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Nowadays, the study of source localization in complex networks is a critical issue. Localization of the source has been investigated
using a variety of feasible models. To identify the source of a network’s di�usion, it is necessary to �nd a vertex from which the
observed di�usion spreads. Detecting the source of a virus in a network is equivalent to �nding the minimal doubly resolving set
(MDRS) in a network. �is paper calculates the doubly resolving sets (DRSs) for certain convex polytope structures to calculate
their double metric dimension (DMD). It is concluded that the cardinality of MDRSs for these convex polytopes is �nite
and constant.

1. Introduction and Preliminaries

Consider a connected and undirected graph Γ � (VΓ, EΓ),
where VΓ denotes the set of vertices, while EΓ represents the
collection of edges.�e distance d(b, c) between two vertices
b, c ∈ VΓ is calculated by counting the length of the shortest
path between the two vertices. d(c, f1)≠d(c, f2)≠ · · · ≠
d(c, fn) implies that the vertex set f1, f2, . . . , fn{ } is re-
solved by the vertex c ∈ VΓ. Let MΓ⊆VΓ be a set of order l.
�e vector of metric coordinates of a vertex u with respect to
MΓ, represented by r(u|MΓ), is the l-vector r(u|MΓ) � (d
(u,m): m ∈MΓ). If distinct vertices of Γ have unique metric
coordinate vectors with respect toMΓ, the setMΓ is said to
be resolving. Aminimum-order resolving set is referred to as
the basis of graph Γ and its order is called the metric di-
mension (MD) of Γ, denoted as dim(Γ).

Blumenthal [1] �rst proposed the notion of the MD of
general metric space in 1953. Slater [2] introduced MD in
1975, and Harary and Melter [3] developed it as a resolving
set of graphs in 1976. It was originally intended that the
resolving sets have been used to locate an intruder in a
network, but Chartrand and Zang [4] have since presented

numerous uses of resolving sets in robotics, chemistry, and
biology. �e concept of trilateration can be generalized from
a two-dimensional real plane in terms of the MD of graphs.
�e Global Positioning System (GPS) uses distance mea-
surements to detect the exact location of various objects on
our planet. For studying the MD theoretically, there are
several applications in navigation of robots [5] and mo-
lecular chemistry [6]. �e MD of Hamming graphs has been
investigated in a variety of applications, ranging from coin-
weighing di¥culties [7, 8] to e¥cient Mastermind game
strategies [9]. Studies on combinatorial optimization [10]
and the di¥culty of locating facilities, as well as the Coast
Guard’s loran and sonar systems [2], have all made use of the
MD approach. Moreover, di�erent �elds including robotics
[5], discovery and veri�cation in networks [11], and routing
protocols geographically [12] have examined this notion
extensively.

Determining the exact MD value of any given graph is a
computationally challenging task [5, 13]. Several helpful
bounds for di�erent types of graphs were investigated; for
instance, see [14]. Both Buczkowski et al. [15] and Ali et al.
[16] explored the minimal order resolving sets of wheel
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graphs and Mobius ladders, respectively. Chartrand and
others performed a classification of all graphs using MD 1,
n − 2, and n − 1 (see [6]). In [17, 18], Imran et al. find theMD
for different convex polytope structures. Tomescu et al. in
[19] and Ahmad et al. [20] calculated the MD for Jahangir
graphs, chorded cycles and kayak paddle graphs, respec-
tively. Baca et al. provides the results for the MD of regular
bipartite graphs [21].,eMDof necklace graphs was studied
in [22], and certain plane graphs for MD were considered in
[23].

