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is paper presents the approximate solution of the nonlinear acoustic wave propagation model is known as the modi�ed
Camassa–Holm (mCH) equation with the Caputo fractional derivative. We examine this study utilizing the Laplace transform (L
T) coupled with the homotopy perturbation method (HPM) to construct the strategy of the Laplace transform homotopy
perturbation method (L T-HPM). Since the Laplace transform is suitable only for a linear di�erential equation, therefore L

T-HPM is the suitable approach to decompose the nonlinear problems. is scheme produces an iterative formula for �nding the
approximate solution of illustrated problems that leads to a convergent series without any small perturbation and restriction.
Graphical results demonstrate thatL T-HPM is simple, straightforward, and suitable for other nonlinear problems of fractional
order in science and engineering.

1. Introduction

In the recent century, fractional di�erential problems have
caught much attention towards the researchers and scientists
due to their precise representation of the physical appearance.
Many physical phenomena have been reported across the
nonlinear models such as engineering, geophysics, astron-
omy, medicine, hydrology, chemical engineering, and as-
trophysics [1–4]. Most of the nonlinear problems of fractional
order are di�cult to solve. erefore, these models are very
much important to examine the exact and numerical solu-
tions. Currently, many authors have examined the direct
correlation and interrelated work on nonlinear problems and
symmetry [5]. Integral transform methods are extremely
e�ective in reducing the complexity of these nonlinear
fractional problems. ere are a number of popular and ef-
fective schemes to tackle the nonlinear appearance of these
models with fractional order such as the Laplace transform
[6], Fourier series approach [7], F-Expansion scheme [8],
Residual power series method [9], (G

�
/G)-expansion approach

[10], Trial equation approach [11], Sinc–Bernoulli collocation
method [12], Variational iteration scheme [13], Subequation
[14], Homotopy perturbation method [15], spline collocation
approach [16], and so on.

In this paper, we consider a family of modi�ed β-model
of the aspect [17].

Dαut − uxxt +(β + 1)u2ux − βuxuxx − uuxxx � 0, (1)

Setting β � 2 in equation (1), and we obtain the fractional
modi�ed Camassa–Holm (mCH) model of the shape.

Dαut − uxxt + 3u2ux − 2uxuxx − uuxxx � 0, (2)

where u represents the horizontal component of the ¥uid
velocity, x and t indicate the spatial and temporal elements.
e mCH model appears in shallow water that was dis-
covered to be entirely integrable with a Lax pair as an ap-
proximation to the incompressible Euler equation [18].
Islam et al. [19] obtained the solitary wave solution of the
simpli�ed modi�ed Camassa–Holm equation. Zul�qar and
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Ahmad [20] used the Exp-function scheme to investigate the
solitary wave solutions of the fractional simplified mCH
model. Khatun et al. [21] studied the explicit solutions of the
mCH equation with fractional order. Labidi and Omrani
[22] studied the variational iteration method and the
homotopy perturbation method for solving the mCH
equation and found the results in good agreement.

Another powerful technique was introduced to solve the
nonlinear problem by He [23, 24] with some recent de-
velopments. Kashkari and El-Tantawy [25] applied the
homotopy perturbation method for the dissipative soliton
collisions in a collisional complex unmagnetized plasma.
Later many authors showed the validity and accuracy of this
approach [26, 27]. Gupta et al. [28] obtained the approxi-
mate solution of the family of the mCH equation with
fractional time derivative. Khuri and Sayfy [29] introduced a
strategy for specific kinds of differential problems. Later,
Anjum and He [30] adopted this scheme for the solution of
the nonlinear oscillator problem. Nadeem and Li [31]
present a hybrid approach for the solution of nonlinear
vibration systems and then Zhang et al. [32] extended this
approach for obtaining the solution of nonlinear time
fractional differential problems but all these have some
limitations and assumptions.

In the present study, we propose an approach, called L

T-HPM which removes these disadvantages and elaborates
our scheme to achieve the approximate solution of this
nonlinear problem. *e implementation of L T coupled
with HPM makes them easier for the construction of this
approach for the solution of mCHwith fractional order.*is
approach can also be considered for fractals theory [33, 34].
*is article is summarized as follows: in Section 2, we recall
the definition of fractional calculus theory. In Section 3, we

construct the idea ofL T-HPM to solve the mCH equation.
In Section 4, we test the validity and accuracy of L T-HPM
illustrating a numerical problem with the help of graphs. At
last, we represent the conclusion in Section 5.

