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The motive of the current work is related to solving the coronavirus-based mathematical system of susceptible (S), exposed (E),
infected (I), recovered (R), overall population (N), civic observation (D), and cumulative performance (C), called as SEIR-NDC.
The numerical solutions of the SEIR-NDC model are presented by using the computational framework of artificial neural
networks (ANNs) together with the swarming optimization procedures aided with the sequential quadratic programming. The
swarming procedure based on the particle swarm optimization (PSO) works as a global search, while the sequential quadratic
programming (SQP) is used as a local search algorithm. A merit function is constructed by using the nonlinear dynamics of the
SEIR-NDC mathematical system based on its 7 classes, and the optimization of the merit function is performed through the
PSOSQP. The numerical expressions of system are accessible with the ANNs using the PSOSQP optimization with 30 variables.
The correctness of the stochastic computing scheme performances is verified by using the comparison of the obtained per-
formances of the mathematical SEIR-NDC system and the reference Runge-Kutta scheme. Furthermore, the graphical illus-
trations of the performance indices, absolute error, and convergence curves are derived to validate the robustness of the proposed
ANN-PSOSQP approach for the mathematical SEIR-NDC system.

1. Introduction

The focus of this study is to highlight the health issues along
with various diseases that are caused by infections with
viruses or bacteria. In addition to disrupting human life,
infectious diseases are also seen as a significant threat to
economies, businesses, education, and other facets of daily
life. One of these viruses, the coronavirus, spread fast
throughout the entire world. The transmitting ratio of the
coronavirus was very high, and it rapidly spread in the
humans from one to another. Millions of people were

infected by the coronavirus, which did not discriminate
between developed, developing, and underdeveloped na-
tions. After 2.5 years, there are still high number of positive
cases reported daily throughout the world. However, the
recovery ratio of this virus was so high in its start and now
the recovery rate is much higher due to the process of
vaccination [1-3]. The symptom of this disease alters with
its new shapes, like runny noses, fever, coughs, sore throats,
headaches, and respiratory indications (shortness of
breath, high fever, bleeding, phlegm, cough, and chest pain)
[4-6].
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In recent years, one of the main focuses of the re-
searchers is to analyze the outcomes of the coronavirus
dynamics by using different effects. Wang [7] presented a
mathematical system formulation based on the coronavirus
using its applications and capacities. Based on the coro-
navirus as well as the pregnancy effects, Donders et al. [8]
provided the Worldwide Society of Infectious Illness in
Gynecology and Obstetrics. Rhodes et al. [9] introduced the
coronavirus mathematical model to control the public
problems. Khrapov et al. [10] performed the comparative
investigations using the mathematical systems of the
coronavirus dynamics based on the data of different regions.
Jewell et al. [11] presented the potential disruptive impacts
using the HIV packages in sub-Saharan Africa based on
coronavirus. A coronavirus dynamical system is constructed
by Sanchez et al. [12]. Thompson [13] proposed an epide-
miological system to consider the significant operators using
the coronavirus supervisory interferences. Elsonbaty et al.
[14] designed the discrete fractional-order dynamical
coronavirus system. Umer et al. [15,16] studied the nu-
merical performances using the swarming as well as heu-
ristic schemes to present the solutions of the coronavirus
system. Shikongo et al. [17] presented the fractional-order
operator using the principle of quarantine and isolation
based on the coronavirus.

Mathematical models appear in a wide range of disci-
plines, including biology, chemistry, economics, civil and
mechanical engineering, and health. According to Side et al.
[18] mathematical systems can be used to assess the disease’s
evolution. Owolabi et al. [19] designed an efficient scheme
for the biological stoichiometry model based on tumour
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dynamics. In another study, they presented the fitted nu-
merical scheme using the HIV model based on the dynamics
of cancer-immune system [20]. Some more relevant studies
have been presented in [21]. Moreover, few mathematical
systems can be accessible analytically, but it is better to
perform numerical simulations of the abovementioned
systems. Therefore, the computational framework of artifi-
cial neural networks (ANNs) together with the swarming
optimization procedures aided with the sequential quadratic
programming is provided the solve the coronavirus-based
mathematical SEIR-NDC system. The swarming procedure
based on the particle swarm optimization (PSO) works as a
global search, while the sequential quadratic programming
(SQP) is used as a local search algorithm. The ANN-based
swarming procedures together with PSOSQP have never
been applied before to solve the coronavirus-based math-
ematical SEIR-NDC system. Few famous submissions of the
computing stochastic solvers are the prey-predator models
[22], delay singular differential models [23, 24], multifrac-
tional systems [25-27], periodic singular systems [28,29],
nonlinear design of the optics [30], HIV infection system
[31], eye surgery models [32, 33], functional singular model
[34], mosquito spreading model [35], Thomas—Fermi system
[36], smoking model [37], and food chain nonlinear models
[38].