As a research tool for studying minimal resolving sets of
cartesian product graphs, Caceres et al. [24] established the
concept of DRSs. Consider a graph Γ, where |Γ|≥ 2. Two
vertices h′ and k′ ∈ VΓ doubly resolve a pair of vertices h, k

of Γ if d(h, h′) − d(h, k′)≠d(k, h′) − d(k, k′). A subset DΓ is
a DRS of Γ if some two vertices of DΓ doubly resolve any pair
of vertices in Γ. ,e MDRS is a DRS that is the smallest
possible. ,e DMD of Γ is the cardinality of an MDRS and is
represented by ψ(Γ). For all graphs Γ, any DRS is obviously a
resolving set, with dim(Γ)≤ψ(Γ).

Kratica et al. [25] studied the computational complexity
of the DRSs of a graph Γ. An investigation of the Harary
graph family (resp. circulant graph family) for MD and
MDRSs was conducted by Ahmad et al. [26, 27]. Chen et al.
[28] provided the first explicitly approximated lower and
upper limits for the MDRSs problem. Ahmad et al. studied
the line graphs of n-Sunlet, prism [29], and kayak paddle
graphs [30] for the MD andMDRSs, respectively. To find the
smallest possible DRS, a variety of graph families have been
examined, such as those involving prisms [31], convex
polytopes [32], and Hamming graphs [33]. ,e MDRSs of
different convex polytope structures were examined by Pan
et al. [34] and Ahmad et al. [35]. Minimal order resolving
sets and MDRSs of cocktail and jellyfish graphs were cal-
culated by Liu and others [36]. For the layer-sun graphs and
their related line graphs, the MDRS problem was also
studied in [37]. In [38], the minimal resolving sets and DMD
of the line graph of chorded cycles were examined. Authors
demonstrated that the DMD of L(Ct

n) is exactly one greater
than its MD.

,us, DRSs are essential for examining the MD of
cartesian products. We were inspired by the idea of
achieving upper bounds in the cartesian product of graphs to
examine the DRSs of other graph classes. In addition, this
parameter can be helpful in a wide range of domains, in-
cluding rumor spreading on online social networks and the
origin of a disease outbreak.

It is feasible to determine the diffusion source in complex
networks using MDRSs. Finding the source of wide-area
network propagation might be challenging. As an example,
in the case of an unknown virus source, all that is required to
locate it is the contamination time of a subset of the sensor
nodes. ,ese sensor nodes may record their infection time.
How many sensors are required to locate the viral source? A
property called DMD provides the answer to this problem
(for details see [39, 40]). It would be simple to determine the

origins of the pandemic if we were able to see it from be-
ginning to end. Data for source localization is sometimes
scarce due to the cost and complexity of collecting and
storing information. Even if the initial virus propagation
period is unknown, a doubly resolving sensor set may detect
infection sources reliably.

In a star-like network, identifying the viral origin is
much more complicated than in a path-like network. ,e
DMD is n − 1 for a star network of n nodes, but the DMD is 2
for a path network. As a result, this demonstrates that the
DMD is always dependent on the network’s topology [39].

It has been challenging to solve convex polytopes for the
DMD in the previous few years. Here, Imran et al. [18, 41]
calculate DMD for Tn and Sn convex polytopes. In the
following theorems, the MD of the convex polytopes Tn and
Sn is shown.

Theorem 1. If Tn is the graph of convex polytope, dim(Tn) is
3, and ∀n≥ 6.

Theorem 2. If Sn is the graph of convex polytope, dim(Sn) is
3, and ∀n≥ 6.

,e following sections elaborate on the rest of the article:

(i) In Section 2, we define the graph of Tn and com-
puted the MDRSs of the convex polytope Tn for
n≥ 6.

(ii) In Section 3, we define the graph of Sn and calcu-
lated the DMD for the convex polytope structure Sn,
for n≥ 6.

(iii) Section 4 concludes that the DMD for the convex
polytopes Tn and Sn is finite and constant.

2. Double Metric Dimension for the Convex
Polytope Tn

,e results of the DMD computation for the convex pol-
ytope Tn are presented here in this section.

,ere are 3-sided, 5-sided, and n-sided faces on the
convex polytope Tn as shown in Figure 1.

