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The objective of this paper is to study the relative homological properties of contravariantly and covariantly finite subcategories.
Some sufficient conditions for Ext nYðA, BÞ ≃ �ExtnXðA, BÞ are obtained. We also give the conditions under which the stable
categories ðC/W Þ/ðX/W Þ are one-side triangulated categories.

1. Introduction

The notions of contravariantly and covariantly finite subcat-
egories were introduced in [1] by Auslander and Smalø in
connection with studying the problem of which subcate-
gories of an Artin algebra have almost split sequences. Since
then, contravariantly and covariantly finite subcategories are
widely used in representation theory and relative homologi-
cal algebra. In [2], Beligiannis studied the relative homolog-
ical algebra induced by a pair ðC ,XÞ consisting of an
additive category C and a contravariantly finite subcategory
X of C . Suppose that X is contravariantly finite and any X
-epic has a kernel in C . Then, ∀B ∈C ; the contravariantly
X − extension functors Ext nXð−,BÞ: Cop ⟶Ab, ∀n ≥ 0
are defined as the right X-derived functor of Cð−,CÞ. The
covariantly Y-extension functors �ExtnYðA, −Þ are defined

dually. Under some conditions, if �ExtnYðY , BÞ =
Ext nXðA,XÞ = 0, then �ExtnYðA, BÞ ≃Ext nXðA, BÞ. In the
present paper, some results in [2] will be generalized. In
[3], Beligiannis and Marmaridis constructed the left and
right triangulated structures on the stable categories of addi-
tive categories induced from some homological finite subcat-
egories. Recently, Li extended their results to more general
settings [4]. Let C be an additive category and X be a full
additive subcategory of C . If X is contravariantly finite in

C and any special X-epic has a kernel in C , then the stable
category C/X has a left triangulated structure induced byX .
IfY is covariantly finite in C and any specialY-monic has a
cokernel in C , then the stable category C/Y has a right tri-
angulated structure induced by Y . In Section 3, let C be an
abelian category, W be a contravariantly finite subcategory
of C and W ⊆X ⊆C . We prove that the stable category ð
C/W Þ/ðX/W Þ also has a left triangulated structure.

In this paper, unless otherwise stated, we assume that all
considered categories are skeletally small and additive, and
their subcategories are full, additive, closed under direct
summands and isomorphisms. Functors between categories
are supposed to be additive. The following undefined sym-
bols can be referred in [2, 5]. The latest related profound
research conclusions on this subject can be found in [6–10].

2. Relative Homology

Homology provides an algebraic picture of topological
spaces, and complexes provide a mean of calculating homol-
ogy. Let C be an abelian category, X is a full subcategory of
C , which is closed under direct summands and isomor-
phisms. Consider a complex

A· : ⋯⟶ Ai+1 ⟶ Ai ⟶⋯, ð1Þ
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in C . The complex A· is called covariantly X -exact, if the
induced complex

C X , A·ð Þ: ⋯⟶C X , Ai+1ð Þ⟶C X , Aið Þ⟶⋯ ð2Þ

is exact in an abelian category. For example, when X is a
contravariantly finite subcategory of C , for any right X

-approximation of an object A in C , 0⟶ΩðAÞ⟶ X
⟶ A is covariantly X-exact, where ΩðAÞ is called the first
sysygy of A. If A ∈GenðXÞ = fB ∈C j there exists an epi-
morphism X ⟶ B, for a X ∈Xg, then the right X

-approximation of A, 0⟶ΩðAÞ⟶ X ⟶ A⟶ 0 is an
exact sequence. Dually, the complex A· is contravariantly
X -exact, if the induced complex

C A·Xð Þ: ⋯⟶C Ai−1,Xð Þ⟶C Ai,Xð Þ⟶⋯ ð3Þ

is exact in an abelian category. If CðA·,XÞ and CðA·,XÞ are
both exact, the complex A· is called functorially X-exact.

