ ðF ∩HÞ: Hence,

RJ
⋆ ðFÞ ∩ RJ

⋆ ðHÞ = RJ
⋆ ðF ∩HÞ

(5) ðR⋆J ðFcÞÞc = ðfe ∈ E : μuðeÞ ∩ Fc∈JgÞc: = fe ∈ E :

μuðeÞ ∩ Fc ∈ Jg: = RJ
⋆ ðFÞ

(6) Immediately obtains by Definition 9

(7) Let e ∈ RJ
⋆ ðFÞ. Then, μuðeÞ ∩ Fc ∈ J : Since, J ⊆K .

Thus, μuðeÞ ∩ Fc ∈K : Therefore, e ∈ RJ
⋆ ðFÞ. Hence,

RJ
⋆ ðFÞ ⊆ RK

⋆ ðFÞ
(8) Immediately obtains by Definition 9

(9) RJ∩K
⋆ ðFÞ = fe ∈ E : μuðeÞ ∩ Fc ∈ J ∩Kg: = fe ∈ E :

μuðeÞ ∩ Fc ∈ Jg and fe ∈ E : μuðeÞ ∩ Fc ∈Kg: = fe
∈ E : μuðeÞ ∩ Fc ∈ Jg ∩ fe ∈ E : μuðeÞ ∩ Fc ∈Kg:
= RJ

⋆ ðFÞ ∩ RK
⋆ ðFÞ

(10) RJ∨K
⋆ ðFÞ = fe ∈ E : μuðeÞ ∩ Fc ∈ J∨Kg: = fe ∈ E

: μuðeÞ ∩ Fc ∈ J ∪Kg: = fe ∈ E : μuðeÞ ∩ Fc ∈ Jg
or fe ∈ E : μuðeÞ ∩ Fc ∈Kg: = fe ∈ E : μuðeÞ ∩ Fc ∈
Jg ∪ fe ∈ E : μuðeÞ ∩ Fc ∈Kg: = RJ

⋆ ðFÞ ∪ RK
⋆ ðFÞ

Remark 12. By the next example, we elucidate that

(1) The converse of parts 2, 6, 7, and 8 in Proposition 10
and Proposition 11 is generally incorrect

(2) The inclusion relations of part 3 in Proposition 10
and Proposition 11 are generally proper

Example 1.

(i) Let E = fe1, e2, e3, e4g, J = fϕ, fe1g, fe2g, fe3g, fe1,
e2g, fe1, e3g, fe2, e3g, fe1, e2, e3gg and R = fðe1, e2Þ,
ðe1, e3Þ, ðe2, e3Þ, ðe2, e4Þ, ðe3, e1Þ, ðe3, e4Þg be a binary
relation defined on E. By calculations, we obtain
μuðe1Þ = fe1, e2, e4g, μuðe2Þ= fe1, e2, e3g, μuðe3Þ= fe2,
e3, e4g, μuðe4Þ= fe1, e3, e4g: For part 2, take F= fe1,
e2g and H = fe1, e4g, then

(a) R⋆J ðFÞ = ϕ, R⋆J ðHÞ = fe1, e3, e4g: Therefore, R⋆J

ðFÞ ⊆ R⋆J ðHÞ, but F ⊈H

(b) RJ
⋆ ðFÞ = fe2g, RJ

⋆ ðHÞ = E: Therefore, RJ
⋆ ðFÞ ⊆ RJ

⋆
ðHÞ, but F ⊈H

(ii) Let E = fe1, e2, e3, e4g,K = fϕ, fe2gg, J = fϕ, fe1gg
and R = fðe2, e2Þ, ðe3, e3Þ, ðe4, e4Þg be a binary rela-
tion defined on E. By calculations, we obtain μuðe1Þ
= ϕ, μuðe2Þ = fe2g, μuðe3Þ = fe3g, μuðe4Þ = fe4g

(1) For part 6, take

(a) F = fe1, e2g, then, R⋆KðFÞ = ϕ: Therefore, R⋆KðFÞ
= ϕ, but F∈K :
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(b) F = fe3, e4g, then, RK
⋆ ðFÞ = E: Therefore, RK

⋆ ðFÞ = E,
but Fc∈K :

(2) For part 7, take

(a) F = fe1, e2g, then, R⋆J ðFÞ = fe2g, R⋆KðFÞ = ϕ:
Therefore, R⋆KðFÞ ⊆ R⋆J ðFÞ, but J ⊈K

(b) F = fe3, e4g, then, RJ
⋆ ðFÞ = fe1, e3, e4g, RK

⋆ ðFÞ = E:
Therefore, RJ

⋆ ðFÞ ⊆ RK
⋆ ðFÞ, but J ⊈K

(3) For part 8, take

(a) F = fe1, e2g, then, R⋆KðFÞ = ϕ, but K ≠ PðEÞ
(b) F = fe3, e4g, then, RK

⋆ ðFÞ = E, but K ≠ PðEÞ

(iii) Let E = fe1, e2, e3, e4g, J = fϕ, fe4gg and R = Δ ∪
fðe2, e1Þ, ðe3, e1Þ, ðe4, e1Þg be a binary relation
defined on E, (where Δ is the identity relation
and equal to ðe1, e1Þ, ðe2, e2Þ, ðe3, e3Þ, ðe4, e4ÞgÞ. By
calculations, we obtain μuðe1Þ = μuðe2Þ = μuðe3Þ =
μuðe4Þ = E: For part 3, take F = fe1, e4g,H = fe2,
e3g: Hence

(a) F ∩H=ϕ, then R⋆J ðFÞ=R⋆J ðHÞ=E, R⋆J ðF ∩HÞ =
ϕ: Therefore, R⋆J ðFÞ∩R⋆J ðHÞ= E ≠ ϕ=R⋆J ðF∩HÞ

(b) F ∪H = E, then RJ
⋆ ðFÞ = RJ

⋆ ðHÞ = ϕ, R⋆J ðF ∪HÞ =
E: Therefore, RJ

⋆ ðFÞ ∪ RJ
⋆ ðHÞ = ϕ ≠ E = RJ

⋆ ðF ∪HÞ

Remark 13. Some Pawlak’s properties are not kept by this
method as we demonstrate in the following.

(i) In Example 1 (i) take

(1) F = fe1, e2g, then R⋆J ðFÞ = ϕ: Hence, F ⊈ R⋆J ðFÞ
(2) F = fe1, e4g, then RJ

⋆ ðFÞ = E: Hence, RJ
⋆ ðFÞ ⊈ F

(3) F = E, then R⋆J ðEÞ = fe1, e3, e4g: Hence, R⋆J ðEÞ ≠ E

(4) F = ϕ, then RJ
⋆ ðϕÞ = fe2g: Hence, RJ

⋆ ðϕÞ ≠ ϕ

(ii) In Example 1 (i) take J = fϕ, fe1gg

(1) F= fe1, e4g, then R⋆J ðFÞ= fe1, e3, e4g, R⋆J ðR⋆J ðFÞÞ
= E: Hence, R⋆J ðFÞ ≠ R⋆J ðR⋆J ðFÞÞ

(2) F = fe2, e3g, then RJ
⋆ ðFÞ = fe2g, RJ

⋆ ðRJ
⋆ ðFÞÞ = ϕ:

Hence, RJ
⋆ ðFÞ ≠ RJ

⋆ ðRJ
⋆ ðFÞÞ

(3) F = fe1, e2g, then R⋆J ðFÞ = fe1, e2, e3g and RJ
⋆ ðR⋆J

ðFÞÞ = fe2g: Hence, R⋆J ðFÞ ⊈ RJ
⋆ ðR⋆J ðFÞÞ

(4) F = fe3, e4g, then RJ
⋆ ðFÞ = fe4g and R⋆J ðRJ

⋆ ðFÞÞ =
fe1, e3, e4g: Hence, R⋆J ðRJ

⋆ ðFÞÞ ⊈ RJ
⋆ ðFÞ

Proposition 14. Consider R and J are, respectively, relation
and ideal on E ≠ ϕ and let ϕ ≠ F ⊆ E. Then,

(1) 0 ≤ ACC⋆
R
J ðFÞ ≤ 1

(2) ACC⋆
R
J ðEÞ = 1:

Proof. To prove 1, it is obvious that R⋆J ðFÞ ∪ F ≠ ϕ for every
nonempty subset F of E. Hence, ϕ ⊆ RJ

⋆ ðFÞ ∩ F ⊆ R⋆J ðFÞ ∪
F: Therefore, 0 ≤ jR⋆

J ðFÞ ∩ Fj ≤ jR⋆J ðFÞ ∪ Fj: So, 0 ≤ jRJ
⋆

ðFÞ ∩ Fj/jR⋆J ðFÞ ∪ Fj ≤ 1: It means that, 0 ≤ACC⋆
R
J ðFÞ≤1:

Case 2 can be proved easily.

Theorem 15. Consider R as a relation on E and let J ,K be
ideals on E such that J ⊆K . For each F ⊆ E, the next prop-
erties hold.

(1) BND⋆
R
KðFÞ ⊆ BND⋆

R
J ðFÞ

(2) ACC⋆
R
J ðFÞ ≤ ACC⋆

R
KðFÞ

(3) Rough⋆R
KðFÞ ≤ Rough⋆R

J ðFÞ

Proof.

(1) Let e ∈ BND⋆
R
KðFÞ: Then, e ∈ R⋆KðFÞ − R⋆

KðFÞ: So,
e ∈ R⋆KðFÞ and e ∈ ðRK

⋆ ðFÞÞc: Hence, e ∈ R⋆J ðFÞ
and e ∈ ðR⋆

J ðFÞÞc by Propositions 10 and 11 part
7. It follows that e ∈ BND⋆

R
J ðFÞ: Therefore, BN

D⋆
R
KðFÞ ⊆ BND⋆

R
J ðFÞ

(2) ACC⋆
R
J ðFÞ = jR⋆

J ðFÞ ∩ F/R⋆J ðFÞ ∪ Fj:≤jR⋆
KðFÞ

∩ F/R⋆KðFÞ ∪ Fj: = ACC⋆
R
KðFÞ

(3) Directly follows from 2

Remark 16. In Theorem 15, the converses of parts 1, 2, and 3
are generally false. To elucidate that, take F = fe3, e4g as a
subset of Example 1 (ii). Then

(1) BND⋆
R
KðFÞ = ϕ ⊆ ϕ = BND⋆

RJ ðFÞ, but J ⊈K

(2) ACC⋆
R
J ðFÞ = 1 ≤ 1 = ACC⋆

R
KðFÞ, but J ⊈K

(3) Rough⋆R
KðFÞ = 0 ≤ 0 = Rough⋆R

J ðFÞ, but J ⊈K

Theorem 17. Let ϕ ≠ F ⊆ E, J be an ideal on E and R1, R2 be
two binary relations on E: If R1 ⊆ R2, then

(1) R⋆
1
J ðFÞ ⊆ R⋆

2
J ðFÞ

(2) R2
J
⋆ ðFÞ ⊆ R1

J
⋆ ðFÞ

(3) BND⋆
R1

J ðFÞ ⊆ BND⋆
R2

J ðFÞ
(4) ACC⋆

R2

J ðFÞ ≤ ACC⋆
R1

J ðFÞ

(5) Rough⋆R1

J ðFÞ ≤ Rough⋆R2

J ðFÞ
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Proof.