,ere are three types of vertex labels used here: {rω:
∀0≤ω≤ n − 1} represents the inner cycle vertex, {sω:
0≤ω≤ n − 1} represents the central cycle vertex, and {tω:
∀0≤ω≤ n − 1} represents the outer cycle vertex as shown in
Figure 1.

As a result of applying ,eorem 1, ψ(Tn)≥ 3 for n≥ 6 is
obtained. Also, ψ(Tn) � 3 for n≥ 6 will be proved in this
section. Vertex distances of the graph Tn can be computed
using the following procedure:

Assume that the set Sω(s0) � s ∈ VTn
: d(s0, s) � ω􏽮 􏽯 is a

vertex set in VTn
at a distance of ω from s0. ,e Table 1 is

simply constructed for Sω(s0), and it will be used to figure
out how far two vertices in VTn

are from each other.
Because of the symmetry of Tn for n≥ 6, it can be

demonstrated that
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d rω, r]( ) �

d s0, r|ω−]|( ) − 1, if |ω − ]| � 0,

d s0, r|ω−]|( ), if 1≤ |ω − ]|≤
n

2
,

d s0, r|ω−]|( ) − 1, if
n + 2
2
≤ |ω − ]|≤ n − 1,




d sω, t]( ) � d s0, t|ω−]|( ), if 0≤ |ω − ]|≤ n − 1,

d tω, t]( ) � d s0, g|ω−]|( ) − 1, if 0≤ |ω − ]|≤ n − 1,

d sω, s]( ) � d s0, s|ω−]|( ), if 0≤ |ω − ]|≤ n − 1.

(1)

If n is odd

d rω, t]( ) �

d s0, t|ω−]|( ), if 1≤ |ω − ]|≤
n

2
forω> ],

d s0, t|ω−]|( ) + 1, if
n + 2
2
≤ |ω − ]|≤ n − 1forω> ],

d s0, t|ω−]|( ) + 1, if 0≤ |ω − ]|≤
n

2
for]≥ω,

d s0, t|ω−]|( ), if
n + 2
2
≤ |ω − ]|≤ n − 1for]>ω,




d rω, s]( ) �

d s0, r|ω−]|( ) + 1, if 1≤ |ω − ]|≤
n

2
for]>ω,

d s0, r|ω−]|( ) − 1, if
n + 2
2
≤ |ω − ]|≤ n − 1for]>ω,

d s0, r|ω−]|( ), if 0≤ |ω − ]|≤ n − 1forω≥ ].




(2)

If n is even

t1

t0

s0

r0
sn–1

tn–1
r1

r2

r3rn–1

s1

s2

t2

Figure 1: Convex polytope Tn.

Table 1: Sω(s0) for Tn.

n ω Sω(s0)
1 {r0, r1, t0}

2≤ω≤ �(n/2)� {rω, rn−ω+1, sω−1, sn−ω+1, tω−1, tn−ω+1,}
even (n + 2/2) {s(n/2), t(n/2)}
odd (n + 1/2) {r(n+1/2), s(n−1/2), s(n+1/2), t(n−1/2), t(n+1/2)}
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d rω, t]( 􏼁 �

d s0, t|ω−]|􏼐 􏼑, if 1≤ |ω − ]|≤
n

2
forω> ],

d s0, t|ω−]|􏼐 􏼑 + 1, if
n + 2
2
≤ |ω − ]|≤ n − 1forω> ],

d s0, t|ω−]|􏼐 􏼑 + 1, if 0≤ |ω − ]|≤
n − 2
2

for]≥ω,

d s0, t|ω−]|􏼐 􏼑, if
n

2
≤ |ω − ]|≤ n − 1for]>ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d rω, s]( 􏼁 �

d s0, r|ω−]|􏼐 􏼑 + 1, if 1≤ |ω − ]|≤
n − 2
2

for]>ω,

d s0, r|ω−]|􏼐 􏼑, if |ω − ]| �
n

2
for]>ω,

d s0, r|ω−]|􏼐 􏼑 − 1, if
n + 2
2
≤ |ω − ]|≤ n − 1for]>ω,

d s0, r|ω−]|􏼐 􏼑, if 0≤ |ω − ]|≤ n − 1forω≥ ].

