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We proposed in this study a deterministic mathematical model of malaria transmission with climate variation factor. In the �rst
place, fundamental properties of the model, such as positivity of solution and boundedness of the biological feasibility of the
model, were proved whenever all initial data of the states were nonnegative. �e next-generation matrix method is used to
compute a basic reproduction number with respect to the disease-free equilibrium point. �e Jacobian matrix and the Lyapunov
function are used to check the local and global stability of disease-free equilibriums. If the basic reproduction number is less than
one, the model’s disease-free equilibrium points are both locally and globally asymptotically stable; otherwise, an endemic
equilibrium occurs. �e results of the sensitivity analysis of the basic reproduction numbers were obtained, and its biological
interpretation was provided. �e existence of bifurcation was discussed, and the model exhibits forward and backward bi-
furcations with respect to the �rst and second basic reproduction numbers, respectively. Secondly, using the maximum principle
of Pontryagin, the optimal malaria reduction strategies are described with three control measures, namely, treated bed nets,
infected human treatment, and indoor residual spraying. Finally, based on numerical simulations of the optimality system, the
combination of treatment and indoor spraying is the most e�cient and least expensive strategy for malaria eradication.

1. Introduction

Malaria is a serious vector-borne disease caused by a parasite
called Plasmodium and transmitted between humans (hosts)
and mosquitoes (vectors) through bites from infected female
Anopheles mosquitoes [1]. It can spread through blood
transfusions, needle sharing, or congenital causes. �e
parasites then reproduce in the human liver and blood-
stream. Malaria is often associated with poverty, which has a
negative impact on the country’s economic development.
According to the most recent global malaria report, pub-
lished in December 2021, an estimated 241 million cases and
627000 deaths were reported worldwide, with the African
region accounting for 94% of all cases in 2020 [2]. �e use of
insecticide-treated bed nets, antimalaria drug treatment, and
indoor residual spraying are the most e�ective methods of
preventing malaria transmission dynamics [3]. Most

mosquito distributions worldwide have been in�uenced by
climatic factors such as temperature, rainfall, and malaria
transmission increases with temperatures ranging from 16℃
to 28℃, which create conducive conditions for mosquito
breeding rates [4].

Ross [5] initiated a mathematical model on the dynamics
of malaria spread. He developed SISSI models for human and
malaria populations. According to Ross, reducing the number
of mosquitoes to below a certain threshold is su�cient for
malaria control. Following the Ross model, several models
were proposed by scholars who extended the Ross model by
considering various factors such as the exposure time in
humans and mosquitoes [6–8] and climate variability on
mosquito death rate, contact rate, and birth rate [9–11].

A group of researchers studied an optimal malaria
transmission control model to determine the role of control
measures in disease transmission. For example, Okosun et al.
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[12] presented the malaria transmission dynamics with
optimal control and cost-effectiveness analysis. &e authors
used a combination of three control measures: treated bed
nets, antimalarial drug treatment of infected humans, and
indoor residual spraying. &ey conclude that the combi-
nation of drug treatment of infected humans and indoor
insecticide spraying is the most effective and least expensive
way to prevent malaria spread. Makinde et al. [13] proposed
a malaria model for disease spread with optimal control and
cost-effectiveness analysis based on three control measures.
Using the incremental cost-effectiveness ratio methods, a
cost-effectiveness analysis was performed to support the
results of the optimal control problem. &e authors used
numerical simulations to supplement the theoretical results.
Finally, they proposed that a combination of treated bed
nets, drug treatment, and indoor residual spraying is the
most effective and less expensive intervention strategy.
Okosun et al. [14] presented the SEIRS-SEI malaria trans-
mission model with optimal control and cost-effectiveness
analysis using combinations of three control measures, in-
cluding treated bed nets, infected human treatment, and
indoor residual spraying. &e authors presented the use of
infected human treatment with drugs and indoor residual
spraying as the most cost-effective controls to prevent
malaria spread. Otieno et al. [15] presented a malaria
transmission model with an optimal control problem,
employing four time-dependent control measures. Pon-
tryagin’s minimum principle was described in order to
derive the necessary conditions for optimal malaria control.
&eir findings concluded that a combination of treated bed
nets, treatment, and spraying is the most effective strategy
for mitigating disease. Temesgen et al. [16] presented SIRS
for the human population and SI malaria model for malaria
transmission by incorporating three continuous controls.
&e authors suggested that combinations of treatment of
infected humans and indoor residual spraying are the best
strategies for the prevention of the disease.