(1) Let e ∈ R⋆
1
J ðFÞ: Then, μ1uðeÞ ∩ F∈J : Since, μ1uðeÞ

⊆ μ2uðeÞ (by Theorem 4 [20]). It follows that μ2uðeÞ
∩ F∈J : Thus, e ∈ R⋆

2
J ðFÞ: Hence, R⋆

1
J ðFÞ⊆ R⋆

2
J ðFÞ

(2) Let e ∈ R2⋆
J ðFÞ: Then, μ2uðeÞ ∩ Fc ∈ J : Since, μ1u

ðeÞ ⊆ μ2uðeÞ (by Theorem 4 [20]). It follows that μ1u
ðeÞ ∩ Fc ∈ J : Thus, e ∈ R1⋆

J ðFÞ: Hence, R2⋆
J ðFÞ ⊆

R1⋆
J ðFÞ

(3) Let e ∈ BND⋆
R1

J ðFÞ: Then, e ∈ R⋆
1
J ðFÞ − R1⋆

J ðFÞ:
So, e ∈ R⋆

1
J ðFÞ and e ∈ ðR1⋆

J ðFÞÞc: Thus, e ∈ R⋆
2
J

ðFÞ and e ∈ ðR1⋆
J ðFÞÞc by parts 1 and 2. Hence, e ∈

BND⋆
R2

J ðFÞ: Therefore, BND⋆
R1

J ðFÞ ⊆ BND⋆
R2

J ðFÞ
(4) ACC⋆

R2
J ðFÞ = jR2⋆

J ðFÞ∩ F/R⋆
2
J ðFÞ ∪ Fj:≤jR1⋆

J ðFÞ
∩ F/R⋆

1
J ðFÞ ∪ Fj: = ACC⋆

R1
J ðFÞ

(5) Straightforward by 4

In Theorem 17, the relations of inclusion and less than
are generally proper as we illustrate by the next example.

Example 2. Let E = fe1, e2, e3, e4g, J = fϕ, fe2g, fe3g, fe4g,
fe2, e3g, fe2, e4g, fe3, e4g, fe2, e3, e4gg and R1 =Δ∪fðe1, e4Þ,
ðe4, e1Þg, R2 = R1 ∪ fðe1, e3Þ, ðe3, e1Þg be two binary relation
defined on E thus μ1uðe1Þ = μ1uðe4Þ= fe1, e4g, μ1uðe2Þ=fe2g,
μ1uðe3Þ = fe3g, μ2uðe1Þ = μ2uðe3Þ = μ2uðe4Þ = fe1, e3, e4g, μ2u
ðe2Þ = fe2g: Take

(a) F = fe1, e4g, then

(1) R⋆
1
J ðFÞ = fe4g ≠ fe1, e3, e4g = R⋆

2
J ðFÞ

(2) ACC⋆
R1

J ðFÞ = 2/3 ≠ 1/2 = ACC⋆
R2

J ðFÞ

(3) Rough⋆R2

J ðFÞ = 1/2 ≠ 1/3 = Rough⋆R1

J ðFÞ
(4) F = fe4, e3g, then R1⋆

J ðFÞ = fe2, e3, e4g ≠ fe2g =
R2⋆

J ðFÞ

3.2. The Second Method of the Improvement of the
Approximations and Accuracy Measure of Subsets

Definition 18. Let R and J be, respectively, binary rela-
tion and ideal on a nonempty set E. The second kind
of the improvement of lower and upper approximations,
boundary region, accuracy, and roughness of a non-
empty subset F of E induced from R and J is defined,
respectively, by

R⋆⋆
J Fð Þ = e ∈ F : μu eð Þ ∩ Fc ∈ Jf g, ð15Þ

R⋆⋆J Fð Þ = F ∪ R⋆J Fð Þ, ð16Þ

BND⋆⋆
R

J Fð Þ = R⋆⋆J Fð Þ−R⋆⋆
J Fð Þ, ð17Þ

ACC⋆⋆
R

J Fð Þ = R⋆⋆
J Fð Þ�� ��

R⋆⋆J Fð Þ�� �� , ð18Þ

Rough⋆⋆R
J Fð Þ = 1−ACC⋆⋆

R
J Fð Þ: ð19Þ

Proposition 19. Consider F,H ⊆ E and let J ,K be
ideals and R be a binary relation on E. Then,

(1) F ⊆ R⋆⋆J ðFÞ equality hold if F = ϕ or E

(2) F ⊆H ⇒ R⋆⋆J ðFÞ ⊆ R⋆⋆J ðHÞ
(3) R⋆⋆J ðFÞ ⊆ R⋆⋆J ðR⋆⋆J ðFÞÞ
(4) R⋆⋆J ðF ∩HÞ ⊆ R⋆⋆J ðFÞ ∩ R⋆⋆J ðHÞ
(5) R⋆⋆J ðF ∪HÞ = R⋆⋆J ðFÞ ∪ R⋆⋆J ðHÞ
(6) R⋆⋆J ðFÞ = ðR⋆⋆

J ðFcÞÞc

(7) If F ∈ J , then R⋆⋆J ðFÞ = F

(8) If J ⊆K , then R⋆⋆KðFÞ ⊆ R⋆⋆J ðFÞ
(9) If J = PðEÞ, then R⋆⋆J ðFÞ = F

(10) R⋆⋆J∩KðFÞ = R⋆⋆J ðFÞ ∪ R⋆⋆KðFÞ
(11) R⋆⋆J∨KðFÞ = R⋆⋆J ðFÞ ∩ R⋆⋆KðFÞ

Proof. Similar to the technique provided in Proposition 10.

Proposition 20. Consider F,H ⊆ E and let J ,K be ideals
and R be a binary relation on E. Then,

(1) R⋆⋆
J ðFÞ ⊆ F equality hold if F = ϕ or E

(2) F ⊆H ⇒ R⋆⋆
J ðFÞ ⊆ R⋆⋆

J ðHÞ
(3) R⋆⋆

J ðR⋆⋆
J ðFÞÞ ⊆ R⋆⋆

J ðFÞ
(4) R⋆⋆

J ðFÞ ∪ R⋆⋆
J ðHÞ ⊆ R⋆⋆

J ðF ∪HÞ
(5) R⋆⋆

J ðF ∩HÞ = R⋆⋆
J ðFÞ ∩ R⋆⋆

J ðHÞ
(6) R⋆⋆

J ðFÞ = ðR⋆⋆J ðFcÞÞc

(7) If Fc ∈ J , then, R⋆⋆
J ðFÞ = F

(8) If J ⊆K , then, R⋆⋆
J ðFÞ ⊆ R⋆⋆

KðFÞ
(9) If J = PðEÞ, then, R⋆⋆

J ðFÞ = F

(10) R⋆⋆
J∩KðFÞ = R⋆⋆

J ðFÞ ∩ R⋆⋆
KðFÞ

(11) R⋆⋆
J∨KðFÞ = R⋆⋆

J ðFÞ ∪ R⋆⋆
KðFÞ

Proof. Similar to Proposition 11.
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Remark 21.

(i) In Proposition 19 and Proposition 20, the converse of
parts 7 and 9 is generally incorrect. To show that,
consider Example 1 (i).

(a) For part 7, take

(1) F = fe1, e3, e4g, then R⋆⋆J ðFÞ = F, but F∈J

(2) F = fe2g, then R⋆⋆
J ðFÞ = F, but Fc∈J

(b) For part 9, take

(1) F = fe1, e3, e4g, then R⋆⋆J ðFÞ = F, but J ≠ PðEÞ
(2) F = fe2g, then R⋆⋆

J ðFÞ = F, but J ≠ PðEÞ

(ii) In Proposition 19 and Proposition 20, the converse
of part 8 is generally incorrect. To elucidate that con-
sider Example 1 (ii)

(1) If F = fe1, e2g, then, R⋆⋆KðFÞ = fe1, e2g ⊆ fe1, e2g =
R⋆⋆J ðFÞ, but J ⊈K

(2) If F = fe3, e4g, then, R⋆⋆
J ðFÞ = fe3, e4g ⊆ fe3, e4g =

R⋆⋆
KðFÞ, but J ⊈K

(iii) In Example 1 (i), take J = fϕ, fe1gg: So, the con-
verse of part 2 in Proposition 19 and Proposition
20 is generally incorrect. Additionally, the inclusion
relations of parts 3 and 4 in Proposition 19 and
Proposition 20 generally proper

(a) For part 2, take F = fe1, e4g,H = fe2, e3g, then

(1) R⋆⋆J ðFÞ = fe1, e3, e4g ⊆ E = R⋆⋆J ðHÞ = E, but F ⊈H

(2) R⋆⋆
J ðFÞ = ϕ ⊆ fe2g = R⋆⋆

J ðHÞ, but F ⊈H

(b) For part 3, take

(1) F = fe1, e4g, then, R⋆⋆J ðFÞ = fe1, e3, e4g, R⋆⋆J ðR⋆⋆J

ðFÞÞ = E: Therefore, R⋆⋆J ðFÞ = fe1, e3, e4g ≠ E =
R⋆⋆J ðR⋆⋆J ðFÞÞ

(2) F=fe2, e3g, then, R⋆⋆
J ðFÞ=fe2g, R⋆⋆

J ðR⋆⋆
J ðFÞÞ =

ϕ: Therefore, R⋆⋆
J ðFÞ = fe2g ≠ ϕ = R⋆⋆

J ðR⋆⋆
J ðFÞÞ

(c) For part 4, take F = fe1, e4g,H = fe2, e3g thus

(1) F ∩H = ϕ, then, R⋆⋆J ðFÞ = fe1, e3, e4g, R⋆⋆J ðHÞ =
E, R⋆⋆J ðF ∩HÞ = ϕ: Therefore, R⋆⋆J ðFÞ ∩ R⋆⋆J ðHÞ
= fe1, e3, e4g ≠ ϕ = R⋆⋆J ðF ∩HÞ

(2) F ∪H = E, then, RJ
⋆⋆ðFÞ = ϕ, RJ

⋆⋆ðHÞ = fe2g, R⋆⋆J ðF
∪HÞ = E: Therefore, RJ

⋆⋆ðFÞ ∪ RJ
⋆⋆ðHÞ = fe2g ≠ E =

RJ
⋆⋆ðF ∪HÞ

Remark 22. Some properties of the lower and upper approx-
imations given in the first method are not kept by this
method as we demonstrate in the following.