The mathematical SEIR-NDC system depends upon
seven dynamics, susceptible (S(y)), exposed (E (y)), infected
(I(y)), recovered (R(y)), overall population (N (y)), civic
observation (D(y)), and growing performance (C(y)), shown
as [4]

( dfi_(yy) - sty - WSDED) _ﬁl(yjirS(y), 5 =
di(yy) _ %E(zy\r)S(y) +/55(y1\)]”y) -(p+VEW), Ey=q,
‘ﬂd(yy):pE(y)—(9+w)I(y), Iy = qs,
‘ dlz;y):—wR(y)+91(y), Ry = s (1)
T2, No =45
dlz—;y)z—¢ D(y) + 891 (y), Dy = g
di(yy) =PE(y); o=



Journal of Mathematics

where vy, p, &y, B, 9, ¢, and § are the emigration ratio, rate of
initial spread, transmission ratio, infected rate, public re-
sponse, and the severe case. The initial conditions of the
model are g1, 42, 43, 44> 95> 96> and g7. The biological aspects
of these initial conditions are well defined in a reported study
[19] along with the setting of the parameters such as exis-
tence, uniqueness, bounded, and nonnegative of the
solution.

The novel topographies of the ANN-PSOSQP are pro-
vided as follows:

(i) A neuro swarming computing scheme is presented
to solve the coronavirus-based mathematical SEIR-
NDC system.

(ii) The swarming procedure based on the PSO is ap-
plied as a global search, while the SQP is used as a
local search algorithm to solve the coronavirus-
based mathematical SEIR-NDC system.

(iii) The stochastic computing scheme is presented ef-
ficiently to solve the coronavirus-based mathe-
matical model.

(iv) The comparison of the obtained and reference so-
lutions demonstrates the stochastic approach’s
correctness.

(v) The absolute error (AE) values are in good measures
for the coronavirus-based mathematical SEIR-NDC

system, which signifies the exactness of the
swarming computing scheme.

(vi) The robustness of the stochastic swarming com-
puting scheme together with PSOSQP is provided
by using the statistical performances for multiple
trials.

The rest of the paper is organized as follows. Section 2
shows the designed procedures. Section 3 is designed based
on the numerical solutions. The concluding comments are
presented in the last section.

2. Methodology

The current section provides the stochastic ANN procedure
in two steps using the optimization of PSOSQP procedures
for solving the mathematical SEIR-NDC system.

(i) A cost function based on the differential SEIR-NDS
system is provided.

(ii) Optimization performances of the PSOSQP are
provided.

2.1. Modeling: ANNs. The mathematical representations of
the SEIR-NDC system are stated using the feed-forward
ANN s based on the solutions of 1** derivative as

z bS,nT(wS,ny + uS,n)’ Z bE,nT(wE,ny + uE,n)’
n=1 n=1
[SOEW. ] |, N

T(y) R(y) ;bl,nT(wI,ny + ul,n)’ ; bR,nT(wR,ny + uR,n)’

R : 2)

N(y)) b (y)’ Z bN,nT(wN,ny + uN,n)’ Z bD,nT<wD,ny + uD,n)’

—~ n=1 n=1
L C(y
Z bC,nT(wC,ny + uC,n)
L n=1 -
rd - d - [ ib iT(w y+u )ib iT(w y+u ) -
@ S (y) @ E (y) = S)ndy Sn Sn )> & E,ndy En En )>
- d i d

%T( ), di R(y), ’; bI,n@ T(wl,ky + “1,k)> ; bR,n@ T(wR,n)’ + uR,n)’
d - m d m d ’ (3)
dy oY (y) D ), n; bN,n@T(wN,ky + ”N,k)’ n; bD,n@ T(wD,ny + uD,n)’

d - m

hatl d

L dyc(y) i Z bC,n@ T(wc,k)’ + “c,k)
L n=1 .
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where m shows the number of neurons, T is the activation bg = [bg 1, bsss - - -5 bg )5 by = [bg by, bg ),
function, and the first derivative is used due to the nature of ~ b; = [b; |, b5, ...,b;,], br = [br1>brys - - - bpomls
the 1** order SEIR-NDC system. The unidentified weightsare by = [by 1, byas-- >0yl bp = [bp1:bp s - - bp s be =
r Wy 1 (bc,1>bes N R W = [wg, W, Wy,

Wi Wi = [wg,Wes - Wiy Wy = Wy wy, 0wy, ], We =

W; [wg s wgos - - W > Wy = [WN 1 WN s - W)

represented by W and written as W = | Wy [, where Wg=  Wp = [wp 1 Wpos -5 Wpyls We = [we s wep, - Weml,
Wy ug = [Ug,Ug s o> Ug ), up = [Ug,Upy, .. s Ugyls