However, none of these models take into account the
impact of climate variability onmalaria epidemics with optimal
control and cost-effectiveness analysis with a logistic growth of
climate variation with respect to mosquito breeding and
malaria infection. In this paper, the malaria transmission
model [17] is extended to the optimal control problem in the
presence of climate variability in mosquito breeding rate and
malaria infection, and further analysis on the least cost strategy
is considered using the concept of cost-effectiveness analysis.

&is paper is arranged as follows: In Section 2, we
propose a malaria transmission model that shows the role of
climate variability in malaria epidemics. In Section 3, the
model analysis of the model is illustrated. In Section 4, we
describe the analysis of sensitivity. In Section 5, the optimal
control of the malaria transmission model is analytically
analyzed using the maximum principle of Pontryagin. In
Section 6, we show the simulation of theoretical results. In
Section 7, the analysis of cost-effectiveness is depicted. &e
conclusion of the work is discussed in Section 8.

2. Model Description and Formulation

In this section, we developed a malaria transmission dy-
namics model in which the human population is represented
by the SIRS model and the population of mosquitoes is
described by the SI model due to their short lifespan. &e
total population of human at time (t) denoted by Nh(t) is
divided into three subpopulations based on their disease
status; susceptible humans Sh(t) are individuals who are
vulnerable to risk of developing an infection from the
mosquito. Infected humans Ih(t) are individuals who show
the symptom of the disease and can transmit the disease to
mosquito. Recovered humans Rh(t) are individuals who got
temporary immunity, so that the total human populations is
given by Nh(t) � Sh(t) + Ih(t) + Rh(t). Individuals who are
born or migrate are assumed to be susceptible human
populations and considered as the recruitment rate denoted
by Ψ. Susceptible human populations become infected if
they come into contact with infected mosquitoes at the rate
βh(T, R) which depends on climate change, β0h represents
the human contact rate with vector when there is no climate
variation, and β1h denotes the human incremental contact
rate due to climate variation. Humans leave the total pop-
ulation with a death rate μh, and due to malaria disease, the
induced death rate δ reduces the population of human.
Infected human recovered through treatment rate ch using
antimalarial drugs. &e recovered human population whose
immunity is not permanent can lose it and become sus-
ceptible to reinfection at the rate ωh. &e total vector
population given by Nm(t) at time (t) is subgrouped into
susceptible mosquito Sm(t) and infected mosquito Im(t).
Hence, the total vector population is given by
Nm(t) � Sm(t) + Im(t). &e vector population is recruited at
the rate Φ(T, R) which depends on climate change, whereas
Φ0 denotes the vector birth rate when there is no climate
variation andΦ1m is the vector incremental birth rate due to
variation of climate. A mosquito population gets an infec-
tion when it contacts with infected human at the rate
βm(T, R) which depends on climate variation, β0m represents
the vector contact rate with a human when there is no
climate change, and β1m denotes incremental contact rate
due to variations in climate. &e vector natural death rate is
μm. We assume that mosquitoes do not recover frommalaria
disease.&us, mosquitoes do not die due to disease infection.
&e growth rate of the temperature r follows a logistic
function, m is the temperature-dependent rate of precipi-
tation, and Tmax represents the maximum temperature for
the mosquito to be most active, whereas the minimum
temperature for the mosquito to be less active is denoted by
T0. Also, we have considered that the parameters stated in
Table 1 are positive. Figure 1 illustrates the transmission
dynamics of the malaria diagram.