Let X be a contravariantly finite subcategory of C and
A ∈C . The X -resolution of A is the following complex:

X ·
A : ⋯⟶Xi+1

A ⟶ Xi
A ⟶⋯⟶ X1

A ⟶ X0
A ⟶ A⟶ 0,

ð4Þ

where Xi+1
A ⟶ Xi

A is the composition Xi+1
A ⟶Ωi+1ðAÞ

⟶ Xi
A. The morphism Xi+1

A ⟶Ωi+1ðAÞ is a right X

-approximation of the ði + 1Þth sysygy Ωi+1ðAÞ of A. Dually,
if Y is a covariantly finite subcategory of C and B ∈C , the
Y -coresolution of B is the complex

YB: : 0⟶ B⟶ YB
0 ⟶ YB

1 ⟶⋯⟶ YB
i ⟶ YB

i+1 ⟶⋯,
ð5Þ

where YB
i ⟶ YB

i+1 is the composition YB
i ⟶Ω−1ðBÞ⟶

YB
i+1. The morphism Ω−1ðBÞ⟶ YB

i+1 is a left Y-approxi-
mation of the ith cosysygy Ω−1ðBÞ of B. So X-resolution of
A is covariant X-exact complex,Y-coresolution of B is con-
trvariant Y-exact complex. If the category C has enough
projective objects, and these projective objects are contained
in X , then any X-resolution is an exact sequence. Similarly,
if the category C has enough injective objects, which are
contained in Y , then any Y-coresolution is an exact
sequence.

For any object A ∈C , we denote cX ·
A by the deleted com-

plex of the X-resolutions X ·
A

X
_⋅

A : ⋯⟶ Xi+1
A ⟶

f i+1

Xi
A ⟶⋯⟶ X0

A ⟶ 0: ð6Þ

For B ∈C , the right derived X-functors Ext nXð−,BÞ:
Cop ⟶Ab, ∀n ≥ 0 of Cð−,BÞ are defined to be

Ext nX A, Bð Þ = Ker C f n+1, B
À Á

Im C f n, Bð Þ , n = 0, 1, 2,⋯, ð7Þ

where the Cop denoted the opposite category of C . Dually,

cYB
· denotes the deleted complex of Y-coresolutions YB

·

Y
_B

⋅ : 0⟶ YB
0 ⟶ YB

1 ⟶⋯⟶ YB
i ⟶

gi YB
i+1 ⟶⋯: ð8Þ

For A ∈C , the right derived Y-functors �ExtnYðA,−Þ: C
⟶Ab, ∀n ≥ 0 of CðA, −Þ are defined to be

�ExtnY A, Bð Þ = Ker C A, gnð Þ
Im C A, gn−1ð Þ , n = 0, 1, 2,⋯: ð9Þ

It is similar to the extension functor in homological alge-
bra, by the comparison theorem [11], Ext nXðA, BÞ does not
depend on the choice of X-resolutions of A. �ExtnYðA, BÞ
has nothing to do with the choice of Y-coresolutions of B.
If A ∈GenðXÞ or X contains all projective objects, then
Ext 0XðA, BÞ ≃CðA, BÞ. If B ∈ CogenðYÞ = fB ∈C j there
exists Y ∈Y , such that B⟶ Y is a monomorphismg or

Y contains all injective objects, then �Ext0YðA, BÞ ≃CðA, BÞ.
Example Let R be an algebra over a field K determined

the following quiver 1⟶
α
2 ⋅⟶β

3 with relation βα = 0.
Then, its AR-quiver is Scheme 1

Let SðiÞ and PðiÞ be the indecomposable simple module
and projective module at vertex i, respectively, i = 1, 2, 3.
Put T = Sð1Þ, X = addðTÞ are direct sums of direct
summand-s of T , thenX = addðTÞ is a contravariantly finite
subcategory of R–mod categories and Ext 1XðT ,−Þ = 0, but
Ext 1XðT ,−Þ ≠ 0, since 0⟶ Sð2Þ⟶ Pð1Þ⟶ Sð1Þ⟶ 0 is
a nonsplit exact sequence. If X = addfSð3Þ ; Pð2Þg, then by
Prop.1.2 in [12], X is a covariantly finite subcategory,

Ext 1XðPð1Þ, Pð3ÞÞ ≃ EndRPð3Þ ≠ 0, �Ext1XðPð1Þ, Pð3ÞÞ = 0:

Proposition 1. Let X, Y be full subcategories of C. Suppose
to be closed under direct sums and direct summands. If X
is contravariantly finite subcategory and Y is a covariantly
finite subcategory, then

(1) for any covariantly X-exact complex 0⟶ A⟶ B
⟶ C⟶ 0, there is a corresponding X- resolution
exact sequence, 0⟶ X̂