W, P (7 70 S Ve up = (g 1> Upos > Up s

L W uy = [un Uy Ul Up = [Up s tpss - Up gyl ue =

[Uc1>Ucas - - > Uem]-

A log-sigmoid activation function (LSAF) is used in this
work, and the mathematical formulation of LSAF is pro-
vided as T(y) =1/1+e 7. Put the values of LSAF in

t t t
by by, be equation (2), and then first-order derivative has been per-
Wy =|wy|>Wp=|wp|,and We=|wc|. formed, which is shown in the following equation:
Uy Up Uc
[ < bS,n < bE,n < bI,n ]
nz::l 1+ e—(ws,n)’*'“s,n),r; 1+ e_(wE,ny+uE,n) nzl l1+e (wl,ny+ul,n)
S EDI(y),

< bR,n L bN,n L bD,n

R(»),N(y),D(y),

C(y)

rtZl 1+ e‘(wR,nymR,l)’ nz
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2
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L dyc(y) i

The cost function is provided as

Ec=Ec +Eg ) +Ep3+Ep 4 +Egs+Eps

+Ep 5+ Ep_g,

13 (98 aS.E, BLS, ?
E - el On nn S ,
C-1 N;(dyn N +l//k)

2 bl
=1 (1 + e_(wN,ny+uN,n)> n=1

2 b
(1 + e‘(wD,n)”'”D,m))
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1 X (dN _ )2
Er.=— +yN, |, (10)
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(13)
where Nh=1, E, =E(y,), D,=D(y,)5,=5(,).N, =
N(yu)l, =1(y):R, = R(y,),C, = C(y,),and y, = nh. The

proposed results are S, = S(Vn E
R,=R(y,).N, =N(y,).D, D(yn) and C,=C(y,).
Moreover, Ec_l, E-_,, EC_3, Ec_ss Ec_s, Ec_e EC_7, and Eq_g
are the cost functions using SEIR-NDC system and its initial
conditions, respectively.

2.2. Optimization: PSOSQP. The optimization performances
based on the swarming procedures based on the PSO along
with the SQP procedures are presented using the mathe-
matical SEIR-NDC system.

The global search swarming procedure PSO is used as an
alteration of the genet1c algorithm. PSO was discovered in
the 7 decade of the 19™ century. PSO provides best solution
performance to solve the stiff and nonstift natured problems.
Recently, PSO has been applied in widespread applications,
such as mixed-variable optimization systems [39], solar

MSEg, MSE, MSE,,
MSE, MSE, MSE,, | =

MSE,.

energy systems [40], plant diseases diagnosis [41], feature
selection in cataloging [42], organizing the single, double,
and three diode photovoltaic systems [43], particle filter
noise reduction in mechanical fault diagnosis [44], big data
excavation of hot subjects about recycled water based on the
microblog [45], 2" order functional singular differential
system [34], and green coal production problem [46].

The efficient and rapid performances of the results have
been obtained through the hybridization of the swarming
optimization schemes with the local search method. Hence,
SQP is used as a local search scheme with the hybridization
of PSO. The local search PSO approach is used by taking the
initial PSO input to perform the quick results. In recent
decades, PSO has been functional in the variety of appli-
cations, like optimal power flow problem [47], dynamic
economic dispatch [48], constrained nonlinear control al-
location with singularity avoidance [49], four-level inte-
grated supply chain with the aim of determining the
optimum stockpile and period length [50], and multivariate
regression based on the fuel cell using the electric vehicle
[51]. The present investigations are related to indicate the
numerical performances based on the mathematical system
using the PSOSQP. The stochastic PSOSQP procedure for
the mathematical SEIR-NDC system is provided in Figure 1.
The descriptions of the PSO and SQP are tabulated in
Table 1.

2.3. Statistical Performance. The current section presents the
statistical representations of the mean square error (MSE),
Theil’s inequality coefficient (TIC), and semi-interquartile
range (SIR) for mathematical SEIR-NDC system. The sta-
tistical performances are used to check the reliability of the
stochastic scheme. The mathematical form of these operators
is given as




Journal of Mathematics

[ N
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FIGURE 1: Stochastic PSOSQP scheme for the mathematical SEIR-NDC system.
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TaBLE 1: Optimization PSOSQP scheme for the mathematical SEIR-NDC system.

PSO procedure
[Inputs]: The chromosomes are presented as W= [bw, u].
[Population]; Chromosome sets are presented as

W

Wg

W, by ‘ bg ‘ b; ! by ! by ‘ bp ! b g
W =| Wy |, where Wy = |:w5:| , Wi = |:WE:| , W, = |:w1] , Wy = [WR] , Wy = |:wN:| , Wp = |:ij| and W = |:Wch .

Wy Ug ug u; ur uy up uc

Wp

W

[Output]:CBest PSO weights are denoted as WBPSO.

Initialization: The collection of chromosomes represents the WBPSO values.