Depending on the flowchart diagram in Figure 1, we
write a model that governs the transmission dynamics of
malaria disease using a system of ordinary differential
equations.
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dSh

dt
� Ψ −

βh(T, R)

1 + z∗ Im

ShIm − μhSh + ωhRh,

dIh

dt
� Ψ −

βh(T, R)

1 + z∗ Im

ShIm − μhS + Υh( 􏼁Ih,

dR

dt
� ΥhIh − μh + ωh( 􏼁Rh,

dSm

dt
� Φ(Τ) −

βh(T, R)

1 + m∗ In

SmIh − μhSm,

dIm

dt
� r 1 −

Τ
Τmax

􏼠 􏼡 Τ − Τ0( 􏼁,

dR

dt
� m

dΤ
dt
⇒R(t) � m T(t) − T0( 􏼁 + ε,
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(1)

where

βh(T, R) � β0h + β1hk,

βm(T, R) � β0m + β1mk,

Φ(T, R) � Φ0 +Φ1mk,

k �
(1 + m) T − T0( 􏼁

Tmax
,

(2)

with initial conditions

Sh(0) � Sh0,

Ih(0) � Ih0,

Rh(0) � Rh0,

Sm(0) � Sm0,

Im(0) � Im0,

T(0) � Tm0,

R(0) � Rm0.

(3)

Based on the fact that the average temperature at the
Earth’s surface rises, more evaporation occurs, which in turn
increases overall precipitation (rainfall). &erefore, a
warming climate is expected to increase precipitation
(rainfall) in many areas. &is implies that rainfall pattern is
an increasing function of temperature. Note that m is the
temperature-dependent rate of precipitation and ε is the
amount of precipitation at T � T0. In essence,

R0 � ε, whenT � T0,

Rmax � m Tmax − T0( 􏼁 + R0, whenT � Tm.
􏼨 (4)

3. Mathematical Analysis of the Model

3.1. Invariant Region. &e invariant region is used to de-
termine where the model’s solution is constrained. &e
proposed model (1) has two kinds of populations. Firstly, the
total population of humans is given by

Nh(t) � Sh(t) + Ih(t) + Rh(t) and differentiating Nh(t)

with respect to time. &en, by adding the first three equa-
tions from system (1), we obtain

d
dt

Sh + Ih + Rh( 􏼁 � Ψ − μhNh − δIh. (5)

&is implies that equation (5) becomes

d
dt

Sh + Ih + Rh( 􏼁≤Ψ − μhNh. (6)

By solving equation (6), we obtain that

0<Nh ≤
Ψ
μh

. (7)

&us, the invariant region of system (1) for the human
population is a given by

Sh

Sm Im

Ih Rh
γh

μh

μmμm

βh (T,R)ShIm

βm (T,R)SmIhΦ (T,R)

(T,R)

μh

ωh

μhδ

ψ

Figure 1: Transmission of malaria disease diagram.

Table 1: Parameters’ description used in system (1).

Parameters Parameters’ description
Ψ &e rate of new humans entering to population
Φ0 Mosquito population recruitment rate
ch Recover rate of the infected human
μh Natural death rate of the human population
δ Human population induced death rate
μm Mosquito natural death rate
ωh Immunity loss rate of human population
β0h Human contact rate with population of mosquito
Φ1m Increasing amount of vector breeding rate
β0m Contact rate of the mosquito with human
z∗ Proportion of an antibody produced by human
β1m Increasing amount of vector contact rate
m∗ Proportion of an antibody produced by mosquito
β1h Increasing amount of human contact rate
r Growth rate of the temperature
m Temperature-dependent rate of precipitation
T0 &e smallest temperature that the vector is less active

Tmax
Maximum temperature that the vector is the most

active
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Ωh � Sh, Ih, Rh( 􏼁 ∈ R3
+: 0< Sh + Ih + Rh ≤

Ψ
μh

􏼨 􏼩. (8)

Secondly, the total number of the mosquito populations
from system (1) is given as

Nm(t) � Sm(t) + Im(t). (9)

Hence, the differentiating Nm(t) with respect to time (t)

is given by equation

d
dt

Sm + Im( 􏼁 � Φ(T, R) − μmNm. (10)

