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+e concept of resolving sets (RSs) and metric dimension (MD) invariants have a wide range of applications in robot navigation,
computer networks, and chemical structure. RS has been used as a sensor in an indoor positioning system to find an interrupter.
Many terminologies in machine learning have also been used to diagnose the interrupter in the systems of marine and gas turbines
using sensory data. We proposed a fault-tolerant self-stable system that allows for the detection of an interrupter even if one of the
sensors in the chain fails. If the elimination of any element from a RS is still a RS, then the RS is considered as a fault-tolerant
resolving set (FTRS), and the fault-tolerant metric dimension (FTMD) is its minimum cardinality. In this paper, we calculated the
FTMD of the subdivision graphs of the necklace and prism graphs. We also found that this invariant has constant values for
both graphs.

1. Introduction and Preliminaries

Let G be a connected, undirected, finite, and simple graph
with vertex set V(G) and edge set E(G). +e number of
edges in the shortest x − y path between two vertices
x, y ∈ V(G) is known as the distance dG(x, y) between
them. +e cardinality of edges that are incident to a vertex x

is called degree dG(x) of x. Let W � w1, w2, . . . , ws  be an
ordered subset of V(G) and y ∈ V(G); then, the s-tuple
(dG(y, w1), dG(y, w2), . . . , dG(y, ws)) is the distance-vector
representation of y with respect to W and is denoted by
r(y|W). If distance-vector representations r(y|W) are
distinct for every vertex y of G, then W is known as the RS.
+emetric basis of G is the minimum number of elements in
a RS, and the cardinality of the basis is called the MD of G,
denoted by β(G). For W � w1, w2, . . . , ws  ⊂ V(G), the ith
component of r(y|W) is 0 if and only if y � wi. So, W would
be a RS if r(x|W)≠ r(y|W) for each pair x≠y ∈ V(G)\W.
+e absolute difference representation consists of s-vector

(|dG(x, w1) − dG(y, w1)|, . . . , |dG(x, ws) − dG(y, ws)|) for
any x, y ∈ V(G) with respect to W, and it is denoted by
AD((x, y)|W). +e absolute difference representation is
another concept to define the RS. If AD((x, y)|W) has at
least one nonzero element in its s-vector for every
x≠y ∈ V(G), then W is called the RS. For more details, we
refer to [1, 2].

In 1975, when Slater was working with Coast Guard
Loran and US Sonar (long range aids to navigation) station,
he described the notion of RSs in graphs [3, 4]. Harary and
Melter independently described this idea in 1976 [5]. +e
RSs were introduced to locate the interrupter in a computer
network. After that, in 2003, Chartrand and Zhang used
metric bases in the fields of biology, robotics, and chemistry
[6, 7]. Many techniques have been used in machine learning
to find the interrupter using sensory data. In 2021, Tan et al.
compared the data-driven and model-driven methods for
the diagnosis of interrupters in marine machinery systems
[8].
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It will be a difficult task to locate an interrupter if one of
the sensors does not work properly. To tackle such problems,
Hernando et al. gave the idea of a FTRS [9]. If the elimi-
nation of any element from a RS is again a RS, then the RS is
considered as a FTRS. Formally, for any RS W′ of G, if
W′ w{ } is also a RS for any w ∈W′, then W′ is called a FTRS
of G. In other words, AD((x, y)|W′) contains at least two
elements that are nonzero in the s-vector for all
x≠y ∈ V(G). +e FTMD is the minimum cardinality of a
FTRS, and it is denoted by β′(G).

Hernando et al. in [9] studied the concept of the FTMD
and computed it for the tree graph. +ey also found an
important upper bound for the FTMD of graph G, which is
β′(G)≤ β(G)(1 + 2.5β(G)−1). Voronov in [10] determined
the upper bound for the FTMD of the king’s graph. Hussain
et al. in [11] proved that the FTMD is constant for the
antiweb graph and unbounded for the gear and antiweb gear
graphs.

Raza et al. in [12] studied the bounds for the FTMD of
some families of convex polytopes. In [13], Raza et al. proved
some bounds for the FTMD of extended Petersen, antiprism,
and squared cycle graphs. Raza et al. in [14] found some
bounds for the FTMD by considering the graphs of
(m, n)-dimension grid networks, hexagonal networks, and
honeycomb networks. Zheng et al. in [15] calculated the
precise values for the FTMD of the generalized wheels and
some families of convex polytopes. Afzal and others in [16]
gave some important results and proved that there exist
some families of convex polytopes, which have unbounded
MD and FTMD. Basak et al. in [17] calculated the FTMD for
the circulant graph. Somasundari and Raj in [18] calculated
the fault-tolerant resolvability for the interconnections of
oxide networks.

Javaid et al. in [19] computed the exact value of the
FTMD of the cycle graph. Hayat et al. in [20] calculated some
upper bounds for the FTMD for r-dimensional bens,
r-dimensional butterfly, and silicate networks. Simic et al. in
[21] contributed great work about the FTMD and computed
the precise value for the grid graph. Laxman in [22] com-
puted the lower bound of the FTMD for the cube of the path
graph. Recently, the FTMD for the line graphs was studied
by Guo et al. in [23], and they computed it for the line graphs
of the prism and necklace graphs.

+e subdivision graph S(G) of any graph G can be
obtained by adding a new vertex to each edge of the graph G

as shown in Figures 1 and 2. In this paper, we computed the
FTMD of the subdivision graphs of the necklace and the
prism graphs.+e results of the FTMD in subdivision graphs
are known only for cycle and path graphs as shown in the
following theorem.