[Fitness Valuation]: Adjust the fitness (E.) using the population [P] through systems 4-12.
(i) [Terminating Standards]: Terminate the process, when the below criteria meets, [TolCon = 10-19], [Generations = 120], [E, =10-19],
[TolFun = 10-21], [StallLimit=110], and [Size of population =210].

Move to [storage].

[Ranking]: WBPSO shows the population rank for E.

[Storage]: [WBPSO], E, [iterations], [time], and [Counts of function] for PSO.
[PSO] process ends.

[SQP] process starts.
[Inputs]: WBPSO.
[Output]: WPSOSQP represents the best values of the weights.
[Initialize]: WPSOSQP, Iterations and Assignments.
[Stopping rules]: [Iterations =170], [E; =10-20], [Max-Fun-Evals =170000] and [TolFun =10-19], [Tol-X = 10-22].
[FIT Calculation]: Compute [WBPSO] and E through equations (5)-(13).
[Amendments]: Regulate [fmincon] for SQP, E. to perform the ‘W’ for equations (5)-(13).
[Store]: Transform WBPSO,nt.
[SQP] process ends.

Vmy(s;-8) Vmyi (B - ) -
(Vamzps; +Jamzp§ ) (YamzLE « Jamz,E )
Jamz(1,-1) Vamy (R - Ry
TIC,, TIC,, TIC,, (Vamzr s Jamzi D ) (amE g + Jamz;. &)
TIC,, TICy, TIC,, | =
TIC,. VYL (N - N) JWmzy,(D;- D))’ (o

(VamzZn; « Jamz & ) (Yamz),b; « Jamz),b; )

\/(1/1’1)2;’:1(Ck — Ck)z
_ (Vamzp.c; +amzc;)
SIR = -0.5(1% Quartile - 3" “Quartile),

where S(y), E (), I(y), R(y), N(»), D(y), and C(y) indicate the solutions that have been obtained by using the proposed
reference solutions, while the hat terms present the proposed ~ scheme.



3. Result Performances

The current section shows the numerical performances of
the results for the mathematical SEIR-NDC system by ap-
plying the proposed ANN-PSOSQP procedure.

Journal of Mathematics

3.1. Mathematical SEIR-NDC System. The updated form of
the mathematical SEIR-NDC system is provided by
adjusting the appropriate parameter performances, written
as

' di(yy) - 0'55(1{])“” - 0‘6113(” ~0.02055(y), S, = 0.9,

dE(y) _05ES() O8ISG) o 3505p(y), B, =011,
dy N N
d;—(yy):%E(y)—O.ZZSI(y), I, =0,

4 dl;(yy) =-0.025R(y) +é1(y), R, =0, (15)
dlz—;y) = ~0.0205N (), N, = 14,
dlzl—y})_—ﬁD(y)+0.04I(y), Dy =0,
d((’;_;y):%E(y), Cy=0.

The cost function is designed in terms of mean square
error, which is based on the differential SEIR-NDC system

dS 06S,I, 05S,E, T
+ + +0.0205S, | +
dy, N N
= ~ = =~ = 42
dE 0.6S,I ~ 0.5E,S
[ —#+0.3505En—7"”] +
1 N dyn N
Ec=—
Pl A

dN
dy,

_ 1 [dD
+0.0205N, | +

dIl
dy,

dy

n

+2 (5 - 09)7 + (B - 00)7 + (1,) +

_ _ 17 [dR
~0333E, + 0225, | + |3

+7
11.2

given in equation (1) by keeping the methodology of
equation (5) shown as

(16)

2
-0.21, + 0.0251?,,]
Vn

1 - A]Z [d@
D, -0.041, | +
dy

2
- 0.33En]

n

(Ro)"+ (o= 14)" + (D) + (G,)').

The solutions of the mathematical model are obtained
through the optimization-based PSOSQP for 30 runs

together with 10 neurons and 30 variables. The best values of
the weights using the ANNs along with the optimization
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procedures of PSOSQP are illustrated in Figure 2. These  based on the mathematical SEIR-NDC system. The obtained

weight vectors are capable to achieve the proposed outcomes  solutions are presented as

- -0.2642 1.1108 1.1575 2.7090
S(y) = ] 4 o (F03453y-2.7523) - ] 4 ¢ (F0-0416y-3.3393) + 1 4 ¢ (T0-0138y-1.4023) - 1 4 ¢ (00464y-45616)
1.6702 2.6603 1.7547 0.0091

- - + +
1+ e—(—0.3570y—4.4423) 1+ e—(—0.0283y—442419) 1+ e—(—0.029y—0.3310) 1+ e%—2.652y—3.6896)