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

Due to the fact that, in order to calculate the distance
between any pair of vertices in VTn

, we must know the
distance d(s0, s) for each s ∈ VTn

.

Lemma 1. For the odd positive integer n≥ 6, ψ(Tn) � 3.

Proof. To demonstrate that ψ(Tn) � 3 for the odd positive
integer, finding a DRS with cardinality 3 is enough. Using
the sets Sω(s0) listed in Table 1, the Table 2 shows the metric
coordinate vectors for all vertices of Tn with respect to
DTn

� r0, s(n−1/2), t0􏽮 􏽯.
Table 2 shows that the representation

r(g1, DTn
) − r(g2, DTn

)≠ 0 for any two vertices
g1, g2 ∈ Sω(s0), where ω ∈ 1, 2, . . . , (n + 1/2){ }. Conse-
quently, for any ω, ] ∈ 1, 2, . . . , (n + 1/2){ } such as ω≠ ] if
the vertices g1 ∈ Sω(s0) and g2 ∈ S](s0), then the repre-
sentation r(g1, DTn

) − r(g2, DTn
)≠ω − ]. So the collection

DTn
� r0, s(n−1/2), t0􏽮 􏽯 represents the MDRS of Tn. As a re-

sult, Lemma 1 holds. □

Lemma 2. For the even positive integer n≥ 6, ψ(Tn) � 3.

Proof. To demonstrate that ψ(Tn) � 3 for the even positive
integer n≥ 6, finding a DRS with cardinality 3 is enough.
Using the sets Sω(s0) listed in Table 1, the Table 3 shows the
metric coordinate vectors for all vertices ofTn with respect to
DTn

� r0, r(n/2), t0􏽮 􏽯.
Table 3 shows that the representation

r(g1, DTn
) − r(g2, DTn

)≠ 0 for any two vertices
g1, g2 ∈ Sω(s0), where ω ∈ 1, 2, . . . , (n + 2/2){ }. Conse-
quently, for any ω, ] ∈ 1, 2, . . . , (n + 2/2){ } such as ω≠ ] if
the vertices g1 ∈ Sω(s0) and g2 ∈ S](s0), then the repre-
sentation r(g1, DTn

) − r(g2, DTn
)≠ω − ]. So the collection

DTn
� r0, r(n/2), t0􏽮 􏽯 represents the MDRS of Tn. As a result,

Lemma 2 holds.
,e entire technique clearly demonstrates that

ψ(Tn) � 3, for n≥ 6. ,e main theorem is stated below using
Lemmas 1 and 2: □

Theorem 3. Let Tn be a convex polytope, then ψ(Tn) � 3 for
n≥ 6.

3. Double Metric Dimension for the Convex
Polytope Sn

,is section contains the results of the DMD computation
for the convex polytope Sn.

,ere are 3-sided, 4-sided, and n-sided faces on the
convex polytope Sn as shown in Figure 2.

,ere are three types of vertex labels used here: {pω:
∀0≤ω≤ n − 1} represents the inner cycle vertex, {qω:
∀0≤ω≤ n − 1} represents the interior cycle vertex, {rω:
∀0≤ω≤ n − 1} represents the exterior cycle vertex, and {tω:
∀0≤ω≤ n − 1} represents the outer cycle vertex as shown in
Figure 2.