(i) In Example 1 (i) take

(1) F = fu1g ∈ J , then, R⋆⋆J ðFÞ = F: Hence, if F ∈ J

⇏R⋆⋆J ðFÞ = ϕ

(2) Fc = fu1g ∈ J , then, R⋆⋆
J ðFÞ = F: Hence, if Fc ∈ J

⇏R⋆⋆
J ðFÞ =U

(ii) In Example 1 (ii) take

(1) K = PðEÞ, F = fe1, e3g, then, R⋆⋆KðFÞ = F: Hence, if
K = PðEÞ⇏R⋆⋆KðFÞ = ϕ

(2) K = PðEÞ, F = fe2, e4g, then, R⋆⋆
KðFÞ = F: Hence, if

K = PðEÞ⇏R⋆⋆
KðFÞ = E

Remark 23. Some Pawlak’s properties are not kept by this
method as we demonstrate in the following. In Example 1
(i) take J = fϕ, fe1gg,

(1) F = fe1, e2g, then, R⋆⋆J ðFÞ = fe1, e2, e3g and RJ
⋆⋆

ðR⋆⋆J ðFÞÞ= fe2g: Hence, R⋆⋆J ðFÞ ⊈ RJ
⋆⋆ðR⋆⋆J ðFÞÞ

(2) F = fe3, e4g, then, RJ
⋆⋆ðFÞ = fe4g and R⋆⋆J ðRJ

⋆⋆ðFÞÞ
= fe1, e3, e4g: Hence, R⋆⋆J ðRJ

⋆⋆ðFÞÞ ⊈ RJ
⋆⋆ðFÞ

Proposition 24. Consider R and J are, respectively, binary
relation and ideal on E ≠ ϕ and let ϕ ≠ F ⊆ E. Then,

(1) 0 ≤ ACC⋆⋆
R

J ðFÞ ≤ 1

(2) ACC⋆⋆
R

J ðEÞ = 1

Proof. As given in Proposition 14.

Theorem 25. Consider R as a binary relation on E and let
J ,K be ideals on E such that J ⊆K . For each F ⊆ E, the
next properties hold.

(1) BND⋆⋆
R

KðFÞ ⊆ BND⋆⋆
R

J ðFÞ
(2) ACC⋆⋆

R
J ðFÞ ≤ ACC⋆⋆

R
KðFÞ

(3) Rough⋆⋆R
KðFÞ ≤ Rough⋆⋆R

J ðFÞ

Proof. Following similar arguments given in Theorem 15.

Remark 26. In Theorem 25, the converses of parts 1, 2, and 3
are generally incorrect. To validate this notice, consider
Example 1 (ii) and take F = fe2, e4g. Then,

(1) BND⋆⋆
R

KðFÞ = ϕ ⊆ ϕ = BND⋆⋆
R

J ðFÞ, but J ⊈K

(2) ACC⋆⋆
R

KðFÞ = 1 ≤ 1 = ACC⋆⋆
R

J ðFÞ, but J ⊈K

(3) Rough⋆⋆R
KðFÞ = 0 ≤ 0 = Rough⋆⋆R

J ðFÞ, but J ⊈K
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Theorem 27. Let ϕ ≠ F ⊆ E, J be an ideal on E and R1, R2 be
two binary relations on E: If R1 ⊆ R2, then

(1) R1
⋆⋆J ðFÞ ⊆ R2

⋆⋆J ðFÞ
(2) R2⋆⋆

J ðFÞ ⊆ R1⋆⋆
J ðFÞ

(3) BND⋆⋆
R1

J ðFÞ ⊆ BND⋆⋆
R2

J ðFÞ
(4) ACC⋆⋆

R2

J ðFÞ ≤ ACC⋆⋆
R1

J ðFÞ

(5) Rough⋆⋆R1

J ðFÞ ≤ Rough⋆⋆R2

J ðFÞ

Proof. Similar to Theorem 17.

Remark 28. In Theorem 27, the inclusion and less than rela-
tions are generally proper. To illustrate that, consider Exam-
ple 2 and take F = fe1, e2g. Then,

(1) R1
⋆⋆J ðFÞ = fe1, e4g ≠ E = R2

⋆⋆J ðFÞ
(2) BND⋆⋆

R1
J ðFÞ = fe4g ≠ fe1, e3, e4g = BND⋆⋆

R2
J ðFÞ

(3) ACC⋆⋆
R1

J ðFÞ = 2/3 ≠ 1/4 = ACC⋆⋆
R2

J ðFÞ

(4) Rough⋆⋆R1

J ðFÞ = 1/3 ≠ 3/4 = Rough⋆⋆R2

J ðFÞ

3.3. The Third Method of the Improvement of the
Approximations and Accuracy Measure of Subsets

Definition 29. Let R and J be, respectively, binary relation
and ideal on a nonempty set E. The third kind of the
improvement of lower and upper approximations, boundary
region, accuracy, and roughness of a nonempty subset F of E
induced from R and J is defined, respectively, by

R⋆⋆⋆
J Fð Þ = ∪

e∈E
μu eð Þ: μu eð Þ ∩ Fc ∈ Jf g, ð20Þ

R⋆⋆⋆J Fð Þ = R⋆⋆⋆
J Fcð Þ� �c, ð21Þ

BND⋆⋆⋆
R

J Fð Þ = R⋆⋆⋆J Fð Þ−R⋆⋆⋆
J Fð Þ, ð22Þ

ACC⋆⋆⋆
R

J Fð Þ = R⋆⋆⋆
J Fð Þ ∩ F

�� ��
R⋆⋆⋆J Fð Þ ∪ Fj j , ð23Þ

Rough⋆⋆⋆R
J Fð Þ = 1−ACC⋆⋆⋆

R
J Fð Þ: ð24Þ

Proposition 30. Consider F,H ⊆ E and let J ,K be ideals
and R be a binary relation on E. Then,

(1) F ⊆H ⇒ R⋆⋆⋆
J ðFÞ ⊆ R⋆⋆⋆

J ðHÞ
(2) R⋆⋆⋆

J ðFÞ ∪ R⋆⋆⋆
J ðHÞ ⊆ R⋆⋆⋆

J ðF ∪HÞ
(3) R⋆⋆⋆

J ðF ∩HÞ ⊆ R⋆⋆⋆
J ðFÞ ∩ R⋆⋆⋆

J ðHÞ
(4) R⋆⋆⋆

J ðFÞ = ðR⋆⋆⋆J ðFcÞÞc

(5) If J ⊆K , then R⋆⋆⋆
J ðFÞ ⊆ R⋆⋆⋆

KðFÞ
(6) R⋆⋆⋆

J∩KðFÞ = R⋆⋆⋆
J ðFÞ ∩ R⋆⋆⋆

KðFÞ

Proof.

(1) Let F ⊆H and e ∈ R⋆⋆⋆
J ðFÞ: Then, ∃y ∈ E such that

e ∈ μuðyÞ ∩ Fc ∈ J : Hence, e ∈ μuðyÞ ∩Hc ∈ J (by
Hc ⊆ Fc, and the properties of ideal). Thus, e ∈
R⋆⋆⋆

J ðHÞ: Therefore, R⋆⋆⋆
J ðFÞ ⊆ R⋆⋆⋆

J ðHÞ
(2) Immediately by part (4)

(3) Immediately by part (4)

(4) Immediately obtains by Definition 29

(5) Let J ⊆K and e ∈ R⋆⋆⋆
J ðFÞ: Then, ∃y ∈ E such that

e ∈ μuðyÞ ∩ Fc ∈ J ⊆K : So, e ∈ R⋆⋆⋆
KðFÞ, and

hence, R⋆⋆⋆
J ðFÞ ⊆ R⋆⋆⋆

KðFÞ
(6) R⋆⋆⋆

J∩KðFÞ= ∪
e∈E

fμuðeÞ: μuðeÞ ∩ Fc∈J ∩Kg: = ð ∪
e∈E

fμuðeÞ: μuðeÞ ∩ Fc ∈ JgÞ and ð ∪
e∈E

fμuðeÞ: μuðeÞ ∩ Fc

∈KgÞ: = ð ∪
e∈E

fμuðeÞ: μuðeÞ ∩ Fc ∈ JgÞ ∩ ð ∪
e∈E

fμuðeÞ
: μuðeÞ ∩ Fc ∈KgÞ: = R⋆⋆⋆

J ðFÞ ∩ R⋆⋆⋆
KðFÞ

Proposition 31. Consider F,H ⊆ E and let J ,K be ideals
and R be a binary relation on E. Then,

(1) F ⊆H⇒ R⋆⋆⋆J ðFÞ ⊆ R⋆⋆⋆J ðHÞ
(2) R⋆⋆⋆J ðF ∩HÞ ⊆ R⋆⋆⋆J ðFÞ ∩ R⋆⋆⋆J ðHÞ
(3) R⋆⋆⋆J ðFÞ ∪ R⋆⋆⋆J ðHÞ ⊆ R⋆⋆⋆J ðF ∪HÞ
(4) R⋆⋆⋆J ðFÞ = ðR⋆⋆⋆

J ðFcÞÞc

(5) If J ⊆K , then R⋆⋆⋆KðFÞ ⊆ R⋆⋆⋆J ðFÞ
(6) R⋆⋆⋆J∩KðFÞ = R⋆⋆⋆J ðFÞ ∪ R⋆⋆⋆KðFÞ

Proof.

(1) Let F ⊆H: Thus, Hc ⊆ Fc, and hence, R⋆⋆⋆
J ðHcÞ ⊆

R⋆⋆⋆
J ðFcÞ (by no. (4) in Proposition 30). So,

ðR⋆⋆⋆
J ðFcÞÞc ⊆ ðR⋆⋆⋆

J ðHcÞÞc: Consequently, R⋆⋆⋆J

ðFÞ ⊆ R⋆⋆⋆J ðHÞ
(2) Immediately by part (4)

(3) Immediately by part (4)

(4) Immediately obtains by Definition 29

(5) Let J ⊆K and e ∈ R⋆⋆⋆KðFÞ:Then, e ∈ ðR⋆⋆⋆
KðFcÞÞc

⊆ ðR⋆⋆⋆
J ðFcÞÞc, (by no. (5) in Proposition 30). Thus,

e ∈ ðR⋆⋆⋆
J ðFcÞÞc = R⋆⋆⋆J ðFÞ: Therefore, R⋆⋆⋆KðFÞ

⊆ R⋆⋆⋆J ðFÞ
(6) R⋆⋆⋆J∩KðFÞ=ðR⋆⋆⋆

J∩KðFcÞÞc:=ðR⋆⋆⋆
JðFcÞ∩R⋆⋆⋆

K

ðFcÞÞc (by no. (6) in Proposition 30). = ðR⋆⋆⋆
J ðFcÞÞc

∪ ðR⋆⋆⋆
KðFcÞÞc: = R⋆⋆⋆J ðFÞ ∪ R⋆⋆⋆KðFÞ
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Remark 32.