1.5576 N 0.7427
1 4 o (03541y=37727) T 1 ~(03299y-1.7304)°
- B —-0.6539 0.7297 0.2659 0.1812
E(y) = 1 4 o (0-4382y-27725) + 1 4 o (02924y-0.8677) + 1 4 o (0:0822y-27119) - 1 4+ o (01846y-2.6274)
0.6085 0.1400 0.3712 . 0.6967
1 4 o (04121y-34072) T ~(-1906y-41492) 1 ~(0.3892y-2.6735) ' | ~{(-0.186y-19214)
0.1559 0.2011
1 4 o (26372y-43152 - 1 4 ¢ (09194y+0.5422)°
() —-0.0574 N 0.2187 N 0.0617 0.2980
y)= - = - - - - -
1 4 o (12464y-08872) | (-13408y+02756) * | | ~(04227y-17866 | | ,~(-12379y+0.2365)
0.0133 0.4663 0.7394 0.6493
- 1 4 o ("1:605y+12206) - 1 4 o (70-4652y+0.2808) + 1 4 ¢ (70-400y-05017) + 1 4 o (0-4898y+1.4072)
0.7298 0.2452
1 4 o (T00279y+00603) ~ |~ ~03425y-0.3986)’
R(y) 0.1559 N 1.2832 N 1.0399 1.2887
Y)= - - = - - - -
1 4 o (00877y+01975) T ~00576y-08472) © | ~(-0.065y-08056) | ,~(-0.574y+0.1095)
1.2887 N 2.0675 N 0.6345 0.8935
1 4 o CO5745y401095) T ~((0.0278y-08404) T | 02984y-13477) | ,~(0.4460y+0.1236)
0.1527 1.0334
+ 1 4+ o (07777y+0.83888) - 1 4 ¢ (0:6031y-0.1048)
. 3 —-0.3884 3.5190 1.6826 1.7911
N(y) = 1 4 o (0:6558y-1.2335) + 1 4 ¢ (F06532y+1.0132) - 1 4 o (14236y-1.3726) + 1 4 ¢ ("13963y-1700)
4.0516 5.3651 0.8774 0.1755
1 4 o (01159y+20362) + 1 + o (05579y+2.6055) + 1 4 o (1:6682y-15831) - 1 4 ¢ (03419y-0.5896)
4.7250 . 0.7509
1 4 o (O4341y+03914) | (11986y-2.0756)’
B(y) = 0.0346 . 0.0369 . 0.0252 0.1954
y 1 4 o (04044y+0.1385) | (-06492y-13941) © | ~06736y-3.6858) | ,~(-0.0098y-0552)
0.4620 0.0031 0.2087 . 0.4475
1 4 o (03519y-17583) © | -(25703y+11318) | ~(04861y+07123) © | ~{0.1428y+1.0332)
0.3525 0.0485

- 1 + ¢ (0-1370y-1.0306) + 1 + ¢ (0:0037y-0.5402)°

6( )= 0.4009 0.0180 0.0480 0.2347
y)= 1 4 o ("09719y-1.4703) - 1 4 o (1:8583y+1.2249) - 1 4 o (C13170y-11695) - 1 4 o (0:5107y-0.4262)

0.2811 0.2071 1.23280 1.2549

- 1 4 o (03620y-0.3718) - 1 4 ¢ (T01348y+0.1319) + 1 + o (02702+0.8495) - 1 4 ¢ (700358y-03046)

0.5549 0.1058
- ] 4 ¢ (~0-4663y-15261) + —~(~0.7565y-0.8043)"

+e

l+e

(17)

(18)

(19)

(20)

(21)

(22)

(23)
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FIGURE 2: Weights for solving the mathematical SEIR-NDC system. (a) Weights: S( ). (b) Weights: E( ). (c) Weights: 1( ). (d) Weights:

R(y). (e) Weights: N (). (f) Weights: D(y). (g) Weights: C ().

The above equations are given to evaluate the outputs of
the SEIR-NDC model by operating the ANNs and PSOSQP.
The achieved outcomes are illustrated in Figures 2-4 using
10 neurons and 30 variables. Figures 2(a)-2(g) represent the
optimal weight vectors for the model. These optimal weights
have been obtained by using equations (17)-(23). The so-
lutions have been obtained by using these weight vectors.
Figures 3(a)-3(g) show the proposed, mean, and best result
comparison for the mathematical SEIR-NDC system. The
proposed results have been obtained by using the designed
ANN procedure along with the computing swarming
scheme, and the best solutions indicate the ideal solutions,
while the mean solutions have been achieved by using the
mean performances. The matching of the mean, obtained,
and best results indicates the exactness of the designed ANN
procedure along with the computing swarming scheme.
Figure 4 presents the AE performances based on the mean

and the best solutions for the mathematical SEIR-NDC
system. It is shown that the best outcomes of the AE to solve
the respective categories of the model are 10°°-107°,
109107, 10°.10%,  10°%-107, 10°7-10"%,
107°-107%, and 107°°~107"° for each category of the model.
The performances based on the mean for the respective
categories of the model are presented as 10°*-107"
1002107, 1072107, 107%-10°%,  107°°-107%,
107*-107%, and 107107 for each dynamics of the
model. These observed AE values show the accurateness of
ANN-PSOSQP procedure for SEIR-NDC. It is shown that
the proposed stochastic ANN-PSOSQP procedure is pre-
cisely based on the AE for the SEIR-NDC.