2. Basic Concept of Fractional Theory

In this section, we present some fractional properties to
understand the physical nature of calculus theory.

Definition 1. *e fractional view of u(t) is described as
follows [32]:

D
α
u(x) � J

h− α
D

h
u(x) �

1
Γ(h − α)


t

0
(t − τ)

h− α− 1
f

h
(t)dt,

for h − 1< α≤ h, h ∈ N, t> 0, u ∈ C
h
−1.

(3)

Definition 2. *e fractional view of L[u(t)] is [1, 35]

L D
nα
x u(x, t)  � s

nα
F(s) − 

n−1

k�0
s

nα− k− 1
u

(k)
x (0, t),

n − 1< α≤ n.

(4)

Definition 3. Let u(t) � tα, so L T is [32]

L t
α

  � 
∞

0
e

− st
t
αdt �
Γ(α + 1)

s
(α+1)

. (5)

Definition 4. *e Caputo-sense becomes as for order α> 0,

D
c
u(x, t) �

1
Γ(h − α)


t

0
(t − τ)

h− α− 1z
h
u(x, t)

zτh
dτ, h − 1< α< h,

z
h
u(x, t)

zt
h

, α � h ∈ N.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(6)

3. Fundamental Concept of L T-HPM

In this segment, we construct the fundamental concept ofL
T-HPM. Let us consider the following FPDEs:

D
α
t u(x, t) � T1[u(x, t)] + T2[u(x, t)] + g(x, t),

x ∈ R, n − 1< α≤ n,
(7)

where Dα
t � (zα/ztα) is taken in Caputo sense, T1 and T2 are

linear and nonlinear operators whereas g(x, t) represents as
a source term.

By applying L T to equation (7), it follows,

L D
α
t u(x, t)  � L T1u(x, t) + T2u(x, t) + g(x, t) . (8)

Applying L T, we obtain the following equation:

s
α
L[u(x, t)] − s

α− 1
[u(x, 0)]

� L T1u(x, t) + T2u(x, t) + g(x, t) .
(9)

On applying Inverse L T, we receive,

u(x, t) � W(x, t) + L
− 1 1

s
α L T1u(x, t) + T2u(x, t)  ,

(10)

where W(x, t) � L− 1[(1/s)u(x, 0) + (1/sα)L g(x, t) ].
*e approximate solution of equation (7) can be

expressed in terms of the following power series:

u(x, t) � 
∞

n�0
p

n
un(x, t), (11)
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where p is called the homotopy parameter. According to
HPM [23], *e nonlinear terms can be calculated as follows:

T2u(x, t) � 
∞

n�0
p

n
Hn(u). (12)

*en, He’s polynomials Hn(u) can be obtained using the
following formula:

Hn u0 + u1 + · · · + un(  �
1
n!

z
n

zp
n T2 

∞

i�0
p

i
ui

⎛⎝ ⎞⎠⎛⎝ ⎞⎠

p�0

, n � 0, 1, 2, . . . . (13)

Now putting equations (11) and (12) in equation (10), we
obtain the following equation:



∞

n�0
p

n
un(x, t) � W(x, t) + p L

− 1 1
s
α L T1 

∞

n�0
p

n
un(x, t) + 

∞

n�0
p

n
Hn(u)⎛⎝ ⎞⎠

⎧⎨

⎩

⎫⎬

⎭
⎡⎢⎢⎣ ⎤⎥⎥⎦. (14)

Equating the values of p, we obtain the following
equation:

p
0
: u0(x, t) � W(x, t),

p
1
: u1(x, t) � −L

− 1 1
s
α L T1u0(x, t) + H0  ,

p
2
: u2(x, t) � −L

− 1 1
s
α L T1u1(x, t) + H1  ,

p
3
: u3(x, t) � −L

− 1 1
s
α L T1u2(x, t) + H2  ,

⋮.

(15)

by continuing this process, we are able to identify the exact
solution of this problems such as

u(x, t) � lim
N⟶∞



N

n�0
un(x, t). (16)

Generally, this series converges very rapidly.

4. Numerical Applications

In this section, we implement the idea of L T-HPM for
obtaining the smooth solitary wave and singular wave so-
lutions. We see that this scheme presents good results only
after a few terms. We compute the values of iterations with
the help of Mathematical Software 11.0.1. We present some
2D and 3D graphs for a better understanding of the behavior
of the mCH model.