Theorem 1. For any n≥ 2 and n≥ 3, we have β′(S(Pn)) � 2
and β′(S(Cn)) � 3, respectively, where Pn is the path graph
and Cn is the cycle graph.

Since it is not an easy task to calculate β′(G) for any
graph G, Estrado-Moreno et al. computed some important
bounds on β′(G) of every graph G as follows.

Lemma 1 (see [24]). Let G be any graph; then, we have
β(G)< β′(G).

Lemma 2 (see [24]). Let G≠Pn be any graph; then, we have
β′(G)≥ 3.

Khuller et al. [25] gave an essential result for every graph
G with 2 of its MD as follows.

Lemma 3 (see [25]). Let β(G) � 2, for any graph G, and let
v1, v2  ⊂ V(G) be a RS in G. 0en, dG(v1)≤ 3 and

dG(v2)≤ 3.

+erefore, similar property works for every graph G with
3 of its β′(G) as presented in the following lemma.

Lemma 4. Let β′(G) � 3, for any graph G, and let
v1, v2, v3  ⊂ V(G) be a FTRS in G. 0en, dG(v1)≤ 3,

dG(v2)≤ 3, and dG(v3)≤ 3.

We will discuss and compute the precise results of
β(S(Nen

)) as well as β′(S(Nen
)), where Nen

is a necklace
graph in Section 2. We will calculate the exact value of
β′(S(Yn)) by considering Yn as a prism graph in Section 3.
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Figure 1: Subdivision of necklace graph S(Ne6
).
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Figure 2: Subdivision of prism graph S(Yn).
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2. The Fault-Tolerant Metric Dimension for the
Subdivision of the Necklace Graph

+e necklace graph Nen
for n≥ 3 consists of the vertices

xi, yj: 0≤ i≤ n + 1, 1≤ j≤ n  as shown in Figure 3.
Now, to compute β′(S(Nen

)), we need to convert the
necklace graph into its subdivision graph. +e subdivision
graph of the necklace graph S(Nen

) is shown in Figure 1.
+e result about the MD for the subdivision graph of the

necklace graph is presented in the following theorem.

Theorem 2. For any integer n≥ 3, we have β(S(Nen
)) � 3.

Proof. Following are the cases to compute the required
results: □

Case 1 (when n is odd).
Take W � x0, un+1/2, vn+3/2 ⊆V(S(Nen

)) for all odd
integers n≥ 3. We need to prove that W is the RS for the
graph S(Nen

). To prove this, we give distance-vector rep-
resentations of every vertex in S(Nen

). Representation of the
vertices xρ where 0≤ ρ≤ n + 1 is

r xρ | W  �

(0, n, 2 + n), if ρ � 0,

(2ρ, −2ρ + n, 4 − 2ρ + n), if 1≤ ρ≤
n − 1
2

,

(1 + n, 1, 3), if ρ �
1 + n

2
,

2(−ρ + 2 + n), 2 ρ −
n

2
 , 2

−n

2
− 1 + ρ  , if

3 + n

2
≤ ρ≤ 1 + n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Representation of the vertices uρ where 1≤ ρ≤ 1 + n is

r uρ | W  �

(−1 + 2ρ, −2ρ + 1 + n, −2ρ + 5 + n), if 1≤ ρ≤
1 + n

2
,

(2 + n, 2, 2), if ρ �
3 + n

2
,

(5 + 2(−ρ + n), −n − 1 + 2ρ, −n − 3 + 2ρ), if
5 + n

2
≤ ρ≤ 1 + n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Representation of the vertices wρ where 1≤ ρ≤ 1 + n is

r wρ | W  �

(−1 + 2ρ, −2ρ + 3 + n, −2ρ + 5 + n), if 1≤ ρ≤
n − 1
2

,

(n, 4, 4), if ρ �
1 + n

2
,

(2 + n, 4, 2), if ρ �
3 + n

2
,

(5 − 2ρ + 2n, −n + 1 + 2ρ, −3 − n + 2ρ), if
5 + n

2
≤ ρ≤ 1 + n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)
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Representation of the vertices vρ where 1≤ ρ≤ 1 + n is

r vρ | W  �

(1 + 2ρ, −2ρ + 1 + n, −2ρ + 5 + n), if 1≤ ρ≤
n − 1
2

,

(2 + n, 2, 4), if ρ �
1 + n

2
,

(2 + n, 4, 0), if ρ �
3 + n

2
,

(−2ρ + 5 + 2n, −n + 1 + 2ρ, −n − 1 + 2ρ), if
5 + n

2
≤ ρ≤ n,

(1, n + 1, 1 + n), if ρ � 1 + n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Representation of the vertices yρ where 1≤ ρ≤ n is

r yρ | W  �

(2ρ, −2ρ + 2 + n, 4 − 2ρ + n), if 1≤ ρ≤
n − 1
2

,

(1 + n, 3, 3), if ρ �
1 + n

2
,

(−2ρ + 4 + 2n, −n + 2 + 2ρ, −n − 2 + 2ρ), if
3 + n

2
≤ ρ≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

+e distance-vector representations are distinct for all
the vertices of S(Nen

). So, W is the RS. Hence, β(S(Nen
))≤ 3.