:
A ⟶ X̂

:
B ⟶ X̂

:
C ⟶ 0. In

particular, for any n, Xn
B ≃ Xn

A ⨁ Xn
C

(2) for any contravariantly Y-exact complex, 0⟶ A⟶
B⟶ C⟶ 0, there is a corresponding Y-coresolution

exact sequence, 0⟶ Ŷ
A
: ⟶ Ŷ

B
: ⟶ Ŷ

C
: ⟶ 0, and

for any n, YB
n ≃ YA

n ⊕ YC
n

Proof. It is only necessary to prove (1) because (2) is its dual.
Let f 0A : X0

A ⟶ A, f 0C : X0
C ⟶ C be the right X-approxi-

mations. The morphism iA : A⟶ B and pc : B⟶ C are
corresponding morphisms in X-exact complex 0⟶ A
⟶ B⟶ C⟶ 0. By X-exact property, there exists g
: X0

C ⟶ B such that f 0C = pcg. Since iA f
0
A : X0

A ⟶ B by def-
inition of direct sum, there exists a unique morphism d
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: X0
A ⊕ X0

C ⟶ B, such that iA f
0
A = dix0A , g = dix0C . So, we have

the following commutative diagram Scheme 2.
Next, it is proved that d : X0

A ⊕ X0
C ⟶ B is a right X

-approximation.
Put s : X⟶ B and X ∈ X, there is l : X ⟶ X0

C , such
that pcs = f 0Cl. Since pcdix0C l = f 0Cl = pcs, u : X ⟶ A, so dix0C l

− s = iAu, thus, there is t : X ⟶ X0
A such that u = f 0At, hence

dðix0C l − ix0A tÞ = s.

Finally, it is proved that the complex 0⟶ Ker f 0A ⟶

Ker d⟶Ker f 0C ⟶ 0 is covariantly X-exact. Obviously,
we just need to prove that for all X ∈X , CðX, Ker dÞ⟶ C
ðX, Ker f 0CÞ is an epimorphism. Then, X0

B ≃ X0
A ⊕ X0

C is
obtained by the fact that 0⟶ CðX, X0

AÞ⟶ CðX, X0
A ⊕ X0

CÞ
⟶ CðX, X0

CÞ⟶ 0 is a split exact sequence. Repeating the
above procedure Scheme 3.

We have Xn
B ≃ Xn

A ⊕ Xn
C .

By Proposition 1, if 0⟶ A⟶ B⟶ C⟶ 0 is a cov-
ariantly X-exact complex, then for any D ∈ C, there is a long
exact sequence

0⟶Ext 0X C,Dð Þ⟶Ext 0X B,Dð Þ⟶Ext 0X A,Dð Þ⟶Ext 1X C,Dð Þ⟶⋯

ð10Þ

If 0⟶ A⟶ B⟶ C⟶ 0 is a contravariantly Y

-exact complex, then for any D ∈ C, there is a long exact
sequence

0⟶ �Ext0Y D, Að Þ⟶ �Ext0Y D, Bð Þ⟶ �Ext0Y D, Cð Þ⟶ �Ext1Y D, Að Þ⟶⋯:

ð11Þ

Example 1. has shown that, in general, �ExtnYðD, CÞ ≄
Ext nXðD, CÞ, even though X =Y is a functorially finite sub-
category. But, we have the following conclusions.

Lemma 2. Let X be a contravariantly finite subcategory, Y
be a covariantly finite subcategory. If A,ΩðAÞ ∈ GenX and
B,Ω−1ðBÞ ∈ CogenY , then

(1) If �Ext1YðX , BÞ = 0 and Ext 1XðA,YÞ = 0, then there
are isomorphisms

�Ext1Y A, Bð Þ ≃Ext 1X A, Bð Þ,Ext 1X A,Ω−1 Bð ÞÀ Á
≃ �Ext1Y Ω Að Þ, Bð Þ ð12Þ

(2) If Ext 1XðA,YÞ = 0, then there are epimorphism

�Ext1Y Ω Að Þ, Bð Þ⟶Ext 1X A,Ω−1 Bð ÞÀ Á
, ð13Þ

and morphism

Ext 1X A, Bð Þ⟶ �Ext1Y A, Bð Þ ð14Þ

(3) If �Ext1YðX , BÞ = 0, then there are epimorphism

Ext 1X A,Ω−1 Bð ÞÀ Á
⟶ �Ext1Y Ω Að Þ, Bð Þ, ð15Þ

and morphism

�Ext1Y A, Bð Þ⟶Ext 1X A, Bð Þ ð16Þ

Proof. We only prove (1). Similarly, (2) and (3) can be
proved. Let K0 =ΩðAÞ, L1 =Ω−1ðBÞ, 0⟶ K0 ⟶ X0 ⟶
A⟶ 0 be a right X-approximation of A, and 0⟶ B
⟶ Y0 ⟶ L1 ⟶ 0 be a leftY-approximation of B. There-
fore, there is the following commutative diagram Scheme 4.