Figure 5 presents the statistical performances using the
MSE and TIC operators to solve the mathematical model.
The MSE measures for the SEIR-NDC model are found as
101071 10°°-107°,  10°7-10°%, 10"°%_10"%,
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comparison of E (y). (c) Result comparison of I (y). (d) Result comparison of R ( ). (e) Result comparison of N (y). (f) Result comparison of

D(y). (g) Result comparison of C(y).

10711210712, 107°-1071%, and 107°-107'2 for each dynamics
of the model. The TIC performance for the SEIR-NDC
model are found around 107°°-107%, 107%-107%,
107-107", 107°*-107, 1072-107", 107°*-107", and
107%°-107"° for respective dynamics of the system. These

optimal small performances enhance the value and cor-
rectness of proposed stochastic ANN-PSOSQP procedure.

Figure 6 shows the convergence study based on the MSE
and TIC operators. It was noted that most of the runs
resulted in a high level of fitness. Based on these analyses, it is
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shown that most of the executions produced higher fitness =~ mean, and median (MD) operators. The Max and Min
levels that proves the procedure is reliable and stable. operators specify the worst and best runs. The Max values

Tables 2-8 provide the correctness, precision, and  based on the worst runs lie as 10™°* to 107°° for the classes.
accurateness of the designed ANN-PSOSQP approach  The statistical Min operator values performed were found
based on the statistical representations of the classes §(y), as 107°°-107"%, 107°7-107'%, 107°°-107'%, 107°°-107'°,
T1(»)R(y), N(y), D(y), and C(y) of the SEIR-NDC  107°7-107"", 107°°-10™"}, and 107°7-107"" for each dy-
mathematical system. The statistical illustrations are = namics of the system. The SIR, MD, mean, and SD sta-
presented for the maximum (Max), semi-interquartile tistical values lie around 107°°~107°* of each dynamics of
range (SIR), minimum (Min), standard deviation (SD), the model. These statistical performances present the
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TABLE 2: Statistical performances for the class S(y) of the model.
S()
4 Max SIR Min SD Mean MD
0 4.14847E-07 2.45733E-07 4.77285E-13 9.72224E-07 5.65438E-07 1.61416E-07
0.1 3.43018E-05 1.35393E-06 4.75690E-08 7.41284E-06 3.45398E-06 1.47969E-06
0.2 4.35970E-05 1.56468E-06 6.72517E-07 8.38919E-06 5.53205E-06 3.15588E-06
0.3 5.48928E-05 1.75403E-06 6.36321E-07 1.06886E-05 8.22091E-06 5.54958E-06
0.4 6.04801E-05 2.10799E-06 1.52531E-06 1.27852E-05 1.12576E-05 6.80979E-06
0.5 6.10558E-05 2.00471E-06 4.91716E-06 1.32654E-05 1.37476E-05 8.76556E-06
0.6 5.71444E-05 1.72297E-06 5.65694E-06 1.25290E-05 1.54038E-05 1.17188E-05
0.7 5.73368E-05 2.59359E-06 7.15833E-06 1.11478E-05 1.62769E-05 1.29955E-05
0.8 5.28638E-05 2.15910E-06 6.92380E-06 9.13535E-06 1.60719E-05 1.30170E-05
0.9 4.29129E-05 1.66618E-06 7.26516E-06 7.99805E-06 1.51653E-05 1.26148E-05
1 4.59409E-05 8.96879E-07 3.19198E-06 7.32537E-06 1.30260E-05 1.16572E-05
TaBLE 3: Statistical performances for the class E(y) to solve the mathematical SEIR-NDC system.
E(y)
4 Max SIR Min SD Mean MD
0 4.75086E-06 2.96939E-07 9.83620E-10 9.46658E-07 4.96867E-07 9.25922E-08
0.1 1.28771E-05 5.14479E-07 2.09799E-08 2.87660E-06 1.62623E-06 6.62741E-07
0.2 3.46180E-05 1.59348E-06 1.58369E-07 8.31965E-06 5.00211E-06 1.88446E-06
0.3 5.05547E-05 1.76810E-06 5.24284E-07 1.10046E-05 7.01565E-06 3.36419E-06
0.4 5.27680E-05 1.93202E-06 4.44707E-07 1.03637E-05 7.89142E-06 5.38967E-06