Now, in order to prove that β(S(Nen
))≥ 3, suppose contrary

that β(S(Nen
)) � 2, and according to Lemma 3, we have the

following possibilities:

(1) Let W � xi, xj  ⊂ V(S(Nen
)) for 0≤ i< j≤ n + 1/2;

then, we have the following subcases:

(i) AD((un+1, wn+1)|W) � (0, 0) for j≠ n + 1/2.
(ii) AD((un+3/2, vn+1/2)|W) � (0, 0) for j � n + 1/2.

So, W is not the RS.

(2) Let W � ui, uj  ⊂ V(S(Nen
)) for 0≤ i< j≤

n + 1/2; then, we have the following subcases:

(i) AD((un+1, wn+1)|W) � (0, 0) for j≠ n + 1/2.
(ii) AD((un+3/2, vn+1/2)|W) � (0, 0) for j � n + 1/2.

So, W is not the RS.

(3) Let W � xi, xj  ⊂ V(S(Nen
)) for 0≤ i≤ n + 1/2

and n + 3/2≤ j≤ n + 1; then, we have the following
subcases:

(a) When n � 3:

(i) AD((v3, w3)|W) � (0, 0) for j≠ 3.

x1

y1

yn

y2

y3

y4

x2

x3

x4

xn

xn–1yn–1

Figure 3: Necklace graph Ne6
.
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(ii) AD((u3, v3)|W) � (0, 0) for i � 0 and j � 3.
(iii) AD((u4, v3)|W) � (0, 0) for i � 1, 2 and

j � 3.

(b) When n≥ 5:

(i) AD((vn, wn)|W) � (0, 0) for j≠ n.
(ii) AD((un, vn)|W) � (0, 0) for 0≤ i≤ n − 3/2

and j � n.
(iii) AD((v1, w2)|W) � (0, 0) for n − 1/2≤ i≤

n + 1/2 and j � n.
So, W is not the RS.

(4) Let W � ui, uj  ⊂ V(S(Nen
)) for 1≤ i≤ n + 1/2

and n + 3/2≤ j≤ n + 1; then, we have the following
subcases:

(a) When n � 3:

(i) AD((v1, v4)|W) � (0, 0) for i � 1 and j � 3.
(ii) AD((u3, w4)|W) � (0, 0) for i � 1 and j � 4.
(iii) AD((w2, w3)|W) � (0, 0) for i � 2 and j � 3.
(iv) AD((u1, v2)|W) � (0, 0) for i � 2 and j � 4.

(b) When n � 5:

(i) AD((v5, w5)|W) � (0, 0) for j≠ 5, 6.
(ii) AD((x3, y5)|W) � (0, 0) for i � 1 and j � 5.
(iii) AD((v3, v6)|W) � (0, 0) for i � 2 and j � 5.
(iv) AD((v1, w2)|W) � (0, 0) for i � 3 and j � 5.
(v) AD((u5, v5)|W) � (0, 0) for i � 1 and j � 6.
(vi) AD((v1, u3)|W) � (0, 0) for i � 2 and j � 6.
(vii) AD((v1, w2)|W) � (0, 0) for i � 3 and j � 6.

(c) When n≥ 7:

(i) AD((vn, wn)|W) � (0, 0) for j≠ n, n + 1.
(ii) AD((un−1, vn−1)|W) � (0, 0) for i � 1, 2 and

j � n.
(iii) AD((v1, w2)|W) � (0, 0) for 3≤ i≤ (n + 1)/2

and j � n.
(iv) AD((un, vn)|W) � (0, 0) for i � 1, 2 and

j � n + 1.
(v) AD((v1, w2)|W) � (0, 0) for 3≤ i≤ (n + 1)/2

and j � n + 1.
So, W is not the RS.

(5) Let W � xi, uj  ⊂ V(S(Nen
)) for 0≤ i≤ n + 1/2

and 1≤ j≤ n + 1/2; then, AD((vn, wn)|W) � (0, 0).
So, W is not the RS.

(6) Let W � xi, vj  ⊂ V(S(Nen
)) for 0≤ i≤ n + 1/2 and

1≤ j≤ n + 1/2; then, we have the following subcases:

(i) AD((un+1, wn+1)|W) � (0, 0) for i≠ n + 1/2.
(ii) AD((un+5/2, vn+3/2)|W) � (0, 0) for i � n + 1/2.

So, W is not the RS.

(7) Let W � ui, vj  ⊂ V(S(Nen
)) for 1≤ i≤ n + 1/2

and 1≤ j≤ n + 1/2; then, we have the following
subcases:

(i) AD((un+1, wn+1)|W) � (0, 0) for i≠ n + 1/2.
(ii) AD((un+5/2, vn+3/2)|W) � (0, 0) for i � n + 1/2.

So, W is not the RS.

(8) Let W � xi, yj  ⊂ V(S(Nen
)) for 0≤ i≤ n + 1/2

and 1≤ j≤ n + 1/2; then, we have the following
subcases:

(i) AD((un+1, wn+1)|W) � (0, 0) for i≠ n + 1/2
and j≠ n + 1/2.

(ii) AD((un+1/2, vn+1/3)|W) � (0, 0) for i � n + 1/2
and j≠ n + 1/2.

(iii) AD((un, vn)|W) � (0, 0) for i � 0 and
j � n + 1/2.

(iv) AD((vn+1/2, wn+1/2)|W) � (0, 0) for 1≤ i≤
n − 1/2 and j � n + 1/2.

(v) AD((un+1/2, un+3/2)|W) � (0, 0) for i � n + 1/2
and j � n + 1/2.
So, W is not the RS.