By the snake lemma, we have Scheme 5.

Since CðA, BÞ⟶τ CðK0, BÞ⟶ �Ext1XðA, BÞ⟶ 0 is
exact, so

Cokerα ≃ �Ext1Y A, Bð Þ ≃ Cokerτ ≃ �Ext1X A, Bð Þ: ð17Þ

By the above commutative diagram, γσ = ηβ. Since

�Ext1YðX , BÞ = 0 and Ext 1XðA,YÞ = 0, so σ, β are

Scheme 1

Scheme 2

Scheme 3
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epimorphism. Then,

Cokerγ ≃ �Ext1Y K0, Bð Þ ≃ Cokerη ≃ �Ext1X A, L1
À Á

: ð18Þ

Theorem 3. Let X be a contravariantly finite subcategory,Y
be a covariantly finite subcategory. If A,ΩnðAÞ ∈ GenX ; B,
Ω−nðBÞ ∈ CogenY , n = 1, 2, 3,⋯; �Ext1YðX , CogenðYÞÞ = 0

and Ext 1XðGenðXÞ,YÞ = 0, then for all natural number n,
there is an isomorphism

Ext nY A, Bð Þ ≃ �ExtnX A, Bð Þ: ð19Þ

Proof. Let 0⟶ΩjðAÞ⟶ Xj ⟶Ωj−1ðAÞ⟶ 0 be a cov-
ariantly X-exact sequence, where Ω−1ðAÞ = A. 0⟶Ω−iðB
Þ⟶ Yi ⟶Ω−i−1ðBÞ⟶ 0 be a contravariantly Y-exact
sequence, where Ω0ðBÞ = B. Repeating the procedure of
Lemma 2, we have

Ext 1X Ωj Að Þ,Ω−i Bð ÞÀ Á
≃ �Ext1Y Ωj Að Þ,Ω−i Bð ÞÀ Á

≃Ext 1X Ωj−1 Að Þ,Ω−i−1 Bð ÞÀ Á
:

ð20Þ

Hence,

�Extn+1Y A, Bð Þ ≃ �ExtnY A,Ω−1 Bð ÞÀ Á
≃⋯ �Ext1Y A,Ω−n Bð Þð Þ

≃Ext 1X A,Ω−n Bð Þð Þ ≃Ext n+1X A, Bð Þ:
ð21Þ

The subcategory A of C is called pre- X -resolving if
X ⊆A , and A is closed under kernels of X-epic. The sub-
category B of C is called pre- Y -coresolving if Y ⊆B,
and B is closed under cokernels of Y-monic.

Corollary 4. LetX be a contravariantly finite subcategory,Y
be a covariantly finite subcategory. If GenðXÞ is pre- X

-resolving, CogenðYÞ is pre- Y -coresolving, A ∈GenðXÞ, B
∈ CogenðYÞ, �Ext1YðX , CogenðYÞÞ = 0, Ext 1XðGenðXÞ,Y
Þ = 0, then for any natural number n, there is an isomorphism

Ext nY A, Bð Þ ≃ �ExtnX A, Bð Þ: ð22Þ

The concepts of dimension and codimension are given
in [2]. Put A ∈C , if A has X-resolution

0⟶ Xn ⟶ Xn−1 ⟶⋯⟶ X1 ⟶ X0 ⟶ A⟶ 0,
ð23Þ

in this case, the least such integer n is called X-dimension of
A, denote by dim XðAÞ = n. If this nonnegative integer n
does not exist, we call dim XðAÞ =∞. Obviously, if A ∈X ,
then dim XðAÞ = 0. But the verse is not true. The global X
-dimension of the category C is defined by
gl.dim XðCÞ = sup fdimXðAÞjA ∈Cg. Dually, using the def-
inition ofY-coresolution, we can define theY-codimension
of object B ∈C , denoted by dimYðBÞ. The global Y-codi-

mension of the category C , denoted by gl:dimYðCÞ = sup f
dimYðBÞjB ∈Cg. The following proposition can be found
in [2].