As a result of applying ,eorem 2, ψ(Sn)≥ 3 for n≥ 6 is
obtained. Also, ψ(Sn) � 3 for n≥ 6 will be proved in this
section. Vertex distances of the graph Sn can be computed
using the following procedure:

Assume that the set Sω(q0) � q ∈ VSn
: d(q0, q) � ω􏽮 􏽯 is a

vertex set in VSn
at a distance of ω from q0. Table 4 is simply

constructed for Sω(q0), and it will be used to figure out how
far two vertices in VSn

are from each other.
Because of the symmetry of Sn for n≥ 6, it can be

demonstrated that
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Table 2: Metric coordinate vectors of Tn for odd n≥ 6.

ω Sω(f0) DTn
� r0, s(n−1/2), t0{ }

0 s0 (1, (n + 1/2), 1)

1
r0 (0, (n + 1/2), 2)
r1 (1, (n − 1/2), 2)
t0 (2, (n + 1/2), 0)

2≤ω≤ (n − 1/2)

rω (ω, (n − 2ω + 1/2),ω + 1)
rn−ω+1 (ω − 1, (n − 2ω + 3/2),ω + 1)
sω−1 (ω, (n − 2ω + 3/2),ω)
sn−ω+1 (ω − 1, (n − 2ω + 5/2),ω)
tω−1 (ω + 1, (n − 2ω + 3/2),ω − 1)
tn−ω+1 (ω, (n − 2ω + 5/2),ω − 1)

(n + 1/2)

r(n+1/2) (n − 1/2), 1, (n + 3/2)
s(n−1/2) (n + 1/2), 0, (n + 1/2)
s(n+1/2) (n − 1/2), 2, (n + 1/2)
t(n−1/2) (n + 3/2), 1, (n − 1/2)
t(n+1/2) (n + 1/2), 2, (n − 1/2)

Table 3: Metric coordinate vectors of Tn for even n≥ 6.

ω Sω(s0) DTn
� r0, r(n/2), t0{ }

0 s0 (1, (n/2), 1)

1
s0 (0, (n/2), 2)
s1 (1, (n − 2/2), 2)
t0 (2, (n + 2/2), 0)

2≤ω≤ (n/2)

rω (ω, (n − 2ω/2),ω + 1)
rn−ω+1 (ω − 1, (n − 2ω + 2/2),ω + 1)
sω−1 (ω, (n − 2ω + 2/2),ω)
sn−ω+1 (ω − 1, (n − 2ω + 4/2),ω)
tω−1 (ω + 1, (n − 2ω + 4/2),ω − 1)
tn−ω+1 (ω, (n − 2ω + 6/2),ω − 1)

(n + 2/2)
s(n/2) (n/2), 1, (n + 2/2)
t(n/2) (n + 2/2), 2, (n/2)

t1

t2

t3

t0

r0

q0

qn-1

rn-1

tn-1

tn-2 qn-2

p0 p1
p2

pn–1

r n
–2

pn–2

q1

q2

q3 r3

r2

r1

Figure 2: Convex polytope Sn.
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d qω, t]( 􏼁 � d q0, t|ω−]|􏼐 􏼑, if 0≤ |ω − ]|≤ n − 1,

d qω, r]( 􏼁 � d q0, r|ω−]|􏼐 􏼑, if 0≤ |ω − ]|≤ n − 1,

d rω, t]( 􏼁 � d q0, t|ω−]|􏼐 􏼑 − 1, if 0≤ |ω − ]|≤ n − 1,

d rω, r]( 􏼁 � d tω, t]( 􏼁 � d q0, r|ω−]|􏼐 􏼑 − 1, if 0≤ |ω − ]|≤ n − 1,

d qω, q]( 􏼁 � d q0, q|ω−]|􏼐 􏼑, if 0≤ |ω − ]|≤ n − 1.