(9) Let W � ui, wj  ⊂ V(S(Nen
)) for 1≤ i≤ n + 1/2

and 1≤ j≤ n + 1/2; then, we have the following
subcases:

(a) When n � 3:

(i) AD((u4, w4)|W) � (0, 0) for i � 1 and j � 1.
(ii) AD((u1, v1)|W) � (0, 0) for i � 2 and j � 1.
(iii) AD((v1, w1)|W) � (0, 0) for i � 1 and j � 2.
(iv) AD((x1, x2)|W) � (0, 0) for i � 2 and j � 2.

(10) Let W � ui, yj  ⊂ V(S(Nen
)) for 1≤ i≤ n + 1/2

and 1≤ j≤ n + 1/2; then, we have the following
subcases:

(i) AD((un+1, wn+1)|W) � (0, 0) for i≠ n + 1/2
and j≠ n + 1/2.

(ii) AD((un−1/2, vn−1/2)|W) � (0, 0) for i � n + 1/2
and j≠ n − 1/2, n + 1/2.

(iii) AD((un−1/2, vn+1/2)|W) � (0, 0) for i � n + 1/2
and j � n − 1/2.

(iv) AD((vn+1/2, wn+1/2)|W) � (0, 0) for i≠ n + 1/2
and j � n + 1/2.

(v) AD((wn+1/2, wn+3/2)|W) � (0, 0) for i � n + 1/2
and j � n + 1/2.
So, W is not the RS.

We deduce to contradict in all the possibilities. So, there
is no RS with cardinality 2. +is shows that β(S(Nen

))≥ 3.
Hence, β(S(Nen

)) � 3.

Case 2 (when n is even).
Take W � x0, un/2, yn/2 ⊆V(S(Nen

)) for all even integers
n≥ 4. Representation of the vertices xρ where 0≤ ρ≤ 1 + n is
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r xρ | W  �

(0, −1 + n, n), if ρ � 0,

(2ρ, −2ρ − 1 + n, −2ρ + 2 + n), if 1≤ ρ≤
n − 2
2

,

(n, 1, 2), if ρ �
n

2
,

(4 − 2ρ + 2n, −n + 1 + 2ρ, 2 − n + 2ρ), if
2 + n

2
≤ ρ≤ n,

(2, n + 1, 2 + n), if ρ � 1 + n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Representation of the vertices uρ where 1≤ ρ≤ 1 + n is

r uρ | W  �

(−1 + 2ρ, −2ρ + n, 3 − 2ρ + n), if 1≤ ρ≤
n

2
,

(1 + n, 2, 3), if ρ �
2 + n

2
,

(−2ρ + 5 + 2n, −n + 2ρ, −n + 1 + 2ρ), if
4 + n

2
≤ ρ≤ 1 + n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

Representation of the vertices wρ where 1≤ ρ≤ 1 + n is

r wρ | W  �

(−1 + 2ρ, −2ρ + 2 + n, −2ρ + 1 + n), if 1≤ ρ≤
n − 2
2

,

(−1 + 2ρ, 4, 1), if
n

2
≤ ρ≤

2 + n

2
,

(5 − 2ρ + 2n, −n + 2 + 2ρ, −1 − n + 2ρ), if
4 + n

2
≤ ρ≤ n,

(3, n + 2, 1 + n), if ρ � 1 + n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

Representation of the vertices vρ where 1≤ ρ≤ 1 + n is

r vρ | W  �

(2ρ + 1, −2ρ + n, −2ρ + 1 + n), if 1≤ ρ≤
n − 2
2

,

(n + 1, 2, 1), if ρ �
n

2
,

(5 − 2ρ + 2n, 2 − n + 2ρ, −n + 1 + 2ρ), if
2 + n

2
≤ ρ≤ n,

(1, n, n + 1), if ρ � 1 + n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

6 Journal of Mathematics



Representation of the vertices yρ where 1≤ ρ≤ n is

r yρ|W  �

(2ρ, −2ρ + 1 + n, −2ρ + n), if 1≤ ρ≤
n − 2
2

,

(n, 3, 0), if ρ �
n

2
,

(4 − 2ρ + 2n, −n + 3 + 2ρ, −n + 2ρ), if
2 + n

2
≤ ρ≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

+e distance-vector representations are distinct for all
the vertices of S(Nen

). So, W is the RS. Hence, β(S(Nen
))≤ 3.

Now, in order to prove that β(S(Nen
))≥ 3, suppose contrary

that β(S(Nen
)) � 2, and according to Lemma 3, we have the

following possibilities:

(1) Let W � xi, xj  ⊂ V(S(Nen
)) for 0≤ i< j≤

n + 2/2; then, AD((vn, wn)|W) � (0, 0). So, W is
not the RS.

(2) Let W � ui, uj  ⊂ V(S(Nen
)) for 1≤ i< j≤ n + 2/2;

then, AD((vn, wn)|W) � (0, 0). So, W is not the RS.
(3) Let W � xi, xj  ⊂ V(S(Nen

)) for 0≤ i≤ n/2 and
n + 2/2≤ j≤ n + 1; then, we have the following
subcases:

(a) When n � 4:

(i) AD((v4, w4)|W) � (0, 0) for j≠ 4.
(ii) AD((v1, w2)|W) � (0, 0) for i≠ 1 and

j � 4.
(iii) AD((u1, u2)|W) � (0, 0) for i � 1 and

j � 4.