(1) The converse of part 1 in Proposition 30 and Propo-
sition 31 is generally incorrect. Example 1 (i) points
out this fact

(a) If F = fe1g,H = fe4g, then, R⋆⋆⋆J ðFÞ = ϕ, R⋆⋆⋆J ðHÞ
= fe4g: Therefore, R⋆⋆⋆J ðFÞ ⊆ R⋆⋆⋆J ðHÞ, but F ⊈H

(b) If F = fe2g,H = fe1, e3, e4g, then, R⋆⋆⋆
J ðFÞ=fe1, e2,

e3g, R⋆⋆⋆
JðHÞ=E: Therefore, R⋆⋆⋆

J ðFÞ⊆R⋆⋆⋆
J ðHÞ,

but F ⊈H

(2) The inclusion relations of part 2 in Proposition 30
and Proposition 31 are generally proper. To show
that consider Example 1 (iii) and take F = fe1, e4g,
H = fe2, e3g. Then

(a) R⋆⋆⋆J ðFÞ = R⋆⋆⋆J ðHÞ = E, R⋆⋆⋆J ðF ∩HÞ = ϕ:
Therefore, R⋆⋆⋆J ðFÞ ∩ R⋆⋆⋆J ðHÞ = E ≠ ϕ = R⋆⋆⋆J

ðF ∩HÞ
(b) R⋆⋆⋆

J ðFÞ = R⋆⋆⋆
J ðHÞ = ϕ, R⋆⋆⋆

J ðF ∪HÞ = E:
Therefore, R⋆⋆⋆

J ðFÞ ∪ R⋆⋆⋆
J ðHÞ = ϕ ≠ E = R⋆⋆⋆

J

ðF ∪HÞ

(3) In Example 1 (i), if J = fϕ, fe1gg: So, the inclusion
relations of part 3 in Proposition 30 and Proposition
31 are generally proper as we illustrate in the following

(a) F = fe1, e2, e4g,H = fe1, e3, e4g, F ∩H = fe1, e4g,
then, R⋆⋆⋆

J ðFÞ = F, R⋆⋆⋆
J ðHÞ =H, R⋆⋆⋆

J ðF ∩HÞ
= ϕ: Therefore, R⋆⋆⋆

J ðFÞ ∩ R⋆⋆⋆
J ðHÞ = fe1, e4g ≠

ϕ = R⋆⋆⋆
J ðF ∩HÞ

(b) F = fe3g,H = fe2g, F ∪H = fe2, e3g, then, R⋆⋆⋆J ðFÞ
= F, R⋆⋆⋆J ðHÞ =H, R⋆⋆⋆J ðF ∪HÞ = E: Therefore,
R⋆⋆⋆J ðFÞ∪R⋆⋆⋆J ðHÞ = fe2, e3g ≠ E = R⋆⋆⋆J ðF ∪HÞ

(4) In Proposition 30 and Proposition 31, the converse
of part 5 is generally incorrect. To show that con-
sider Example 1 (ii) and take

(a) F = fe1, e2g, then, R⋆⋆⋆J ðFÞ = F, R⋆⋆⋆KðFÞ = fe1g:
Therefore, R⋆⋆⋆KðFÞ ⊆ R⋆⋆⋆J ðFÞ, but J ⊈K

(b) F = fe1, e2, e3g, then, R⋆⋆⋆
J ðFÞ = R⋆⋆⋆

KðFÞ = fe2,
e3g: Therefore, R⋆⋆⋆

J ðFÞ ⊆ R⋆⋆⋆
KðFÞ, but J ⊈K

Remark 33. Some properties of the lower and upper approx-
imations given in the second method are not kept by this
method as we demonstrate in the following.

(i) In Example 1 (i) take

(1) F = fe1g, then R⋆⋆⋆J ðFÞ = ϕ: Hence, F ⊈ R⋆⋆⋆J ðFÞ
(2) F = fe2g, then R⋆⋆⋆

J ðFÞ = fe1, e2, e3g: Hence,
R⋆⋆⋆

J ðFÞ ⊈ F

(3) F = E, then R⋆⋆⋆J ðEÞ = fe4g: Hence, R⋆⋆⋆J ðEÞ ≠ E

(4) F = ϕ, then R⋆⋆⋆
J ðϕÞ = fe1, e2, e3g: Hence, R⋆⋆⋆

J

ðϕÞ ≠ ϕ

Example 3. Let E=fe1, e2, e3, e4g, J =fϕ, fe2gg and R=fðe2,
e2Þg be a binary relation defined on E thus μuðe2Þ = fe2g, μu
ðe1Þ = μuðe3Þ = μuðe4Þ = ϕ: Take

(1) F = E, then R⋆⋆⋆
J ðEÞ = fe2g: Hence, R⋆⋆⋆

J ðEÞ ≠ E

(2) F = ϕ, then R⋆⋆⋆J ðϕÞ = fe1, e3, e4g: Hence, R⋆⋆⋆J

ðϕÞ ≠ ϕ

Remark 34. Some properties of the lower and upper approx-
imations given in the first/second method are not kept by
this method as we demonstrate in the following. In Example
1, take

(1) F = fe1, e3, e4g, then, Fc ∈ J , then R⋆⋆⋆
J ðFÞ = fe2g:

Hence, if Fc ∈ J⇏R⋆⋆⋆
J ðFÞ = E or F

(2) F = fe2g ∈ J , then, R⋆⋆⋆J ðFÞ = fe1, e3, e4g: Hence, if
F ∈ J⇏R⋆⋆⋆J ðFÞ = ϕ or F

(3) F = fe1, e3, e4g, J = PðEÞ, then, R⋆⋆⋆
J ðFÞ = fe2g:

Hence, if J = PðEÞ⇏R⋆⋆⋆
J ðFÞ = E, or F

(4) F = fe2g, J = PðEÞ, then, R⋆⋆⋆J ðFÞ = fe1, e3, e4g:
Hence, if J = PðEÞ⇏R⋆⋆⋆J ðFÞ = ϕ, or F

Remark 35. Some Pawlak’s properties are not kept by this
method as we demonstrate in the following. In Example 1
(i), if J = fϕ, fe1gg,

(1) F=fe1, e2g, then R⋆⋆⋆J ðFÞ=fe2g, R⋆⋆⋆
JðR⋆⋆⋆J ðFÞÞ

= ϕ: Hence, R⋆⋆⋆J ðFÞ ⊈ R⋆⋆⋆
J ðR⋆⋆⋆J ðFÞÞ

(2) F = fe3, e4g, then R⋆⋆⋆
J ðFÞ = fe1, e3, e4g, R⋆⋆⋆J

ðR⋆⋆⋆
JðFÞÞ=E: Hence, R⋆⋆⋆JðR⋆⋆⋆

JðFÞÞ⊈R⋆⋆⋆
J ðFÞ

Proposition 36. Consider R and J are, respectively, binary
relation and ideal on E ≠ ϕ and let ϕ ≠ F ⊆ E. Then,

(1) 0 ≤ ACC⋆⋆⋆
R

J ðFÞ ≤ 1

(2) ACC⋆⋆
R

J ðEÞ = 1

Proof. It is similar to Proposition 14.

Theorem 37. Consider R as a binary relation on E and let
J ,K be ideals on E such that J ⊆K . For each F ⊆ E, the
next properties hold.

(1) BND⋆⋆⋆
R

KðFÞ ⊆ BND⋆⋆⋆
R

J ðFÞ
(2) ACC⋆⋆⋆

R
J ðFÞ ≤ ACC⋆⋆⋆

R
KðFÞ

(3) Rough⋆⋆⋆R
KðFÞ ≤ Rough⋆⋆⋆R

J ðFÞ
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Proof. Similar to Theorem 15.

Remark 38. In Theorem 37, the converse of parts 1, 2, and 3
is generally false. To validate that take Example 1 (ii) and let
F = fe3, e4g. Then,

(1) BND⋆⋆⋆
R

KðFÞ = fe1g ⊆ fe1, e2g = BND⋆⋆⋆
R

J ðFÞ, but
J ⊈K

(2) ACC⋆⋆⋆
R

J ðFÞ = 1/2 ≤ 2/3 = ACC⋆⋆⋆
R

KðFÞ, but J ⊈K

(3) Rough⋆⋆⋆R
KðFÞ = 1/3 ≤ 1/2 = Rough⋆⋆⋆R

J ðFÞ, but J

⊈K

The lower and upper approximations, boundary region, accu-
racy, and roughness generated by the third type does not have
the monotonicity. The next example confirm this fact.