0.5 3.68427E-05 2.42961E-06 5.06646E-07 7.47919E-06 8.75240E-06 7.61206E-06
0.6 3.24343E-05 1.28777E-06 2.93991E-07 4.97252E-06 9.60879E-06 9.24771E-06
0.7 3.30130E-05 1.08012E-06 3.30355E-06 4.76950E-06 1.10794E-05 1.04494E-05
0.8 3.35403E-05 1.07412E-06 2.26763E-06 6.10328E-06 1.23142E-05 1.12846E-05
0.9 3.35538E-05 1.54209E-06 5.45111E-07 6.27136E-06 1.19936E-05 1.06522E-05
1 2.19173E-05 9.50185E-07 2.27305E-08 3.62661E-06 9.06845E-06 9.08091E-06
TABLE 4: Statistical performances for the class I(y) to solve the mathematical SEIR-NDC system.
I(y)
4 Max SIR Min SD Mean MD
0 5.41754E-06 2.75761E-07 3.72458E-12 1.17847E-06 5.61374E-07 1.36275E-07
0.1 2.75677E-04 1.28020E-06 2.53537E-04 4.11470E-06 2.59946E-04 2.59379E-04
0.2 4.55826E-04 1.39173E-06 4.31680E-04 4.66773E-06 4.40432E-04 4.40370E-04
0.3 5.58989E-04 2.08120E-06 5.34904E-04 5.08382E-06 5.47084E-04 5.47243E-04
0.4 5.94001E-04 1.23786E-06 5.67049E-04 6.05079E-06 5.84125E-04 5.84972E-04
0.5 5.68161E-04 2.76336E-06 5.36930E-04 7.14524E-06 5.55266E-04 5.56218E-04
0.6 4.84700E-04 2.47091E-06 4.44792E-04 8.47217E-06 4.63991E-04 4.64920E-04
0.7 3.39830E-04 1.73645E-06 2.94297E-04 9.89722E-06 3.13563E-04 3.13775E-04
0.8 1.34826E-04 1.87554E-06 8.57211E-05 1.07004E-05 1.06965E-04 1.06549E-04
0.9 1.74484E-04 1.13857E-06 1.28803E-04 9.96170E-06 1.53142E-04 1.53830E-04
1 4.90050E-04 1.01315E-06 4.51017E-04 7.32199E-06 4.64416E-04 4.64311E-04
TaBLE 5: Statistical performances for the class R(y) to solve the mathematical SEIR-NDC system.
R(y)
4 Max SIR Min SD Mean MD
0 3.41437E-05 2.37597E-07 2.34978E-10 9.85762E-07 5.45699E-07 1.29018E-07
0.1 1.18197E-04 1.13076E-06 4.57222E-07 2.72914E-06 3.90519E-06 3.00401E-06
0.2 1.94783E-04 1.31799E-06 1.68986E-06 4.15290E-06 9.76711E-06 9.79606E-06
0.3 3.11757E-04 2.95319E-06 1.55537E-07 5.99365E-06 1.90733E-05 1.95954E-05
0.4 4.12688E-04 3.13432E-06 1.72611E-05 5.37846E-06 3.11529E-05 3.13887E-05
0.5 6.15166E-04 3.31077E-06 3.30247E-05 6.07381E-06 4.31572E-05 4.27264E-05
0.6 8.09984E-05 1.96736E-06 4.47792E-05 7.79507E-06 5.33325E-05 5.19418E-05
0.7 9.38333E-05 1.84372E-06 4.38602E-05 9.07666E-06 6.03332E-05 5.89380E-05
0.8 9.77846E-05 7.95787E-07 4.05124E-05 9.75804E-06 6.31963E-05 6.27128E-05
0.9 9.12796E-05 2.02403E-06 3.79806E-05 9.65600E-06 6.12207E-05 6.10542E-05
1 7.33207E-05 9.80744E-07 3.80090E-05 6.72537E-06 5.38149E-05 5.40220E-05
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TABLE 6: Statistical performances for the class N (y) to solve the mathematical SEIR-NDC system.

N(y)
4 Max SIR Min SD Mean MD
0 9.65096E-05 3.16692E-07 2.32632E-11 1.93612E-06 9.21061E-07 2.73802E-07
0.1 2.18383E-05 1.02040E-06 2.76323E-08 4.15033E-06 2.61757E-06 1.70645E-06
0.2 2.76927E-05 3.08333E-06 7.57758E-08 6.90415E-06 6.25072E-06 3.82658E-06
0.3 3.96641E-05 3.99790E-06 7.15828E-09 9.78686E-06 8.47392E-06 4.29770E-06
0.4 4.95862E-05 5.51404E-06 1.25805E-07 1.20188E-05 8.60042E-06 3.68434E-06
0.5 5.11064E-05 6.05062E-06 5.79059E-09 1.24962E-05 8.84438E-06 2.22204E-06
0.6 5.30185E-05 4.70764E-06 7.41051E-09 1.31610E-05 8.51820E-06 4.00156E-06
0.7 7.28155E-05 2.57856E-06 1.63822E-07 1.46255E-05 7.24511E-06 2.27404E-06
0.8 8.19951E-05 1.53702E-06 4.43392E-08 1.54233E-05 6.19774E-06 2.04275E-06
0.9 7.54090E-05 2.01301E-06 1.02477E-07 1.40382E-05 6.21569E-06 2.59263E-06
1 4.79690E-05 1.98560E-06 4.90144E-08 1.02712E-05 5.75728E-06 2.06130E-06

TaBLE 7: Statistical performances for the class D(y) to solve the mathematical SEIR-NDC system.