(b) When n≥ 6:

(i) AD((vn, wn)|W) � (0, 0) for j≠ n.
(ii) AD((un, vn)|W) � (0, 0) for 0≤ i≤ n/2 − 2

and j � n.
(iii) AD((v1, w2)|W) � (0, 0) for n/2 − 1≤ i≤

n/2 and j � n.
So, W is not the RS.

(4) Let W � ui, uj  ⊂ V(S(Nen
)) for 1≤ i≤

n/2< j≤ n + 1; then, we have the following subcases:

(a) When n � 4:

(i) AD((v4, w4)|W) � (0, 0) for j � 3.
(ii) AD((v1, w1)|W) � (0, 0) for i � 1 and j � 4.
(iii) AD((w1, w2)|W) � (0, 0) for i � 2 and j � 4.
(iv) AD((u4, v4)|W) � (0, 0) for i � 1 and j � 5.
(v) AD((x1, x2)|W) � (0, 0) for i � 2 and j � 5.

(b) When n � 6:

(i) AD((v6, w6)|W) � (0, 0) for n/2 + 1≤ j≤
n − 1.

(ii) AD((v2, w2)|W) � (0, 0) for i � 1 and j � 6.

(iii) AD((x1, x2)|W) � (0, 0) for i � 2 and j � 6.
(iv) AD((v1, w2)|W) � (0, 0) for i � 3 and j � 6.
(v) AD((u6, v6)|W) � (0, 0) for i≠ 3 and j � 7.
(vi) AD((x2, x3)|W) � (0, 0) for i � 3 and j � 7.

(c) When n≥ 8:

(i) AD((vn, wn)|W) � (0, 0) for n/2 + 1≤ j≤
n − 1.

(ii) AD((vn/2−1, wn/2−1)|W) � (0, 0) for 1≤ i≤
n/2 − 2 and j � n.

(iii) AD((v1, w2)|W) � (0, 0) for n/2 − 1≤ i≤ n/2
and j � n.

(iv) AD((un, vn)|W) � (0, 0) for i≠ n/2 and
j � n + 1.

(v) AD((xn/2−1, xn/2)|W) � (0, 0) for i � n/2 and
j � n + 1.
So, W is not the RS.

(5) Let W � xi, uj  ⊂ V(S(Nen
)) for 0≤ i≤ n/2 and

1≤ j≤ n + 2/2; then, AD((vn, wn)|W) � (0, 0). So,
W is not the RS.

(6) Let W � xi, vj  ⊂ V(S(Nen
)) for 0≤ i≤ n/2 and

1≤ j≤ n/2; then, we have the following subcases:

(i) AD((vn+1, wn+1)|W) � (0, 0) for i≠ n/2.
(ii) AD((un/2+1, vn/2)|W) � (0, 0) for i � n/2 and

j≠ n/2.
(iii) AD((un/2, un/2+1)|W) � (0, 0) for i � n/2 and

j � n/2.
So, W is not the RS.

(7) Let W � ui, vj  ⊂ V(S(Nen
)) for 1≤ i≤ n + 2/2 and

1≤ j≤ n/2; then, we have the following subcases:

(i) AD((un+1, wn+1)|W) � (0, 0) for i≠ n + 2/2.
(ii) AD((un/2+2, vn/2+1)|W) � (0, 0) for i � n + 2/2.

So, W is not the RS.

(8) Let W � xi, yj  ⊂ V(S(Nen
)) for 0≤ i≤ n/2 and

1≤ j≤ n/2; then, we have the following subcases:

(i) AD((un+1, wn+1)|W) � (0, 0) for i≠ n/2 and
j≠ n/2.

(ii) AD((un/2, vn/2)|W) � (0, 0) for i � n/2 and
j≠ n/2.

(iii) AD((un, vn)|W) � (0, 0) for i � 0 and j � n/2.
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(iv) AD((vn/2, wn/2)|W) � (0, 0) for 1≤ i≤ n − 2/2
and j � n/2.

(v) AD((un/2, un/2+1)|W) � (0, 0) for i � n/2 and
j � n/2.
So, W is not the RS.

(9) Let W � ui, wj  ⊂ V(S(Nen
)) for 1≤ i≤ n + 2/2

and 1≤ j≤ n + 2/2; then, we have the following
subcases:

(i) AD((un+1, wn+1)|W) � (0, 0) for i≠ n + 2/2
and j≠ n + 2/2.

(ii) AD((vn, wn)|W) � (0, 0) for i � n + 2/2 and
1≤ j≤ n − 2/2.

(iii) AD((xn−2/2, yn+2/2)|W) � (0, 0) for i � n + 2/2
and j � n/2.

(iv) AD((un, vn)|W) � (0, 0) for 1≤ i≤ n − 2/2 and
j � n + 2/2.

(v) AD((xn+2/2, yn−2/2)|W) � (0, 0) for i � n/2 and
j � n + 2/2.

(vi) AD((xn/2, xn/2+1)|W) � (0, 0) for i � n + 2/2
and j � n + 2/2.
So, W is not the RS.

(10) Let W � ui, yj  ⊂ V(S(Nen
)) for 1≤ i≤ n + 2/2

and 1≤ j≤ n/2; then, we have the following
subcases:

(i) AD((un+1, wn+1)|W) � (0, 0) for i≠ n + 2/2
and j≠ n/2.

(ii) AD((un/2, vn/2)|W) � (0, 0) for i � n + 2/2 and
j≠ n/2.

(iii) AD((vn/2, wn/2)|W) � (0, 0) for 1≤ i≤ n − 2/2
and j � n/2.