Example 4. Let E = fe1, e2, e3, e4, e5, e6, e7g, J = fϕ, fe2gg,
R1, R2 be two binary relations on E where R1 =Δ∪fðe1, e3Þ,
ðe3, e1Þ, ðe3, e7Þ, ðe4, e6Þ, ðe5, e7Þ, ðe6, e4Þ, ðe7, e3Þ, ðe7, e5Þg, R2
= R1 ∪ fðe1, e4Þ, ðe1, e5Þ, ðe2, e6Þ, ðe4, e1Þ, ðe5, e1Þ, ðe6, e2Þg:
Thus, μ1uðe1Þ = fe1, e3, e7g, μ1uðe2Þ = fe2g, μ1uðe3Þ = μ1uðe7Þ
= fe1, e3, e5, e7g, μ1uðe4Þ = μ1uðe6Þ = fe4, e6g, μ1uðe5Þ = fe3,
e5, e7g, μ2uðe1Þ = fe1, e3, e4, e5, e6, e7g, μ2uðe2Þ = fe2, e4, e6g,
μ2uðe3Þ = μ2uðe5Þ = fe1, e3, e4, e5, e7g, μ2uðe4Þ = fe1, e2, e3, e4,
e5, e6g, μ2uðe6Þ = fe1, e2, e4, e6g, μ2uðe7Þ= fe1, e3, e5, e7g: Take

(1) F=fe1, e2, e3, e4, e5, e6g, then, R1⋆⋆⋆
JðFÞ=fe2, e4, e6g,

R2⋆⋆⋆
J ðFÞ = fe1, e2, e3, e4, e5, e6g: Therefore, R1⋆⋆⋆

J

ðFÞÛR2⋆⋆⋆
J ðFÞ

(2) F = fe7g, then, R1
⋆⋆⋆J ðFÞ = fe1, e3, e5, e7g, R2

⋆⋆⋆J

ðFÞ = fe7g: Therefore, R1
⋆⋆⋆J ðFÞ ⊈ R2

⋆⋆⋆J ðFÞ
F = fe1, e2, e3, e4, e5, e6g, then R1⋆⋆

J ðFÞ = fe2, e4, e6g,
R1

⋆⋆⋆J ðFÞ = E, R2⋆⋆
J ðFÞ = F, R2

⋆⋆⋆J ðFÞ = E: Therefore,

(a) BND⋆⋆⋆
R1

J ðFÞ = fe1, e3, e5, e7g ⊈ fe7g = BND⋆⋆⋆
R2

J ðFÞ
(b) ACC⋆⋆⋆

R1
J ðFÞ = 3/7 < 6/7 = ACC⋆⋆⋆

R2
J ðFÞ

(c) Rough⋆⋆⋆R1

J ðFÞ = 4/7 > 1/7 = Rough⋆⋆⋆R2

J ðFÞ

Although, R1 ⊆ R2:

3.4. The Fourth Method of the Improvement of the
Approximations and Accuracy Measure of Subsets

Definition 39. Let R and J be, respectively, binary relation
and ideal on a nonempty set E. The fourth kind of the
improvement of lower and upper approximations, boundary
region, accuracy, and roughness of a nonempty subset F of E
induced from R and J is defined, respectively, by

R⋆⋆⋆⋆J Fð Þ = ∪
e∈E

μu eð Þ: μu eð Þ ∩ F∈Jf g, ð25Þ

R⋆⋆⋆⋆
J Fð Þ = R⋆⋆⋆⋆J Fcð Þ

� �c
, ð26Þ

BND⋆⋆⋆⋆
R

J Fð Þ = R⋆⋆⋆⋆J Fð Þ−R⋆⋆⋆⋆
J Fð Þ, ð27Þ

ACC⋆⋆⋆⋆
R

J Fð Þ = R⋆⋆⋆⋆
J Fð Þ ∩ F

�� ��
R⋆⋆⋆⋆J Fð Þ ∪ F
�� �� , ð28Þ

Rough⋆⋆⋆⋆R
J Fð Þ = 1−ACC⋆⋆⋆⋆

R
J Fð Þ: ð29Þ

Proposition 40. Consider F,H ⊆ E and let J ,K be ideals
and R be a binary relation on E. Then,

(1) R⋆⋆⋆⋆J ðϕÞ = ϕ

(2) F ⊆H ⇒ R⋆⋆⋆⋆J ðFÞ ⊆ R⋆⋆⋆⋆J ðHÞ
(3) R⋆⋆⋆⋆J ðF ∩HÞ ⊆ R⋆⋆⋆⋆J ðFÞ ∩ R⋆⋆⋆⋆J ðHÞ
(4) R⋆⋆⋆⋆J ðF ∪HÞ = R⋆⋆⋆⋆J ðFÞ ∪ R⋆⋆⋆⋆J ðHÞ
(5) R⋆⋆⋆⋆J ðFÞ = ðR⋆⋆⋆⋆

J ðFcÞÞc

(6) If F ∈ J , then R⋆⋆⋆⋆J ðFÞ = ϕ

(7) If J ⊆K , then R⋆⋆⋆⋆KðFÞ ⊆ R⋆⋆⋆⋆J ðFÞ
(8) If J = PðEÞ, then R⋆⋆⋆⋆J ðFÞ = ϕ

(9) R⋆⋆⋆⋆J∩KðFÞ = R⋆⋆⋆⋆J ðFÞ ∪ R⋆⋆⋆⋆KðFÞ
(10) R⋆⋆⋆⋆J∨KðFÞ = R⋆⋆⋆⋆J ðFÞ ∩ R⋆⋆⋆⋆KðFÞ

Proof.

(1) R⋆⋆⋆⋆J ðϕÞ = ∪
e∈E

fμuðeÞ: μuðeÞ ∩ ϕ∈Jg = ϕ

(2) Let F ⊆H and e ∈ R⋆⋆⋆⋆J ðFÞ: Then, ∃y ∈ E such
that e ∈ μuðyÞ and μuðyÞ ∩ F∈J : Thus, μuðyÞ ∩H∈
J : So, e ∈ R⋆⋆⋆⋆J ðHÞ: Consequently, R⋆⋆⋆⋆J ðFÞ
⊆ R⋆⋆⋆⋆J ðHÞ

(3) Immediately by part (2)

(4) R⋆⋆⋆⋆J ðF ∪HÞ = ∪
e∈E

fμuðeÞ: μuðeÞ ∩ ðF ∪HÞ∈Jg:
= ð ∪

e∈E
fμuðeÞ: μuðeÞ ∩ F∈JgÞ ∪ ð ∪

e∈E
fμuðeÞ: μuðeÞ ∩

H∈JgÞ: = ð ∪
e∈E

fμuðeÞ: μuðeÞ ∩ F∈JgÞ or ð ∪
e∈E

fμuðeÞ
: μuðeÞ ∩H∈JgÞ: = R⋆⋆⋆⋆J ðFÞ ∪ R⋆⋆⋆⋆J ðHÞ

(5) ðR⋆⋆⋆⋆
J ðFcÞÞc = ððR⋆⋆⋆⋆J ðFÞÞcÞc: = R⋆⋆⋆⋆J ðFÞ

(6) Immediately obtains by Definition 39

(7) Let J ⊆K , e ∈ R⋆⋆⋆⋆KðFÞ: Then, ∃y ∈ E such that
e ∈ μuðyÞ and μuðyÞ ∩ F∈K : Thus, μuðyÞ ∩ F∈J as
J ⊆K : So, e ∈ R⋆⋆⋆⋆J ðFÞ: Hence, R⋆⋆⋆⋆KðFÞ ⊆
R⋆⋆⋆⋆J ðFÞ

(8) Immediately obtains by Definition 39

(9) R⋆⋆⋆⋆J∩KðFÞ= ∪
e∈E

fμuðeÞ: μuðeÞ∩F∈J ∩Kg:=ð ∪
e∈E

fμuðeÞ: μuðeÞ ∩ F∈JgÞ or ð ∪
e∈E

fμuðeÞ: μuðeÞ ∩ F∈
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KgÞ: = ð ∪
e∈E

fμuðeÞ: μuðeÞ ∩ F∈JgÞ ∪ ð ∪
e∈E

fμuðeÞ: μu
ðeÞ ∩ F∈KgÞ: = R⋆⋆⋆⋆J ðFÞ ∪ R⋆⋆⋆⋆KðFÞ

(10) R⋆⋆⋆⋆J∨KðFÞ = ∪
e∈E

fμuðeÞ: μuðeÞ ∩ F∈J∨Kg: = ∪
e∈E

fμuðeÞ: μuðeÞ ∩ F∈J ∪Kg: = ð ∪
e∈E

fμuðeÞ: μuðeÞ ∩ F

∈JgÞand ð ∪
e∈E

fμuðeÞ: μuðeÞ ∩ F∈KgÞ: = ð ∪
e∈E

fμuðeÞ
: μuðeÞ ∩ F∈JgÞ ∩ ð ∪

e∈E
fμuðeÞ: μuðeÞ ∩ F∈KgÞ: =

R⋆⋆⋆⋆J ðFÞ ∩ R⋆⋆⋆⋆KðFÞ

Proposition 41. Consider F,H ⊆ E and let J ,K be ideals
and R be a binary relation on E. Then,

(1) R⋆⋆⋆⋆
J ðEÞ = E

(2) F ⊆H ⇒ R⋆⋆⋆⋆
J ðFÞ ⊆ R⋆⋆⋆⋆

J ðHÞ
(3) R⋆⋆⋆⋆

J ðFÞ ∪ R⋆⋆⋆⋆
J ðHÞ ⊆ R⋆⋆⋆⋆

J ðF ∪HÞ
(4) R⋆⋆⋆⋆

J ðF ∩HÞ = R⋆⋆⋆⋆
J ðFÞ ∩ R⋆⋆⋆⋆

J ðHÞ
(5) R⋆⋆⋆⋆

J ðFÞ = ðR⋆⋆⋆⋆J ðFcÞÞc

(6) If Fc ∈ J , then, R⋆⋆⋆⋆
J ðFÞ = E

(7) If J ⊆K , then, R⋆⋆⋆⋆
J ðFÞ ⊆ R⋆⋆⋆⋆

KðFÞ
(8) If J = PðEÞ, then, R⋆⋆⋆⋆

J ðFÞ = E

(9) R⋆⋆⋆⋆
J∩KðFÞ = R⋆⋆⋆⋆

J ðFÞ ∩ R⋆⋆⋆⋆
KðFÞ

(10) R⋆⋆⋆⋆
J∨KðFÞ = R⋆⋆⋆⋆

J ðFÞ ∪ R⋆⋆⋆⋆
KðFÞ

Proof.

(1) R⋆⋆⋆⋆
J ðEÞ = ðR⋆⋆⋆⋆J ðϕÞÞc = ϕc = E by Proposition

40 part (1).