(4)

If n is odd

d pω, p]( 􏼁 �

d q0, p|ω−]|􏼐 􏼑 − 1, if 0≤ |ω − ]|≤
n − 1
2

,

d q0, p|ω−]|􏼐 􏼑, if
n + 1
2
≤ |ω − ]|≤ n − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

d qω, p]( 􏼁 �

d q0, p|ω−]|􏼐 􏼑 − 1, if 1≤ |ω − ]|≤
n − 1
2

for ω> ],

d q0, p|ω−]|􏼐 􏼑 + 1, if
n + 1
2
≤ |ω − ]|≤ n − 1 for ω> ],

d q0, p|ω−]|􏼐 􏼑, if 0≤ |ω − ]|≤ n − 1 for ]≥ω,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d pω, r]( 􏼁 �

d q0, r|ω−]|􏼐 􏼑 + 1, if 0≤ |ω − ]|≤
n − 1
2

for ω≥ ],

d q0, r|ω−]|􏼐 􏼑, if
n + 1
2
≤ |ω − ]|≤ n − 1 for ω> ],

d q0, r|ω−]|􏼐 􏼑, if 1≤ |ω − ]|≤
n − 1
2

for ]>ω,

d q0, r|ω−]|􏼐 􏼑 + 1, if
n + 1
2
≤ |ω − ]|≤ n − 1 for ]>ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d pω, t]( 􏼁 �

d q0, h|ω−]|􏼐 􏼑 + 1, if 0≤ |ω − ]|≤
n − 1
2

for ω≥ ],

d q0, h|ω−]|􏼐 􏼑, if
n + 1
2
≤ |ω − ]|≤ n − 1 for ω> ],

d q0, h|ω−]|􏼐 􏼑, if 1≤ |ω − ]|≤
n − 1
2

for ]>ω,

d q0, h|ω−]|􏼐 􏼑 + 1, if
n + 1
2
≤ |ω − ]|≤ n − 1 for ]>ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

Table 4: Sω(q0) for Sn.

n ω Sω(q0)

1 {p0, pn−1, q1, qn−1, r0}
2 {p1, pn−2, q2, qn−2, r1, rn−1, t0}

3≤ω≤ ⌊n/2⌋ − 1 {pω−1, pn−ω, qω, qn−ω, rω−1, rn−ω+1, tω−2, tn−ω+2}

even
n/2 {p(n−2/2), pn/2, qn/2, r(n−2/2), r(n+2/2), t(n−4/2), t(n+4/2)}

(n + 2/2) {r(n/2), t(n−2/2), t(n+2/2)}
(n + 4/2) t(n/2)􏽮 􏽯

odd
(n − 1/2) {p(n−3/2), p(n+1/2), q(n−1/2), q(n+1/2), r(n−3/2), r(n+3/2), t(n−5/2), t(n+5/2)}
(n + 1/2) {p(n−1/2), r(n−1/2), r(n+1/2), t(n−3/2), t(n+3/2)}
(n + 3/2) {t(n−1/2), t(n+1/2)}
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If n is even

d pω, p]( 􏼁 �

d q0, p|ω−]|􏼐 􏼑 − 1, if0≤ |ω − ]|≤
n − 2
2

,

d q0, pqω−]􏼐 􏼑, if
n

2
≤ |ω − ]|≤ n − 1,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

d pω, r]( 􏼁 �

d q0, r|ω−]|􏼐 􏼑 + 1, if0≤ |ω − ]|≤
n − 2
2

forω≥ ],

d q0, r|ω−]|􏼐 􏼑, if
n

2
≤ |ω − ]|≤ n − 1forω> ],

d q0, r|ω−]|􏼐 􏼑, if1≤ |ω − ]|≤
n

2
for]>ω,

d q0, r|ω−]|􏼐 􏼑 + 1, if
n + 2
2
≤ |ω − ]|≤ n − 1for]>ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d qω, p]( 􏼁 �

d q0, p|ω−]|􏼐 􏼑 − 1, if1≤ |ω − ]|≤
n − 2
2

forω> ],

d q0, p|ω−]|􏼐 􏼑, if |ω − ]| �
n

2
forω> ],

d q0, p|ω−]|􏼐 􏼑 + 1, if
n + 2
2
≤ |ω − ]|≤ n − 1forω> ],

d q0, p|ω−]|􏼐 􏼑, if0≤ |ω − ]|≤ n − 1for]≥ω,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d pω, t]( 􏼁 �

d q0, t|ω−]|􏼐 􏼑 + 1, if0≤ |ω − ]|≤
n − 2
2

forω≥ ],

d q0, t|ω−]|􏼐 􏼑, if
n

2
≤ |ω − ]|≤ n − 1forω> ],

d q0, t|ω−]|􏼐 􏼑, if1≤ |ω − ]|≤
n

2
for]>ω,

d q0, t|ω−]|􏼐 􏼑 + 1, if
n + 2
2
≤ |ω − ]|≤ n − 1for]>ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

Due to the fact that, in order to calculate the distance
between any pair of vertices in VSn

, we need to know d(q0, q)

for each q ∈ VSn
.

Lemma 3. For any odd positive integer n≥ 6, ψ(Sn) � 3.

Proof. ,e MDRSs for S7, S9, and S11 are

DSn
�

p0, p3, t2􏼈 􏼉, ifn � 7,

p0, p4, t7􏼈 􏼉, ifn � 9,

p0, p5, t3􏼈 􏼉, ifn � 11,

⎧⎪⎪⎨

⎪⎪⎩
(7)

to demonstrate that ψ(Sn) � 3 for any odd positive in-
teger n≥ 13, finding a DRS with cardinality 3 is enough.
Using the sets Sω(q0) listed in Table 4, the Table 5 shows the
metric coordinate vectors for all vertices of Sn in relation to
the set DSn

� p0, p(n−1/2), t(n+7/2)􏽮 􏽯.
Table 5 shows that the representation

r(h1, DSn
) − r(h2, DSn

)≠ 0 for any two vertices
h1, h2 ∈ Sω(q0), where ω ∈ 1, 2, . . . , (n + 3/2){ }. Conse-
quently, for any ω, ] ∈ 1, 2, . . . , (n + 3/2){ } such as ω≠ ] if
the vertices h1 ∈ Sω(q0) and h2 ∈ S](q0), then the

representation r(h1, DSn
) − r(h2, DSn

)≠ω − ]. So the col-
lection DSn

� p0, p(n−1/2), t(n+7/2)􏽮 􏽯 represents the MDRS of
Tn. As a result, Lemma 3 holds. □

Lemma 4. For any even positive integer n≥ 6, ψ(Sn) � 3.

Proof. To demonstrate that ψ(Sn) � 3 for any even positive
integer n≥ 6, finding a DRS with cardinality 3 is enough.
Using the sets Sω(q0) listed in Table 4, the Table 6 shows the
metric coordinate vectors for all vertices of Sn in relation to
the set DSn

� p0, p(n−2/2), t1􏽮 􏽯.
Table 6 shows that the representation

r(h1, DSn
) − r(h2, DSn

)≠ 0 for any two vertices
h1, h2 ∈ Sω(q0), where ω ∈ 1, 2, . . . , (n + 4/2){ }. Conse-
quently, for any ω, ] ∈ 1, 2, . . . , (n + 4/2){ } such as ω≠ ] if
the vertices h1 ∈ Sω(q0) and h2 ∈ S](q0), then the repre-
sentation r(h1, DSn

) − r(h2, DSn
)≠ω − ]. So the collection

DSn
� p0, p(n−2/2), t1􏽮 􏽯 represents the MDRS of Tn. As a

result, Lemma 4 holds.
,e entire technique clearly demonstrates that

ψ(Sn) � 3, for n≥ 6. ,e main theorem is stated below using
Lemmas 3 and 4: □
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Table 5: Metric coordinate vectors of Sn for odd n≥ 13.