(iv) AD((xn/2, xn/2+1)|W) � (0, 0) for n/2≤ i≤ n+

2/2 and j � n/2.
So, W is not the RS.

We deduce to contradict in all the possibilities. So, there
is no RS with cardinality 2. +is shows that β(S(Nen

))≥ 3.
Hence, β(S(Nen

)) � 3.

Now, the following theorem presented the exact value of
the FTMD of the subdivision graph of the necklace graph.

Theorem 3. For any integer n≥ 3, we have β′(S(Nen
)) � 4.

Proof. Following are the cases to calculate required re-
sults: □

Case 3. (when n is odd).
Take W′ � x0, un+1/2, vn+1/2, wn+1/2 ⊆V(S(Nen

)) for all
odd integers n≥ 3. We need to prove that W′ is the FTRS for
the graph S(Nen

). To prove this, we give distance-vector
representations of every vertex in S(Nen

). Representation of
the vertices xρ where 0≤ ρ≤ 1 + n is

r xρ | W′  �

(0, n, n + 2, n), if ρ � 0,

(2ρ, −2ρ + n, 2(1 − ρ) + n, 2(1 − ρ) + n), if 1≤ ρ≤
n − 1
2

,

(1 + n, 1, 1, 3), if ρ �
1 + n

2
,

(−2ρ + 4 + 2n, 2ρ − n, −n + 2ρ, −n + 2(1 + ρ)), if
3 + n

2
≤ ρ≤ n,

(2, n + 2, 2 + n, n + 2), if ρ � 1 + n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

Representation of the vertices uρ where 1≤ ρ≤ 1 + n is

r uρ | W′  �

(−1 + 2ρ, −2ρ + 1 + n, −2ρ + 3 + n, −2ρ + 3 + n), if 1≤ ρ≤
n − 1
2

,

(n, 0, 2, 4), if ρ �
1 + n

2
,

(5 − 2(ρ − n), −n − 1 + 2ρ, −1 + 2ρ − n, −n + 1 + 2ρ), if
3 + n

2
≤ ρ≤ 1 + n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)
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Representation of the vertices wρ where 1≤ ρ≤ 1 + n is

r wρ | W′  �

(−1 + 2ρ, −2ρ + 3 + n, −2ρ + 3 + n, −2ρ + n + 1), if 1≤ ρ≤
n − 1
2

,

(n, 4, 2, 0), if ρ �
1 + n

2
,

(−2ρ + 5 + 2n, −n + 1 + 2ρ, −n − 1 + 2ρ, −1 − n + 2ρ), if
3 + n

2
≤ ρ≤ 1 + n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

Representation of the vertices vρ where 1≤ ρ≤ 1 + n is

r v ρ |W′  �

(2ρ + 1, −2ρ + 1 + n, −2ρ + 3 + n, −2ρ + n + 1), if 1≤ ρ≤
n − 1
2

,

(2 + n, 2, 0, 2), if ρ �
1 + n

2
,

(5 − 2ρ + 2n, −n + 1 + 2ρ, −n + 1 + 2ρ, −n + 2ρ + 1), if
3 + n

2
≤ ρ≤ n,

(1, n + 1, 3 + n, 1 + n), if ρ � 1 + n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

Representation of the vertices yρ where 1≤ ρ≤ n is

r yρ | W′  �

(2ρ, −2ρ + 2 + n, −2ρ + 2 + n, −2ρ + n), if 1≤ ρ≤
n − 1
2

,

(1 + n, 3, 1, 1), if ρ �
1 + n

2
,

(−2ρ + 4 + 2n, −n + 2 + 2ρ, 2ρ − n, −n + 2ρ), if
3 + n

2
≤ ρ≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

+e distance-vector representations are distinct for all
the vertices of S(Nen

). So, W′ is the RS. We can also verify
that, for every x, y ∈ V(S(Nen

)), at least two elements in the
4-vector AD((x, y) | W′) are nonzero. So, the RS W′ be-
comes a FTRS. +is shows that β′(S(Nen

))≤ 4. By using

Lemma 1 and +eorem 2, we have β′(S(Nen
))≥ 4. Hence,

β′(S(Nen
)) � 4.

Case 4. (when n is even).
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Take W′ � x0, xn/2, vn+4/2, yn/2 ⊆V(S(Nen
)) for all even

integers n≥ 4. Representation of the vertices xρ where
0≤ ρ≤ 1 + n is

r xρ | W′  �

(0, n, 1 + n, n), if ρ � 0,

(2ρ, −2ρ + n, −2ρ + 5 + n, −2ρ + 2 + n), if 1≤ ρ≤
n

2
,

(2 + n, 2, 3, 4), if ρ �
2 + n

2
,

(−2ρ + 4 + 2n, −n + 2ρ, −n − 3 + 2ρ, −n + 2 + 2ρ), if
4 + n

2
≤ ρ≤ n,

(2, n + 2, −1 + n, 2 + n), if ρ � 1 + n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