(2) Let F ⊆H: Thus, Hc ⊆ Fc, and hence, R⋆⋆⋆⋆J ðHcÞ
⊆ R⋆⋆⋆⋆J ðFcÞ (by Proposition 40 part (2)). Then,
ðR⋆⋆⋆⋆J ðFcÞÞc ⊆ ðR⋆⋆⋆⋆J ðHcÞÞc: So, R⋆⋆⋆⋆

J ðFÞ ⊆
R⋆⋆⋆⋆

J ðHÞ
(3) Immediately by part (2)

(4) R⋆⋆⋆⋆
J ðF ∩HÞ = ðR⋆⋆⋆⋆J ðF ∩HÞcÞc: = ðR⋆⋆⋆⋆J ðFc

∪HcÞÞc: = ðR⋆⋆⋆⋆J ðFcÞ∪R⋆⋆⋆⋆J ðHcÞÞc(by no. (4)
in Proposition 40). = ðR⋆⋆⋆⋆J ðFcÞÞc ∩ ðR⋆⋆⋆⋆J

ðHcÞÞc: = R⋆⋆⋆⋆
J ðFÞ ∩ R⋆⋆⋆⋆

J ðHÞ
(5) Immediately obtains by Definition 39

(6) Let Fc ∈ J , then R⋆⋆⋆⋆
J ðFÞ = ðR⋆⋆⋆⋆J ðFcÞÞc = ðϕÞc

= E by Proposition 40 part (6)

(7) Let J ⊆K : Then, R⋆⋆⋆⋆KðFcÞ ⊆ R⋆⋆⋆⋆J ðFcÞ by
Proposition 40 part (7). Thus, ðR⋆⋆⋆⋆J ðFcÞÞc ⊆
ðR⋆⋆⋆⋆KðFcÞÞc: Hence, R⋆⋆⋆⋆

J ðFÞ ⊆ R⋆⋆⋆⋆
KðFÞ

(8) Let J = PðEÞ, then, R⋆⋆⋆⋆
J ðFÞ = ðR⋆⋆⋆⋆J ðFcÞÞc =

ðϕÞc = E by Proposition 40 part (8)

(9) R⋆⋆⋆⋆
J∩KðFÞ = ðR⋆⋆⋆⋆J∩KðFcÞÞc: = ðR⋆⋆⋆⋆J ðFcÞ∪

R⋆⋆⋆⋆KðFcÞÞc (by Proposition 40 part (9)). =
ðR⋆⋆⋆⋆J ðFcÞÞc ∩ ðR⋆⋆⋆⋆KðFcÞÞc: = R⋆⋆⋆⋆

J ðFÞ ∩
R⋆⋆⋆⋆

KðFÞ
(10) R⋆⋆⋆⋆

J∨KðFÞ = ðR⋆⋆⋆⋆J∨KðFcÞÞc: = ðR⋆⋆⋆⋆J ðFcÞ ∩
R⋆⋆⋆⋆KðFcÞÞc (by Proposition 40 part (10)). =
ðR⋆⋆⋆⋆J ðFcÞÞc ∪ ðR⋆⋆⋆⋆KðFcÞÞc: = R⋆⋆⋆⋆

J ðFÞ ∪
R⋆⋆⋆⋆

KðFÞ

Remark 42.

(1) In Proposition 40 and Proposition 41, the converse
of part 2 is generally false. To validate that consider
Example 1 (i)

(a) If F = fe1g,H = fe4g, then, R⋆⋆⋆⋆J ðFÞ = ϕ, R⋆⋆⋆⋆J

ðHÞ = E: Therefore, R⋆⋆⋆⋆J ðFÞ ⊆ R⋆⋆⋆⋆J ðHÞ, but
F ⊈H

(b) If F = fe1, e2, e3g and H = fe2, e3, e4g, then R⋆⋆⋆⋆
J

ðFÞ = ϕ, R⋆⋆⋆⋆
J ðHÞ = E: Therefore, R⋆⋆⋆⋆

J ðFÞ ⊆
R⋆⋆⋆⋆

J ðHÞ, but F ⊈H

(2) In Proposition 40 and Proposition 41, the converse
of parts 6, 7, and 8 is generally false. To show that
consider Example 1 (ii).

(a) For part 6 take

(i) F = fe1, e2g, then, R⋆⋆⋆⋆KðFÞ = ϕ: Therefore,
R⋆⋆⋆⋆KðFÞ = ϕ, but F∈K

(ii) F = fe3, e4g, then, R⋆⋆⋆⋆
KðFÞ = E: Therefore,

R⋆⋆⋆⋆
KðFÞ = E, but Fc∈K :

(b) For part 7 take

(i) F = fe1, e2g, then, R⋆⋆⋆⋆J ðFÞ = fe2g, R⋆⋆⋆⋆KðFÞ = ϕ:
Therefore, R⋆⋆⋆⋆KðFÞ ⊆ R⋆⋆⋆⋆J ðFÞ, but J ⊈K

(ii) F = fe3, e4g, then, R⋆⋆⋆⋆
J ðFÞ = fe1, e3, e4g, R⋆⋆⋆⋆

K

ðFÞ = E: Therefore, R⋆⋆⋆⋆
J ðFÞ ⊆ R⋆⋆⋆⋆

KðFÞ, but
J ⊈K

(c) For part 8 take

(i) F = fe1, e2g, then, R⋆⋆⋆⋆KðFÞ = ϕ, but K ≠ PðEÞ
(ii) F = fe3, e4g, then, R⋆⋆⋆⋆

KðFÞ = E, but K ≠ PðEÞ

(3) In Proposition 40 and Proposition 41, the inclusion
relations of part 3 are generally proper. To demonstrate
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that consider Example 1 (iii), and let F = fe1, e4g and
H = fe2, e3g. Then

(a) R⋆⋆⋆⋆J ðFÞ = R⋆⋆⋆⋆J ðHÞ = E, R⋆⋆⋆⋆J ðF ∩HÞ = ϕ:
Therefore, R⋆⋆⋆⋆J ðFÞ ∩ R⋆⋆⋆⋆J ðHÞ = E ≠ ϕ = R⋆⋆⋆J

ðF ∩HÞ
(b) R⋆⋆⋆⋆

J ðFÞ = R⋆⋆⋆⋆
J ðHÞ = ϕ, R⋆⋆⋆⋆

J ðF ∪HÞ = E:
Therefore, R⋆⋆⋆⋆

J ðFÞ ∪ R⋆⋆⋆⋆
J ðHÞ = ϕ ≠ E =

R⋆⋆⋆⋆
J ðF ∪HÞ

Remark 43. Some properties of the lower and upper approx-
imations given in the second method are not kept by this
method as we demonstrate in the following.

(i) In Example 1 (i) take

(a) F = fe1g, then, R⋆⋆⋆⋆J ðFÞ = ϕ:Hence, F ⊈ R⋆⋆⋆⋆J ðFÞ
(b) F = fe2, e3, e4g, then, R⋆⋆⋆⋆

J ðFÞ = E: Hence,
R⋆⋆⋆⋆

J ðFÞ ⊈ F

(ii) In Example 1 (ii) take

(a) F = E, then, R⋆⋆⋆⋆J ðEÞ = fe2, e3, e4g: Hence,
R⋆⋆⋆⋆J ðEÞ ≠ E

(b) F = ϕ, then, R⋆⋆⋆⋆
J ðϕÞ = fe1g:Hence, R⋆⋆⋆⋆

J ðϕÞ ≠ ϕ

Proposition 44. Consider R and J are, respectively, binary
relation and ideal on E ≠ ϕ and let ϕ ≠ F ⊆ E. Then,

(1) 0 ≤ ACC⋆⋆⋆⋆
R

J ðFÞ ≤ 1

(2) ACC⋆⋆⋆⋆
R

J ðEÞ = 1

Proof. Similar to Proposition 14.

Theorem 45. Consider R as a binary relation on E and let
J ,K be ideals on E such that J ⊆K . For each F ⊆ E, the
next properties hold.

(1) BND⋆⋆⋆⋆
R

KðFÞ ⊆ BND⋆⋆⋆⋆
R

J ðFÞ
(2) ACC⋆⋆⋆⋆

R
J ðFÞ ≤ ACC⋆⋆⋆⋆

R
KðFÞ

(3) Rough⋆⋆⋆⋆R
KðFÞ ≤ Rough⋆⋆⋆⋆R

J ðFÞ

Proof. Similar to Theorem 15.

Remark 46. Example 1 (ii) shows that the converse of parts 1,
2, and 3 in Theorem 45 is not necessary to be true in general.
Take, F = fe3, e4g, then

(1) BND⋆⋆⋆⋆
R

KðFÞ = ϕ ⊆ ϕ = BND⋆⋆⋆⋆
R

J ðFÞ, but J ⊈K

(2) ACC⋆⋆⋆⋆
R

J ðFÞ = 1 ≤ 1 = ACC⋆⋆⋆⋆
R

KðFÞ, but J ⊈K

(3) Rough⋆⋆⋆⋆R
KðFÞ = 0 ≤ 0 = Rough⋆⋆⋆⋆R

JðFÞ, but J ⊈K

Theorem 47. Let ϕ ≠ F ⊆ E, J be an ideal on E and R1, R2 be
two binary relations on E: If R1 ⊆ R2, then

(1) R⋆⋆⋆⋆
1

J ðFÞ ⊆ R⋆⋆⋆⋆
2

J ðFÞ
(2) R2⋆⋆⋆⋆

J ðFÞ ⊆ R1⋆⋆⋆⋆
J ðFÞ

(3) BND⋆⋆⋆⋆
R1

J ðFÞ ⊆ BND⋆⋆⋆⋆
R2

J ðFÞ
(4) ACC⋆⋆⋆⋆

R2

J ðFÞ ≤ ACC⋆⋆⋆⋆
R1

J ðFÞ

(5) Rough⋆⋆⋆⋆R1

J ðFÞ ≤ Rough⋆⋆⋆⋆R2

J ðFÞ

Proof.

(1) Let e ∈ R⋆⋆⋆⋆
1

J ðFÞ: Then, ∃y ∈ E such that e ∈ μ1uðyÞ
∩ F∈J : Since, μ1uðyÞ ⊆ μ2uðyÞ (by Theorem 4 [20]).
It follows that e ∈ μ2uðyÞ ∩ F∈J : Thus, e ∈ R⋆⋆⋆⋆

2
J

ðFÞ: Hence, R⋆⋆⋆⋆
1

J ðFÞ ⊆ R⋆⋆⋆⋆
2

J ðFÞ
(2) e ∈ R2⋆⋆⋆⋆

J ðFÞ = ðR⋆⋆⋆⋆
2

J ðFcÞÞc:⊆ ðR⋆⋆⋆⋆
1

J ðFcÞÞc
(by part (1)).= R1⋆⋆⋆⋆

J ðFÞ
(3) Let e ∈ BND⋆⋆⋆⋆

R1
JðFÞ:Then, e ∈ R⋆⋆⋆⋆

1
JðFÞ − R1⋆⋆⋆⋆

J

ðFÞ: So, e ∈ R⋆⋆⋆⋆
1

J ðFÞ and e ∈ ðR1⋆⋆⋆⋆
J ðFÞÞc: Thus,

e ∈ R⋆⋆⋆⋆
2

J ðFÞ and e ∈ ðR2⋆⋆⋆⋆
J ðFÞÞc by parts 1 and

2. Hence, e ∈ BND⋆⋆⋆⋆
R2

J ðFÞ: Therefore, BND⋆⋆⋆⋆
R1

J

ðFÞ ⊆ BND⋆⋆⋆⋆
R2

J ðFÞ
(4) ACC⋆⋆⋆⋆

R2
J ðFÞ = jR2⋆⋆⋆⋆

J ðFÞ ∩ F/R⋆⋆⋆⋆
2

J ðFÞ ∪ Fj ≤
jR1⋆⋆⋆⋆

J ðFÞ ∩ F/R⋆⋆⋆⋆
1

J ðFÞ ∪ Fj = ACC⋆⋆⋆⋆
R1

J ðFÞ
(5) Straightforward by (4)

Remark 48. In Theorem 47, the inclusion and less than rela-
tions are generally proper. To show this matter consider
Example 2 and take

(i) F = fe1, e2g, then

(1) R⋆⋆⋆⋆
1

J ðFÞ = fe1, e4g ≠ fe1, e3, e4g = R⋆⋆⋆⋆
2

J ðFÞ
(2) ACC⋆⋆⋆⋆

R1
J ðFÞ = 2/3 ≠ 1/2 = ACC⋆⋆⋆⋆

R2
J ðFÞ

(3) Rough⋆⋆⋆⋆R1

J ðFÞ = 1/3 ≠ 1/2 = Rough⋆⋆⋆⋆R2

J ðFÞ

(ii) F=fe2, e3g, then, R1⋆⋆⋆⋆
JðFÞ=F≠fe2g= R2⋆⋆⋆⋆

JðFÞ

4. Comparison the Proposed Methods and
Their Advantages Compared to the
Previous Ones

Herein, we first compare between the current purposed
methods and demonstrate that the method given in Subsec-
tion 3.3 is the best in terms of develop the approximation
operators and values of accuracy. Then, we clarify that the
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first approach produces accuracy measures of subsets higher
than their counterparts displayed in [20].