4.1. Example 1. Considering the mCH equation with frac-
tional order α such as

z
α
u

zt
α −

z

zt

z
2
u

zx
2  + 3u

2zu

zx
− 2

zu

zx

z
2
u

zx
2 − u

z
3
u

zx
3 � 0, (17)

with initial condition

u(x, 0) �
1
3

1 − 4sech2 x
�
6

√  . (18)

Employing the L T on equation (17), we get the fol-
lowing equation:

L
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s
+
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(19)
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Using the inverse L T property,

u � u(x, 0) + L
− 1 1

s
α L

z

zt

z
2
u

zx
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2zu

zx
+ 2
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z
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u
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2 + u

z
3
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3  .

(20)

*e description of L T-HPM presents as follows:
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(21)

Equating the values of p, we obtain the following
equation:

p
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: u0 � u(x, 0)

�
1
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√  ,

p
1
: u1 � L
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α L

z
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2
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zu0
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27
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sin h

�
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x  + 25 sin h
x
�
6

√  sech5 x
�
6

√ 
t
α

Γ(1 + α)
,

⋮.

(22)

*us, all the findings are expressed as follows:

u(x, t) � u0 + u1 + u2 · · · ,

u(x, t) �
1
3

1 − 4sech2 x
�
6

√   −
1
27

�
2
3



sin h

�
3
2



x  + 25 sin h
x
�
6

√  sech5 x
�
6
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t
α
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+ · · · .

(23)

Finally, *is series of solutions provide the smooth
solitary wave solution for α � 1.

u(x, t) �
1
3

1 − 4sech2 1
�
6

√ x −
t

3
  . (24)

It is noted that we calculate the results only up to two
terms for obtaining the smooth solitary wave solution of
equation (17) with initial condition (18). In Figure 1, we
provide the graphical comparison between the obtained
results ofL T-HPM and the exact solution at −5≤x≤ 5 and
t � 1. We see that only two term solutions by using L

T-HPM are near with the exact solution at α � 1. We also
sketch a 2D plot of L T-HPM and the exact solution at

t � 0.05 to show the graphical error in Figure 2. Hence we
remark that the solutions with L T-HPM are in good
agreement.

4.2. Example 2. Considering equation (17) with the initial
condition,

u(x, 0) �
1
3

−3 + 4 cot h
2 x

�
6

√  . (25)

Applying L T-HPM as described in equation (21) and
equating the values of p, we obtain the following equation:
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p0: u0 � u(x, 0)
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us, all the �ndings are expressed as follows:
u(x, t) � u0 + u1 + u2 · · · ,

u(x, t) �
1
3
−3 + 4 cot h2

x�
6

√( )[ ]

+
1
27

�
2
3

√
cos h

�
3
2

√
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x�
6

√( )[ ]

× csch
x�
6

√( )
5

tα

Γ(1 + α)
+ · · · .

(27)

Finally,is series of solutions provide the singular wave
solution for α � 1.

u(x, t) �
1
3
−3 + 4 cot h2

1�
6

√ x −
t

3
( )[ ]. (28)

It is noted that we calculate the results only up to two
terms for obtaining the smooth solitary wave solution of
equation (17) with initial condition (25). In Figure 3, we
provide the graphical comparison between the obtained
results of L T-HPM and the exact solution at −5≤x≤ 5
and t � 1. We see that only two term solutions by usingL
T-HPM are near with the exact solution at α � 1. We also
sketch a 2D plot of L T-HPM and the exact solution at
t � 0.05 to show the graphical error in Figure 4. Hence, we
remark that the solutions with L T-HPM are in good
agreement.
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Figure 1: Surface solution between the proximate and the exact solutions w.r.t initial condition (18), when α � 1. (a) Approximate solution.
(b) Exact solution.
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5. Conclusion

In this study, we successfully applied L T-HPM to obtain
the approximate solution of the mCH equation with frac-
tional order. *e most important benefit of this approach is
that it does not consider any trivial perturbation and re-
strictions of variables for the solution of nonlinear problems
with fractional order but also maintains an extreme au-
thenticity of the solution. We observe that the obtained
results are very close to the exact solution that confirms the
accuracy and validity of this approach. We also present our
solution results both in two-dimensional and three-di-
mensional graphs to show the accuracy of L T-HPM. On
the other hand, L T-HPM plays a significant meaning in
finding the simple solution process. *is scheme can also be
applied to other differential equations including fractal
derivatives in our future applications.
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