Proposition 5. ð1Þgl:dimXðCÞ = 0 if and only if the inclusion
functor X ° C admits right adjoint functor R : C⟶ X

ð2Þgl:dimYðCÞ = 0 if and only if the inclusion functor Y
° C admits left adjoint functor L : C⟶ Y

Corollary 6. If ðX ,YÞ is a torsion pair in C , then gl:
dimXðCÞ = gl:dimYðCÞ = 0.

Proposition 7. Let X be a contravariantly finite subcategory,
if Ωn+1ðAÞ ∈GenðXÞ, then dim XðAÞ ≤ n if and only if Ωn+1

ðAÞ = 0:

Proof. Since 0⟶Ωn+1ðAÞ⟶ Xn ⟶ΩnðAÞ is a covar-
iantly X-exact sequence, where Xn ⟶ΩnðAÞ is a right X
-approximation, thus CðX ,Ωn+1ðAÞÞ = 0 if and only if
Ωn+1ðAÞ = 0.

Similarly, we have the following proposition.

Proposition 8. Let Y be a covariantly finite subcategory. If
Ω−n−1ðAÞ ∈ CogenðYÞ, then dimYðAÞ ≤ n if and only if
Ω−n−1ðAÞ = 0:

There should be an equivalence relation on the set of
short exact sequences. So Y ext should be the set of equiva-
lence classes; If Y ext 1XðA, BÞ represents all the covariantly
X-short exact sequence of the form of 0⟶ B⟶ Z⟶

A⟶ 0, �Y ext1YðA, BÞ represents all the contravariantly Y

-short exact sequence of the form of 0⟶ B⟶ Z⟶ A
⟶ 0, then there is the corresponding Yoneda lemma.

Lemma 9 (N. Yoneda). If A,ΩðAÞ,Ω2ðAÞ ∈ GenðXÞ, there is
a one-to-one correspondence

Y ext 1X A, Bð Þ⇔Ext 1X A, Bð Þ: ð24Þ

If B,Ω−1ðBÞ,Ω−2ðBÞ ∈ CogenðYÞ, there is a one-to-one
correspondence

�Y ext1Y A, Bð Þ⇔ �Ext1Y A, Bð Þ: ð25Þ

Note: if C is a left R-module category,X is a subcategory
of projective module category, Y is a subcategory of injec-
tive module category, then C = GenðXÞ = CogenðYÞ.

3. Stable Categories

Let us recall the stable category C/X . The objects of C/X are
the objects of C . If A, B are objects of C/X , ðC/XÞðA, BÞ
=CðA, BÞ/XðA, BÞ.

Lemma 10. Let X be a contravariantly finite subcategory, Y
be a covariantly finite subcategory. A ∈GenðXÞ, B ∈ Cogenð
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YÞ, for all C ∈C ,there is an epimorphism ϕ : Ext 1XðA, CÞ
⟶ ðC/XÞðΩðAÞ, CÞ, and there is an epimorphism ψ

: �Ext1YðC, BÞ⟶ ðC/YÞðC,Ω−1ðBÞÞ:

Proof. ð1Þ Let 0⟶ΩðAÞ⟶ X0 ⟶ A⟶ 0 be a covar-
iantly X-exact sequence, whereX0 ∈X , so there is a long
exact sequence:

0⟶C A, Cð Þ⟶C X0, Cð Þ⟶C Ω Að Þ, Cð Þ⟶Ext 1X A, Cð Þ⟶ 0:
ð26Þ

If let g : CðX0, CÞ⟶CðΩðAÞ, CÞÞ be a corresponding
morphism, then Im ðgÞ ⊆XðΩðAÞ, CÞ, thus

ϕ : Ext 1X A, Cð Þ =C
Ω Að Þ, C
Im gð Þ ⟶

C

X

� �
A, Cð Þ =C

Ω Að Þ, C
X Ω Að Þ, Cð Þ :

ð27Þ

(2) is obtained dually
Let W ⊆X ⊆C be the contravariantly finite subcate-

gories. α : C ⟶C/W , β : C ⟶C/X , γ : X/W ⟶ ðC/
W Þ/ðX/W Þ are the canonical functors, for any A, B ∈C ,
let αðAÞ = Aα and βðBÞ = Bβ, f : A⟶ B is denoted by αð f
Þ = f α : Aα ⟶ Bα, we have the following proposition.