Theorem 49. Let F ⊆ E, J be an ideal on E and R be a binary
relation on E: Then,

(1) R⋆J ðFÞ ⊆ R⋆⋆J ðFÞ
(2) R⋆⋆

J ðFÞ ⊆ RJ
⋆ ðFÞ

(3) BND⋆⋆
R

J ðFÞ ⊆ BND⋆
R
J ðFÞ

(4) ACC⋆⋆
R

J ðFÞ = ACC⋆
R
J ðFÞ

(5) Rough⋆⋆R
J ðFÞ = Rough⋆R

J ðFÞ

Proof. Immediately by using the Definitions 9 and 18.

Remark 50. Example 2 shows that the inclusion and less than
in Theorem 49 cannot be replaced by equality relation in
general. Take F = fe1, e2, e3g, then

(1) R⋆
1
J ðFÞ = fe1, e4g ≠ E = R⋆⋆

1
J ðFÞ

(2) R⋆⋆1
J ðFÞ = fe1, e2, e3g ≠ E = R⋆1

J ðFÞ
(3) BND⋆

R1
J ðFÞ = ϕ ≠ fe4g = BND⋆⋆

R1
J ðFÞ

Theorem 51. Let F ⊆ E, J be an ideal on E and R be a reflex-
ive relation on E: Then,

(1) R⋆⋆
J ðFÞ ⊆ RJ

⋆ ðFÞ ⊆ R⋆⋆⋆
J ðFÞ

(2) R⋆⋆⋆J ðFÞ ⊆ R⋆J ðFÞ ⊆ R⋆⋆J ðFÞ
(3) BND⋆⋆⋆

R
J ðFÞ ⊆ BND⋆

R
J ðFÞ ⊆ BND⋆⋆

R
J ðFÞ

(4) ACC⋆⋆
R

J ðFÞ ≤ ACC⋆
R
J ðFÞ ≤ ACC⋆⋆⋆

R
J ðFÞ

(5) Rough⋆⋆⋆R
J ðFÞ ≤ Rough⋆R

J ðFÞ ≤ Rough⋆⋆R
J ðFÞ

Proof.

(1) By Theorem 49, we have R⋆⋆
J ðFÞ ⊆ RJ

⋆ ðFÞ: To
prove, RJ

⋆ ðFÞ ⊆ R⋆⋆⋆
J ðFÞ: Let e ∈ RJ

⋆ ðFÞ, then, μuðeÞ
∩ Fc ∈ J : Hence, μuðeÞ ⊆ R⋆⋆⋆

J ðFÞ: Since, R is a
reflexive relation, thus, e ∈ μuðeÞ ⊆ R⋆⋆⋆

J ðFÞ: There-
fore, e ∈ R⋆⋆⋆

J ðFÞ
(2) To prove, R⋆⋆⋆J ðFÞ ⊆ R⋆J : Let e ∈ R⋆⋆⋆J ðFÞ =

ðR⋆⋆⋆ðFcÞÞc, then, x∈R⋆⋆⋆ðFcÞ: Hence, by Definition
29, we get μuðeÞ ∩ F∈J : It follows that e ∈ R⋆J ðFÞ:
By Theorem 49, we have R⋆J ðFÞ ⊆ R⋆⋆J ðFÞ

(3) Straightforward from (4) and (2)

In Theorem 51, the inclusion and less than relation in
Theorem 51 cannot be replaced by equality relation in gen-
eral as the next example demonstrates.

Example 52. Let E = fe1, e2, e3, e4g, J = fϕ, fe4gg, and R =
Δ ∪ fðe1, e4Þ, ðe3, e4Þ, ðe4, e2Þg be a binary relation defined
on E: By calculations, we obtain μuðe1Þ = μuðe3Þ = fe1, e3,
e4g, μuðe2Þ = fe2, e4g, μuðe4Þ = E: For part 3, take F = fe1,
e3, e4g,then

(1) R⋆⋆⋆J ðFÞ = fe1, e3g ⊊ fe1, e3, e4g = R⋆J ðFÞ
(2) RJ

⋆ ðFÞ = fe1, e3g ⊊ fe1, e3, e4g = R⋆⋆⋆
J ðFÞ

(3) BND⋆⋆⋆
R

J ðFÞ = ϕ ⊊ fe4g = BND⋆
R
J ðFÞ

(4) ACC⋆
R
J ðFÞ = 2/3 ⪇ 1 = ACC⋆⋆⋆

R
J ðFÞ

(5) Rough⋆⋆⋆R
J ðFÞ = 0 ⪇ 1/3 = Rough⋆R

J ðFÞ

Theorem 53. Let F ⊆ E, J be an ideal on E and R be a reflex-
ive relation on E: Then,

(1) R⋆⋆⋆⋆
J ðFÞ ⊆ RJ

⋆ ðFÞ ⊆ R⋆⋆⋆
J ðFÞ

(2) R⋆⋆⋆J ðFÞ ⊆ R⋆J ⊆ R⋆⋆⋆⋆J ðFÞ
(3) BND⋆⋆⋆

R
J ðFÞ ⊆ BND⋆

R
J ðFÞ ⊆ BND⋆⋆⋆⋆

R
J ðFÞ

(4) ACC⋆⋆⋆⋆
R

J ðFÞ ≤ ACC⋆
R
J ðFÞ ≤ ACC⋆⋆⋆

R
J ðFÞ

(5) Rough⋆⋆⋆R
J ðFÞ ≤ Rough⋆R

J ðFÞ ≤ Rough⋆⋆⋆⋆R
J ðFÞ

Proof.

(1) By Theorem 51, we have RJ
⋆ ðFÞ ⊆ R⋆⋆⋆

J ðFÞ: To
prove, R⋆⋆⋆⋆

J ðFÞ ⊆ RJ
⋆ ðFÞ, let e ∈ R⋆⋆⋆⋆

J ðFÞ =
R⋆⋆⋆⋆J ðFcÞc: Then, x∈R⋆⋆⋆⋆J ðFcÞ: Thus, by Defini-
tion 39, μuðeÞ ∩ Fc ∈ J : It follows that μuðeÞ ⊆ RJ

⋆
ðFÞ: Since, R is a reflexive relation, then e ∈ μuðeÞ
⊆ RJ

⋆ ðFÞ: Therefore, e ∈ RJ
⋆ ðFÞ

(2) By Theorem 51, we have R⋆⋆⋆J ðFÞ ⊆ R⋆J ðFÞ: To
prove R⋆J ðFÞ ⊆ R⋆⋆⋆⋆J ðFÞ, let e ∈ R⋆J ðFÞ, then μu
ðeÞ ∩ F∈J : It follows that μuðeÞ ⊆ R⋆⋆⋆⋆J ðFÞ: Since,
R is a reflexive relation, then e ∈ μuðeÞ ⊆ R⋆⋆⋆⋆J ðFÞ:
Therefore, e ∈ R⋆⋆⋆⋆J ðFÞ

(3) Straightforward from (4) and (2)

Remark 54. In Theorem 53, the inclusion and less than rela-
tions are generally proper. To show this matter, consider
Example 52 and take F = fe1, e3, e4g. Then,

(1) R⋆J = fe1, e3, e4g ⊊ E = R⋆⋆⋆⋆J ðFÞ
(2) R⋆⋆⋆⋆

J ðFÞ = ϕ ⊊ fe1, e3g = RJ
⋆ ðFÞ

(3) BND⋆
R
J ðFÞ = fe4g ⊊ E = BND⋆⋆⋆⋆

R
J ðFÞ

(4) ACC⋆⋆⋆⋆
R

J ðFÞ = 0 ⪇ 2/3 = ACC⋆
R
J ðFÞ

(5) Rough⋆R
J ðFÞ = 1/3 ⪇ 1 = Rough⋆⋆⋆⋆R

J ðFÞ
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Remark 55. It follows from Theorem 51 and Theorem 53
that the best method to improve the approximations and
increase the accuracy values is that given in the third type
in Subsection 3.3, since the boundary regions in this case
are decreased (or canceled) by increasing the lower approx-
imations and decreasing the upper approximations with the
comparison of the other types in the other sections. More-
over, the accuracy is more accurate than the other types.

The following result elucidates that the first type of our
approaches is better than the approximation spaces given
in [20] (see Definition 5).

Theorem 56. Let F ⊆ E, J be an ideal on E and R be a binary
relation on a nonempty set E. Then,

(1) R⋆J ðFÞ ⊆ R⋆ðFÞ
(2) R⋆ðFÞ ⊆ RJ

⋆ ðFÞ
(3) BND⋆

R
J ðFÞ ⊆ B⋆

RðFÞ
(4) Acc⋆RðFÞ ≤ ACC⋆

R
J ðFÞ

(5) Rough⋆R
J ðFÞ ≤ Rough⋆RðFÞ

Proof.