Representation of the vertices uρ where 1≤ ρ≤ 1 + n is

r uρ | W′  �

(1, −1 + n, n + 2, 1 + n), if ρ � 1,

(−1 + 2ρ, −2ρ + 1 + n, −2ρ + 6 + n, −2ρ + 3 + n), if 2≤ ρ≤
n

2
,

(1 + n, 1, 4, 3), if ρ �
2 + n

2
,

(1 + n, 3, 2, 5), if ρ �
4 + n

2
,

(5 − 2ρ + 2n, −n − 1 + 2ρ, −n − 4 + 2ρ, −n + 1 + 2ρ), if
6 + n

2
≤ ρ≤ 1 + n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

Representation of the vertices wρ where 1≤ ρ≤ 1 + n is

r wρ | W′  �

(1, 1 + n, 2 + n, −1 + n), if ρ � 1,

(−1 + 2ρ, −2ρ + 3 + n, −2(ρ − 3) + n, −2ρ + n + 1), if 2≤ ρ≤
n

2
,

(1 + n, 3, 4, 1), if ρ �
2 + n

2
,

(1 + n, 5, 2, 3), if ρ �
4 + n

2
,

(−2ρ + 5 + 2n, −n + 1 + 2ρ, −4 − n + 2ρ, −1 − n + 2ρ), if
6 + n

2
≤ ρ≤ 1 + n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)
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Representation of the vertices vρ for n � 4 where
1≤ ρ≤ 5 is

r vρ | W′  �

(1 + 2ρ, −2ρ + 5, −2ρ + 4, −2ρ + 5), if 1≤ ρ≤ 2,

(7, 3, 4, 3), if ρ � 3,

(5, 5, 0, 5), if ρ � 4,

(1, 5, 4, 5), if ρ � 5.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

Representation of the vertices vρ for n> 4 where
1≤ ρ≤ 1 + n is

r vρ | W′  �

(1 + 2ρ, 1 − 2ρ + n, −4 − 2ρ + 2n, 1 − 2ρ + n), if 1≤ ρ≤
n

2
,

(3 + n, 3, 4, 3), if ρ �
2 + n

2
,

(1 + n, 5, 0, 5), if ρ �
4 + n

2
,

(5 − 2ρ + 2n, −n + 1 + 2ρ, −n − 2 + 2ρ, −n + 1 + 2ρ), if
6 + n

2
≤ ρ≤ n,

(1, n + 1, n, 1 + n), if ρ � 1 + n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

Representation of the vertices yρ where 1≤ ρ≤ n is

r yρ | W′  �

(2ρ, −2ρ + 2 + n, −2ρ + 5 + n, −2ρ + n), if 1≤ ρ≤
n

2
,

(2 + n, 4, 3, 2), if ρ �
2 + n

2
,

(−2ρ + 4 + 2n, −n + 2(1 + ρ), −n − 3 + 2ρ, −n + 2ρ), if
4 + n

2
≤ ρ≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

+e distance-vector representations are distinct for all
the vertices of S(Nen

). So, W′ is the RS. We can also verify
that, for every x, y ∈ V(S(Nen

)), at least two elements in the
4-vector AD((x, y) | W′) are nonzero. So, the RS W′ be-
comes a FTRS. +is shows that β′(S(Nen

))≤ 4. By using
Lemma 1 and +eorem 2, we have β′(S(Nen

))≥ 4. Hence,
β′(S(Nen

)) � 4.

3. The Fault-Tolerant Metric Dimension for the
Subdivision of the Prism Graph

+e prism graph Yn is Cartesian product graph Cn × P2,
where Cn is the cycle graph of order n and P2 is a path of
order 2. +e prism graph Yn consists of 4-sided faces and
n-sided faces with vertex set V(Yn) � xk, yk; 1≤ k≤ n  as
shown in Figure 4.

Now, to compute β′(S(Yn)), we need to convert the
prism graph into its subdivision graph. +e subdivision
graph of the prism graph S(Yn) is shown in Figure 2.

+e known result of the MD of the subdivision graph of
the prism graph is given in the following theorem.

Theorem 4 (see [26]). For any integer n≥ 4, we have
β(S(Yn)) � 3.

Here, we will find the exact value of β′(S(Yn)), which is
presented in the following theorem.

Theorem 5. For any integer n≥ 3, we have β′(S(Yn)) � 4.

Proof. Following are the cases to compute required results:
□
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Case 5. (when n is even).
Take W′ � x1, x2, xn+2/2, xn+4/2 ⊆V(S(Yn)) for all even

integers n≥ 4. We need to prove that W′ is the FTRS for the

graph S(Yn). To prove this, we give distance-vector repre-
sentations of every vertex in S(Yn). Representation of the
vertices xρ where 1≤ ρ≤ n is

r xρ | W′  �

(0, 2, n, −2 + n), if ρ � 1,

(−2(1 − ρ), −2(2 − ρ), −2ρ + 2 + n, −2ρ + 4 + n), if 2≤ ρ≤
2 + n

2
,

(−2ρ + 2 + 2n, −2ρ + 4 + 2n, −2 − n + 2ρ, −4 − n + 2ρ), if
4 + n

2
≤ ρ≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

Representation of the vertices uρ where 1≤ ρ≤ n is

r uρ | W′  �

(1, 1, −1 + n, −1 + n), if ρ � 1,

(2ρ − 1, −3 + 2ρ, −2ρ + n + 1, −2ρ + 3 + n), if 2≤ ρ≤
n

2
,

(−1 + n, −1 + n, 1, 1), if ρ �
2 + n

2
,

(−2(ρ − n) + 1, −2ρ + 3 + 2n, −n − 1 + 2ρ, −n − 3 + 2ρ), if
4 + n

2
≤ ρ≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

Representation of the vertices vρ where 1≤ ρ≤ n is

r vρ | W′  �

(1, 3, 1 + n, −1 + n), if ρ � 1,

(−1 + 2ρ, −3 + 2ρ, −2ρ + 3 + n, −2ρ + 5 + n), if 2≤ ρ≤
2 + n

2
,

(−2(ρ − n) + 3, −2ρ + 5 + 2n, −1 − n + 2ρ, −n − 3 + 2ρ), if
4 + n

2
≤ ρ≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(24)
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Figure 4: Prism graph.Yn.
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Representation of the vertices yρ where 1≤ ρ≤ n is