ω Sω(f0) DSn
� p0, p(n−1/2), t(n+7/2)􏽮 􏽯

0 q0 (1, (n + 1/2), (n − 3/2))

1

p0 (0, (n − 1/2), (n − 1/2))

pn−1 (1, (n − 1/2), (n − 3/2))

q1 (1, (n − 1/2), (n − 1/2))

qn−1 (2, (n − 1/2), (n − 5/2))

r0 (2, (n + 3/2), (n − 5/2))

2

p1 (1, (n − 3/2), (n + 1/2))

pn−2 (2, (n − 3/2), (n − 5/2))

q2 (2, (n − 3/2), (n + 1/2))

qn−2 (3, (n − 3/2), (n − 7/2))

r1 (2, (n + 1/2), (n − 3/2))

rn−1 (3, (n + 1/2), (n − 7/2))

t0 (3, (n + 5/2), (n − 7/2))

3≤ω≤ (n − 3/2)

pω−1 �
(2, (n − 5/2), (n + 3/2)), ifω � 2,

(ω − 1, (n − 2ω + 1/2), (n − 2ω + 13/2)), ifω≠ 2.
􏼨

pn−ω �
(ω, (n − 2ω + 1/2), (n − 2ω − 1/2)), ifω≤ (n − 7/2)

(ω, (n − 2ω + 1/2), (2ω − n + 11/2)), ifω> (n − 7/2)
􏼨

qω �
(3, (n − 5/2), (n + 3/2)), ifω � 3
(ω, (n − 2ω + 1/2), (n − 2ω + 11/2)), ifω≠ 3􏼨

qn−ω �
(ω + 1, (n − 2ω + 1/2), (n − 2ω − 3/2)) ifω≤ (n − 7/2)

(ω + 1, (n − 2ω + 1/2), (2ω − n + 11/2)), ifω> (n − 7/2)
􏼨

rω−1 �
(ω, (n − 2ω + 5/2), (n + 2ω − 7/2)), ifω≤ 4
(ω, (n − 2ω + 5/2), (n − 2ω + 11/2)) ifω> 4􏼨

rn−ω+1 �
(ω + 1, (n − 2ω + 5/2), (n − 2ω − 3/2)), ifω≠ (n − 3/2)

((n − 1/2), 4, 2), ifω � (n − 3/2)
􏼨

tω−2 �
(ω, (n − 2ω + 9/2), (n + 2ω − 13/2)), ifω≤ 5
(ω, (n − 2ω + 9/2), (n − 2ω + 11/2)), ifω> 5􏼨

tn−ω+2 (ω + 1, (n − 2ω + 9/2), (n − 2ω − 3/2))

(n − 1/2)

p(n−3/2) (n − 3/2), 1, 7)

p(n+1/2) (n − 1/2), 1, 5)

q(n−1/2) (n − 1/2), 1, 6)

q(n+1/2) (n + 1/2), 1, 5)

r(n−3/2) (n − 1/2), 3, 6)

r(n+3/2) (n + 1/2), 3, 3)

t(n−5/2) (n − 1/2), 5, 6)

t(n+5/2) (n + 1/2), 5, 1)

(n + 1/2)

p(n−1/2) (n − 1/2), 0, 6)

r(n−1/2) (n + 1/2), 2, 5)

r(n+1/2) (n + 3/2), 2, 4)

t(n−3/2) (n + 1/2), 4, 5)

t(n+3/2) (n + 3/2), 4, 2)

(n + 3/2)
t(n−1/2) (n + 3/2), 3, 4)

t(n+1/2) (n + 5/2), 3, 3)
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Theorem 4. Let Sn be the convex plytope for n≥ 6. 4en
ψ(Sn) � 3.

4. Conclusion

In this paper, we investigate the idea of calculatingMDRSs of
graphs using an integer linear programming formulation
previously presented in the literature.We calculate the DMD
for the convex polytopes Tn and Sn, which is the minimum
cardinality over all the DRSs of Tn and Sn. It is interesting to
consider these families of the convex polytopes because their
DMD is finite and independent of the parity of n. Finally, we
get ψ(Tn) � ψ(Sn) � 3 for n≥ 6.
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