(1) Let e ∈ R⋆J ðFÞ: Then, μuðeÞ ∩ F∈J : Therefore, μu
ðeÞ ∩ F ≠ ϕ: Hence, e ∈ R⋆⋆ðFÞ, which means that
R⋆J ðFÞ ⊆ R⋆⋆ðFÞ

(2) Let e ∈ R⋆⋆ðFÞ: Then, μuðeÞ ⊆ F: Therefore, μuðeÞ ∩
Fc ∈ J : Hence, e ∈ RJ

⋆ ðFÞ, which means that R⋆⋆ðFÞ
⊆ RJ

⋆ ðFÞ
(3) Immediately by parts 1 and 2

Remark 57. In Theorem 56, the inclusion and less than rela-
tions are generally proper. To show this matter consider
Example 2 and take F = fe1, e2g. Then,

(1) R⋆
1
J ðFÞ = fe1, e4g ≠ fe1, e2, e4g = R⋆

1 ðFÞ
(2) R⋆1

J ðFÞ = E ≠ fe2g = R1⋆ðFÞ
(3) BND⋆

R1
J ðFÞ = ϕ ≠ fe1, e4g = B⋆

R1
ðFÞ

(4) Acc⋆R1
J ðFÞ = 2/3 ≠ 1/3 = Acc⋆R1

ðFÞ

(5) Rough⋆R1

J ðFÞ = 1/3 ≠ 2/3 = Rough⋆R1
ðFÞ

According to Theorem 56, it can be seen that the present
methods reduce the boundary region by increasing the lower
approximations and decreasing the upper approximations
with the comparison of Al-shami’s methods [20]. This
means that the current approximation spaces are proper
generalizations of Al-shami’s approximations [20].

One can easily prove the next result which show that
Al-shami’s approximations [20] are special cases of the
current approximations.

Proposition 58. If the ideal J is the empty set, then, the
approximation spaces given herein and the approximation
spaces given in [20] are identical.

5. Medical Application to Dengue Fever Disease

One of the global diseases that disturb humanity is dengue
fever. According to the data from World Health Organiza-
tion, it is common in many regions around the world,
mainly in South America and Asia, and it causes about 60
million symptomatic infections and 13600 status deaths.
Medically, this illness is transmitted to humans via virus-
carrying dengue mosquitoes. Its symptoms begin from 3 to
4 days of infection. The average period of recovery lies from
2 days to a week.

In this section, we analyze this illness via the structures
of maximal union neighborhoods and ideals with respect
to the first type of the proposed approach. We also compare
the current approach with one of the recent approaches
introduced in [20] and show that the present approach is
more accurate.

To start this discussion, we deal with the data of eight
patients of dengue fever E = fv1, v2, v3, v4, v5, v6, v7, v8g as
displayed in Table 1. The set of symptoms of this illness
(called “attributes”) is the set Σ = fF,H, J , Sg, where F, H,
J , and S, respectively, denote fever, headache, characteristic
skin rash, and muscle and joint pains. The attributes have
two values: 1 refers patient has symptoms, and 0 refers the
patient has no symptoms. The made decision also has the
same two values with the meaning of possessing dengue
fever disease or not.

We associate each patient with his/her symptoms by a
map f : E⟶ 2Σ such that f ðviÞ equals symptoms of patient
vi. According to Table 1, we find the following.

f v1ð Þ = F, J , Sf g, ð30Þ

f v2ð Þ = f v3ð Þ = Jf g, ð31Þ
f v4ð Þ = Hf g, ð32Þ
f v5ð Þ = F, Sf g, ð33Þ
f v6ð Þ = f v8ð Þ = F,H, Jf g, ð34Þ
f v7ð Þ = F,Hf g: ð35Þ

The binary relation between these patients is specified by
the system’s experts; assume this relation is given as follows.

viRvj ⇔ f við Þ ∩ f vj
� ��� �� ≥ 2: ð36Þ

That is, the two patients are related if they have two sim-
ilar symptoms at least. Of course, this relation is changed
according to the standpoint of system’s experts. It can be
noted the relation in 1 is a symmetry relation. This means
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that the right, left, and union neighborhoods are equal, i.e.,
NrðvÞ =NlðvÞ =NuðvÞ for each v ∈ E. On the other hand, R
is not a reflexive because ðv2, v2Þ∈R, also, it is not a transitive
relation because ðv1, v7Þ∈R in spite of ðv1, v6Þ, ðv6, v7Þ ∈ R.
This means we cannot apply Pawlak’s approach to model
this information system and because Pawlak’s approach
applied only when the relation is equivalence.

To build the ideal approximation space of dengue
fever information system, we first list the relation as fol-
lows R = fðv1, v1Þ, ðv1, v5Þ, ðv1, v6Þ, ðv1, v8Þ, ðv5, v1Þ, ðv5, v5Þ,
ðv6, v1Þ, ðv6, v6Þ, ðv6, v7Þ, ðv6, v8Þ, ðv7, v6Þ, ðv7, v7Þ, ðv7, v8Þ,
ðv8, v1Þ, ðv8, v6Þ, ðv8, v7Þ, ðv8, v8Þg.

Then, we calculate the union neighborhood Nu of each
element in E

Nu v1ð Þ = v1, v5, v6, v8f g, ð37Þ

Nu v2ð Þ =Nu v3ð Þ =Nu v4ð Þ = ϕ, ð38Þ
Nu v5ð Þ = v1, v5f g, ð39Þ
Nu v6ð Þ =Nu v8ð Þ = v1, v6, v7, v8f g, ð40Þ
Nu v7ð Þ = v6, v7, v8f g: ð41Þ

After that, we calculate the maximal union neighbor-
hood μu of each element in E.

μu v1ð Þ = μu v6ð Þ = μu v8ð Þ = v1, v5, v6, v7, v8f g, ð42Þ

μu v2ð Þ = μu v3ð Þ = μu v4ð Þ = ϕ, ð43Þ
μu v5ð Þ = v1, v5, v6, v8f g, ð44Þ
μu v7ð Þ = v1, v6, v7, v8f g, ð45Þ

Finally, we consider the ideal is J = fϕ, fv5g, fv7g,
fv5, v7gg.

Now, we consider two sets: a set of patients infected with
dengue fever A1 = fv1, v3, v6, v8g, and a set of patients with-
out infection with dengue fever A2 = fv2, v4, v5, v7g. In what
follows, we calculate their lower and upper approximations,
boundary regions, and the accuracy measures utilizing a
method of maximal union neighborhoods given in [20]
and the first method given herein.

(i) Al-shami’s approach [20] (see Definition 5)

Case 1. The set of patients infected with dengue fever A1 =
fv1, v3, v6, v8g.

By computing, we find the lower and upper approxima-
tions are R⋆ðA1Þ = fv2, v3, v4g and R⋆ðA1Þ = fv1, v5, v6, v7,
v8g, respectively. This means that the boundary region is
B⋆
RðA1Þ = fv1, v5, v6, v7, v8g. Hence, the accuracy and rough-

ness measures are Acc⋆RðA1Þ = 1/6 and Rough⋆RðA1Þ = 5/6,
respectively.

(ii) Our approach given in Definition 9

By computing, we find the lower and upper approxima-
tions are RJ

⋆ ðA1Þ = fv1, v2, v3, v4, v6, v7, v8g and R⋆J ðA1Þ =
ϕ, respectively. This means that the boundary region is BN
D⋆

R
J ðA1Þ = ϕ. Hence, the accuracy and roughness measures

are ACC⋆
R
J ðA1Þ = 3/4 and Rough⋆R

J ðA1Þ = 1/4, respectively.

(i) Al-shami’s approach [20] (see Definition 5)

Case 2. The set without infection with dengue fever A2 =
fv2, v4, v5, v7g.

By computing, we find the lower and upper approxima-
tions are R⋆ðA2Þ = fv2, v3, v4g and R⋆ðA2Þ = fv1, v5, v6, v7,
v8g, respectively. This means that the boundary region is
B⋆
RðA2Þ = fv1, v5, v6, v7, v8g. Hence, the accuracy and rough-

ness measures are Acc⋆RðA2Þ = 2/7 and Rough⋆RðA2Þ = 5/7,
respectively.

(ii) Our approach given in Definition 9

By computing, we find the lower and upper approxima-
tions are RJ

⋆ ðA2Þ = fv2, v3, v4g and R⋆J ðA2Þ = ϕ, respectively.
This means that the boundary region is BND⋆

R
J ðA2Þ = ϕ.

Hence, the accuracy and roughness measures are ACC⋆
R
J

ðA2Þ = Rough⋆R
J ðA2Þ = 1/2.

It follows from Case 1 and Case 2 that the boundary
region of the infected patients with dengue fever using
approach given in [20] is fv1, v5, v6, v7, v8g, so we cannot
decide whether these patients are infected with dengue fever
or not. This matter expands the area of vagueness/uncer-
tainty and affects the precision of made decision. On the
other hand, by using the first method introduced in this
work, we see the boundary region is the empty set, which
means we decrease the vagueness in the data and then
enhance the value of accuracy.

According to the above discussion and computations, we
see that there are different techniques applied to approxi-
mate the sets. Our approach “maximal union neighborhoods
and ideal” is one of the preferable techniques since it mini-
mizes (or cancels) the boundary region by enlarging the
lower approximation and dwindling the upper approxima-
tion, which leads to increase the value of the accuracy
compared to the other types such those given in [20]. Hence,
our approach eliminates the ambiguity of the data in the

Table 1: Information system of dengue fever.

E F H J S Dengue fever

v1 1 0 1 1 1

v2 0 0 1 0 0

v3 0 0 1 0 1

v4 0 1 0 0 0

v5 1 0 0 1 0

v6 1 1 1 0 1

v7 1 1 0 0 0

v8 1 1 1 0 1
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practical problems; particularly, in the medical diagnosis
which needs accurate decisions.

6. Conclusion

In recent decades, rough set theory forms an important
instrument for many authors interested to decision-making
issues. The studies on this theory are mostly subjected to
approximation spaces induced from new types of neighbor-
hood systems or their interaction with other structures like
ideals.

In this work, we have focused on the idea of approxima-
tion spaces with the aim to decrease the regions of boundary
and increase the values of accuracy. Therefore, we have pro-
vided novel approximation spaces using the concepts of
“maximal union neighborhoods” and “ideals.” We have
scrutinized the basic properties of Pawlak rough set model
for the given approximation spaces. Also, we have discussed
these properties in the current approximation spaces with
respect to different ideals. One of the interesting obtained
characterizations of the current models is preserving the
monotonic property, which enables us to evaluate the vague-
ness in the data and enhance the confidence for the out-
comes. With the help of examples, we have compared
between the given approximation spaces with respect to
the accuracy values. To demonstrate the advantages of the
followed approach, we have proved that the first kind of
our approximation spaces produces higher accuracy than
the approach studied in [20] as well as we applied it to the
analysis of the information system of dengue fever illness.

Our future roadmaps are to study these ideal approxima-
tion paradigms in the frame of soft rough set and fuzzy
rough set. Also, we probe these ideal approximation para-
digms from a topological view and elucidate the relation-
ships between the two approaches. We can improve these
ideal approximation paradigms via topological structures
by using some generalizations of open sets such as α-open
and b-open sets. Moreover, we will research these approxi-
mation paradigms using other kinds of maximal neighbor-
hoods and apply to handle real-life problems.
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