r yρ | W′  �

(2, 4, 2 + n, n), if ρ � 1,

(2ρ, −2(1 − ρ), −2ρ + 4 + n, −2ρ + 6 + n), if 2≤ ρ≤
2 + n

2
,

(−2(ρ − 2 − n), −2(ρ − 3 − n), −n + 2ρ, −2 − n + 2ρ), if
4 + n

2
≤ ρ≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

Representation of the vertices wρ where 1≤ ρ≤ n is

r wρ | W′  �

(3, 3, 1 + n, 1 + n), if ρ � 1,

(1 + 2ρ, −1 + 2ρ, −2ρ + 3 + n, −2ρ + 5 + n), if 2≤ ρ≤
n

2
,

(1 + n, 1 + n, 3, 3), if ρ �
2 + n

2
,

(−2ρ + 3 + 2n, −2ρ + 5 + 2n, −n + 1 + 2ρ, −n − 1 + 2ρ), if
4 + n

2
≤ ρ≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

+e distance-vector representations are distinct for all
the vertices of S(Yn). So, W′ is the RS. We can also verify
that, for every x, y ∈ V(S(Yn)), at least two elements in the
4-vector AD((x, y) | W′) are nonzero. So, the RS W′ be-
comes a FTRS. +is shows that β′(S(Yn))≤ 4. By using
Lemma 1 and +eorem 4, we have β′(S(Yn))≥ 4[0, 1].
Hence, β′(S(Yn)) � 4.

Case 6. (when n is odd).
For n � 3, take W′ � x1, x2, y1, y2 ⊆V(L(Y3)). It is

quite simple to check that W′ is a FTRS.
Take W′ � x1, x2, y1, y2 ⊆V(L(Yn)) for all odd inte-

gers n≥ 5. Representation of the vertices xρ where 1≤ ρ≤ n is

r xρ | W′  �

(0, 2, 2, 4), if ρ � 1,

(−2(1 − ρ), −2(2 − ρ), 2ρ, −2(1 − ρ)), if 2≤ ρ≤
1 + n

2
,

(−1 + n, n − 1, 1 + n, 1 + n), if ρ �
3 + n

2
,

(−2(ρ − 1 − n), −2(ρ − 2 − n), −2ρ + 4 + 2n, −2(ρ − 3 − n)), if
5 + n

2
≤ ρ≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

Representation of the vertices uρ where 1≤ ρ≤ n is
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r uρ | W′  �

(1, 1, 3, 3), if ρ � 1,

(2ρ − 1, −3 + 2ρ, 2ρ + 1, −1 + 2ρ), if 2≤ ρ≤
1 + n

2
,

(−2(ρ − n) + 1, −2ρ + 3 + 2n, −2ρ + 3 + 2n, −2(ρ − n) + 5), if
3 + n

2
≤ ρ≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28)

Representation of the vertices vρ where 1≤ ρ≤ n is

r vρ | W′  �

(1, 3, 1, 3), if ρ � 1,

(−1 + 2ρ, −3 + 2ρ, 2ρ − 1, −3 + 2ρ), if 2≤ ρ≤
1 + n

2
,

(n, n, n, n), if ρ �
3 + n

2
,

(−2(ρ − n) + 3, −2ρ + 5 + 2n, −2ρ + 3 + 2n, −2(ρ − n) + 5), if
5 + n

2
≤ ρ≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(29)

Representation of the vertices yρ where 1≤ ρ≤ n is

r yρ | W′  �

(2, 4, 0, 2), if ρ � 1,

(2ρ, −2(1 − ρ), −2 + 2ρ, −2(2 − ρ)), if 2≤ ρ≤
1 + n

2
,

(1 + n, n + 1, n − 1, −1 + n), if ρ �
3 + n

2
,

(−2ρ + 4 + 2n, −2(ρ − 3 − n), −2ρ + 2 + 2n, −2ρ + 4 + 2n), if
5 + n

2
≤ ρ≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

Representation of the vertices wρ where 1≤ ρ≤ n is

r wρ | W′  �

(3, 3, 1, 1), if ρ � 1,

(1 + 2ρ, −1 + 2ρ, 2ρ − 1, −3 + 2ρ), if 2≤ ρ≤
1 + n

2
,

(−2(ρ − n) + 3, −2ρ + 5 + 2n, −2ρ + 1 + 2n, −2(ρ − n) + 3), if
3 + n

2
≤ ρ≤ n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(31)
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+e distance-vector representations are distinct for all
the vertices of S(Yn). So, W′ is the RS. We can also verify
that, for every x, y ∈ V(S(Yn)), at least two elements in the
4-vector AD((x, y)|W′) are nonzero. So, the RS W′ be-
comes a FTRS. +is shows that β′(S(Yn))≤ 4. By using
Lemma 1 and +eorem 4, we have β′(S(Yn))≥ 4. Hence,
β′(S(Yn)) � 4.

4. Conclusion

In this paper, we have studied, for the first time, the FTMD
of the subdivision graph of a graph. We have found that the
FTMD of the subdivision graphs of the necklace and prism
graphs is exactly greater than one of their metric dimensions.
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