Proposition 11. There is an isomorphism F : X/W ðAα, BβÞ
⟶XðA, BÞ/W ðA, BÞ:

Proof. Put f ′ ∈X/W ðAα, BβÞ, there is f ∈CðA, BÞ such that

f α = f ′. Then X ∈X , such that f ′ factor through Xα, i.e. h
∈CðA, XÞ and t ∈CðX, BÞ such that f α = tαhα = ðthÞα. Thus,
fÀth ∈W ðA, BÞ. Put

F :

X

W
Aα, Bβ

À Á
⟶

X A, Bð Þ
W A, Bð Þ

f ′↦ f +W A, Bð Þ:
, ð28Þ

Conversely, put f +W ∈XðA, BÞ/W ðA, BÞ, where f ∈
XðA, BÞ. Thus, there exists X ∈X such that f = th, where h
∈CðA, XÞ, t ∈CðX, BÞ. Therefore, f α = tαhα ∈X/W ðAα, Bβ

Þ. Put G : XðA, BÞ/W ðA, BÞ⟶X/W ðAα, BβÞ such that G
ð f +W ðA, BÞÞ = f α. Hence, GF = 1 and FG = 1.

Theorem 12. F : C/X ⟶ ðC/W Þ/ðX/W Þ is an equivalence
of an additional category.

Scheme 4

Scheme 5
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Proof. Put F : Aβ ↦ Aγα, for all A, B ∈C ,

C/Wð Þ
X/Wð Þ Aγα, Bγα

À Á ≃ C/Wð Þ Aα, Bβ

À Á
X/Wð Þ Aα, Bαð Þ

≃
C A, Bð Þ/W A, Bð Þð Þ
X A, Bð Þ/W A, Bð Þð Þ

≃
C A, Bð Þ
X A, Bð Þ

≃ C/Xð Þ Aβ, Bβ

À Á
:

ð29Þ

Let C be an additive category and Ω an additive covari-
ant endofunctor on C . Let Δ be a class of left triangles of the
form ΩðwÞ⟶f u⟶g v⟶h w. The pair ðΩ, ΔÞ is called a
left triangulated structure on C if Δ is closed under isomor-
phisms and satisfies the following four axioms:

ðLt1Þ For any morphism f : v⟶w there is a left trian-
gle in Δ of the form ΩðwÞ⟶ u⟶ v⟶f w. For any
object u ∈C , the left triangle 0⟶ u⟶1u u⟶ 0 is in Δ

ðLt2Þ Rotation axiom: for any left triangle ΩðwÞ⟶f u
⟶g v⟶h w in Δ, the left triangle ΩðvÞ⟶−ΩðhÞ ΩðwÞ
⟶f u⟶g v is also in Δ

ðLt3ÞIf the figure below is the commutative diagram of
left triangle inΔScheme 6

Then, there is morphism α : a1 ⟶ b1, which makes the
figure above continuous to be a commutative diagram.

ðLt4Þ Octahedral axiom: for any two left triangles ΩðwÞ
⟶f u⟶g v⟶h w and ΩðzÞ⟶i x⟶l w⟶k z in Δ,
there is a left triangle ΩðzÞ⟶j p⟶m v⟶kh z and two
morphisms α : u⟶ p,β : p⟶ x, such that the graph
below is a commutative diagram Scheme 7, where the
second column from the left is a left triangle in Δ

Dually, we can define the right triangulated structure ð
Σ, Δ′Þ on C , where Σ is a covariant additive endofunctor
of C and Δ′ is a class of right triangles of the form u⟶ v
⟶w⟶ ΣðuÞ. which satisfies the dual right triangulated
axioms.

An additive category C is called a left triangulated cate-
gory if there is a left triangulated structure on C . Dually, an
additive category C is called a right triangulated category
[13] if there is a right triangulated structure on it. The data
of a right triangulated category was first introduced by Bern-
hard Keller in [14]. If the endofunctor Ω (respectively, Σ) is
an autoequivalence, the left (respectively, right) triangulated
category ðC ,Ω, ΔÞ (respectively, ðC , Σ, Δ′Þ) is a triangulated
category. Left and right triangulated categories are natural
generalization of triangulated categories.