D(y)
4 Max SIR Min SD Mean MD
0 2.55036E-05 2.42996E-07 1.20788E-11 4.62219E-06 1.15625E-06 1.05220E-07
0.1 1.84948E-05 9.71835E-07 4.59191E-08 4.10983E-06 2.36323E-06 9.52892E-07
0.2 1.77093E-05 1.26636E-06 1.68545E-07 4.13578E-06 3.82845E-06 2.47213E-06
0.3 1.88607E-05 1.70762E-06 4.08993E-07 4.28106E-06 5.61650E-06 4.59504E-06
0.4 2.64931E-05 1.55731E-06 1.28199E-06 5.09365E-06 7.41478E-06 6.54103E-06
0.5 3.03275E-05 2.01054E-06 5.69120E-07 5.35037E-06 8.93916E-06 8.43291E-06
0.6 2.81061E-05 1.74536E-06 1.29764E-06 4.75049E-06 1.06058E-05 1.02894E-05
0.7 3.14862E-05 1.60627E-06 3.06673E-06 4.88070E-06 1.22384E-05 1.17988E-05
0.8 4.09111E-05 7.70645E-07 9.81581E-07 6.41026E-06 1.35938E-05 1.26136E-05
0.9 4.21191E-05 1.73597E-06 5.17936E-06 7.19353E-06 1.42641E-05 1.25719E-05
1 3.50801E-05 1.30583E-06 2.03979E-06 6.07739E-06 1.26104E-05 1.12803E-05

TaBLE 8: Statistical performances for the class C(y) to solve the mathematical SEIR-NDC system.

C(y)
4 Max SIR Min SD Mean MD
0 7.76923E-06 1.99620E-07 3.87874E-11 1.76960E-06 7.18293E-07 1.16157E-07
0.1 1.43901E-05 6.81331E-07 3.83744E-08 3.66051E-06 2.17221E-06 8.58069E-07
0.2 1.75513E-05 1.10384E-06 6.95938E-08 4.42693E-06 2.73246E-06 1.12893E-06
0.3 1.54017E-05 1.17901E-06 2.12959E-07 3.28945E-06 2.87969E-06 1.63906E-06
0.4 1.28635E-05 2.11604E-06 8.01746E-08 3.48020E-06 3.21899E-06 1.66457E-06
0.5 2.70540E-05 2.87815E-06 1.90426E-08 5.80604E-06 4.39566E-06 1.79130E-06
0.6 4.36450E-05 2.43142E-06 6.15750E-09 9.11304E-06 5.35181E-06 2.75264E-06
0.7 5.57509E-05 1.44891E-06 3.58756E-07 1.23557E-05 5.72802E-06 2.31043E-06
0.8 6.04390E-05 1.19585E-06 4.22483E-08 1.41987E-05 5.91669E-06 1.74317E-06
0.9 5.51061E-05 1.26357E-06 6.25928E-08 1.29102E-05 6.43255E-06 2.76458E-06
1 3.74735E-05 1.27784E-06 1.29893E-07 7.96444E-06 4.65701E-06 2.25638E-06

consistency and trustworthiness of the designed ANN-
PSOSQP.

4. Concluding Remarks

The current work obtains the numerical solutions of the
coronavirus mathematical system using the computational
structure of artificial neural networks, swarming optimi-
zation procedures, and the sequential quadratic program-
ming. The particle swarm optimization works as a global
swarming procedure, whereas the sequential quadratic

programming is implemented as a local search algorithm
approach. The optimization of the cost function which is
constructed using the mathematical SEIR-NDC system is
performed through the stochastic swarming procedures. The
correctness of the stochastic ANN-PSOSQP computing
scheme has been verified through the comparison of the
obtained performances of the mathematical SEIR-NDC
system and the Runge-Kutta scheme. The statistical MSE
and TIC operators have been provided in good ranges for 10
neurons or 30 variables for the mathematical SEIR-NDC
system. The negligible statistical Max, Min, SIR, SD, mean,
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and MD operator values show the accuracy. Moreover, the
graphical illustrations of the performance indices, absolute
error, and convergence curves have been derived to validate
the robustness of the proposed ANN-PSOSQP approach for
the mathematical SEIR-NDC system. These statistical op-
erator performances authenticate that the proposed ANN-
PSOSQP approach is stable, reliable, accurate, and robust for
the numerical solutions of the mathematical SEIR-NDC
system.

The proposed stochastic paradigms can be explored in
the future to present the numerical solutions of the non-
linear mathematical systems [52-61].
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