Let X be a contravariantly finite subcategory of an addi-
tive category C . A morphism f : B⟶ A in C is called anX

-epic if for any X ∈X the induced map HomC ðX, gÞ: Ho
mC ðX, BÞ⟶HomCðX,AÞ is surjective. A morphism f : B
⟶ A in C is called a special X-epic if it is of the following
form:

B ⊕ XA ⟶
g,pAð Þ

A, ð30Þ

where g is a morphism of C and pA is a right X-approxi-
mation of A. By definition, a right X-apprixomation is a
special X-epic and a special X-epic is an X-epic. Dually, if
Y is covariantly finite in C , we have the notions of an Y

-monic and a special Y-monic. Let C be an additive cate-
gory and X an additive subcategory of C . Assume that X
is contravariantly finite in C and any special X-epic has a
kernel. Then C/X is a left triangulated category. IfY is cov-
ariantly finite in C and any special Y-monic has a cokernel.
Then, C/Y is a right triangulated category.

Let X be a contravariantly finite subcategory of addi-
tional category C , by [4], the stable category C/X has a nat-
ural left triangulated structure. ΩX : C/X ⟶C/X is the
loop functor, which is defined as follows: ΩXðAβÞ =ΩðAÞβ,
for any morphism f : A⟶ B in C , ΩXð f βÞ: ΩXðAβÞ⟶
ΩXðBβÞ such that ΩXð f βÞ =Ωð f Þβ. For any covariantly X

− exact complex in C/X ,

0⟶ C⟶
h

A⟶
g

B, ð31Þ

if

0⟶Ω Bð Þ⟶i
X0
B ⟶

d0
B, ð32Þ

is a right X-approximation of B, then we have the following
commutative diagram Scheme 8.

So,

ΩX Bβ

À Á
⟶
γβ

Cβ ⟶
iβ

Aβ ⟶
d0β

Bβ, ð33Þ

is a standard triangle in C/X .

Theorem 13. Let C be an abelian category, X and Y are
subcategories of C .

(1) If W ⊆X is a contravariantly finite subcategory of C
and any special X-epic has a kernel in C , then F : C
/X ⟶ ðC/W Þ/ðX/W Þ is the equivalence of a left
triangulated category

(2) If V ⊆Y is a covariantly finite subcategory of C and
any special Y-monic has a cokernel in C , then �F : C
/Y ⟶ ðC/V Þ/ðY/V Þ is the equivalence of a right
triangulated category

Scheme 6
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Proof. We only prove (1), and (2) can be obtained similarly.
For any A ∈C ,

FΩX Aβ

À Á
= F ΩAð Þβ = ΩAð Þγα =ΩX/W Aγα

À Á
=ΩX/W F Aβ

À Á
,

ð34Þ

if f : A⟶ B, then

FΩX f β
� �

= F Ωfð Þβ = Ωfð Þγα =ΩX/W f γα
� �

=ΩX/W F f β
� �

,

ð35Þ

if

ΩXBβ ⟶
ch gð Þ

Cβ ⟶
hβ

Aβ ⟶
gβ

Bβ, ð36Þ

is a triangle induced by special X-epimorphism g : A
⟶ B in C/X , then

ΩX/wBγα ⟶ Cγα ⟶
hγα

Aγα ⟶
gγα

Bγα, ð37Þ

is the left triangle in ðC/W Þ/ðX/W Þ, and that is

FΩXBβ ⟶ FCβ ⟶
Fhβ

FAβ ⟶
Fgβ

FBβ: ð38Þ

4. Conclusions

As a further generalization of the Proposition 2.8 in [2], we
introduced the notion of GenðXÞ and CogenðYÞ, some suf-
ficient conditions for Ext nYðA, BÞ ≃ �ExtnXðA, BÞ are given.
The left and right triangulated structures on the stable cate-
gories induced from some homological finite subcategories
are discussed. Let C be an abelian category,W ðV Þ be a con-

travariantly (covariantly) finite subcategory of C and W ⊆
X ⊆C(V ⊆Y ⊆C), we have that the stable category ðC/
W Þ/ðX/W Þ (ðC/V Þ/ðX/V Þ) also has a left triangulated
structure (right triangulated structure).
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