By solving equation (10), we obtain
0<Nm ≤Φ(T, R)/μm. Hence, the invariant region of system
(1) for the mosquito population is given by

Ωm � Sm, Im( 􏼁 ∈ R2
+: 0< Sm + Im ≤

Φ(T, R)

μm

􏼨 􏼩. (11)

Consequently, the dynamics of system (1) is studied in
the biological feasible region of the form

Ω � Ωh ×Ωm � Sh, Ih, Rh, Sm, Im( 􏼁 ∈ R5
+: Nh ≤

Ψ
μh

, Nm ≤
Φ(T, R)

μm

􏼨 􏼩, (12)

which is a positive invariant set under the flow induced by
the solution set of system (1).

3.2. Positivity of the Solution. For model (1), we will show
that all solutions of system with positive initial data will
remain positive for all times t≥ 0.

Theorem 1. If Sh(0), Ih(0), Rh(0), Sm(0), and Im(0) are
nonnegative, then the solutions Sh(t), Ih(t), Rh(t), Sm(t), and
Im(t) of system (1) are nonnegative for t≥ 0.

Proof. &e first equation from system (1) is given by

dSh

dt
� Ψ −

βh(T, R)ShIm

1 + z
∗
Im

− μhNh + ωhRh,

dSh

dt
≥ −

βh(T, R)Im

1 + z
∗
Im

+ μh􏼠 􏼡Sh.

(13)

Integrating equation (13) with respect to time and using
the method of separation variables with applying the initial
conditions, we obtain

Sh(t)≥ Sh(0)e
− βh(T,R)Im/1+z∗Im( 􏼁+μh( 􏼁t ≥ 0. (14)

Clearly, equation (13) is nonnegative at all time t≥ 0.&e
other state variables Ih(t), Rh(t), Sm(t), and Im(t) are
nonnegative for all time t≥ 0 by the same procedure. As a
result, the malaria transmission model stated in system (1) is
both epidemiologically significant and mathematically well-
posed in equation (12). □

3.3. Basic Reproduction Numbers. In the first place, we
calculate the disease-free equilibrium (DFE) points of system
(1) before calculating an expression for basic reproduction
numbers. To do so, we equate all equations of model (1) to
zero with Ih � 0 and Im � 0. In this case, we obtain two
malaria-free equilibrium points of model (1), which are

given by E1 � (Sh(0), Ih(0), Rh(0), Sm(0), Im(0), T0) or E2 �

(Sh(0), Ih(0), Rh(0), Sm(0), Im(0), Tmax) where

E1 �
Ψ
μh

, 0, 0,
Φ T0( 􏼁

μm

, 0, T0􏼠 􏼡,

orE2 �
Ψ
μh

, 0, 0,
Φ Tmax( 􏼁

μm

, 0, Tmax􏼠 􏼡.

(15)

One advantage of determining the DFE of system (1) is to
help us to calculate an expression for the basic reproduction
number, which is defined as the average amount of sec-
ondary infections caused by a primary infectious in the given
period [18]. It can be obtained using the approach of the
next-generation matrix and that is the dominant eigenvalue
of the next-generation matrix. For model (1), to obtain R01
and R02, we rewrite model (1), beginning with newly in-
fective classes of humans and mosquitoes, which are given
by

dIh

dt
�
βh(T, R)ShIm

1 + z
∗
Im

− μh + δ + ch( 􏼁Ih,

dIm

dt
�
βm(T, R)SmIh

1 + m
∗
Ih

− μmIm.

(16)

&e right-hand side (RHS) of equation (16) can be
written in the form of f − v, where

f �

βh(T, R)ShIm

1 + z
∗
Im

βm(T, R)SmIh

1 + m
∗
Ih

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

v �
μh + δ + ch( 􏼁Ih

μmIm

⎛⎝ ⎞⎠.

(17)
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&e partial derivatives of f and v in equation (17)
evaluated at DFE of system (1) produce two matrices F and
V, respectively,

F �

0 βh(T, R)
Ψ
μh

βm(T, R)
Φ(Τ, R)

μm

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

V �

μh + δ + ch 0

0 μm

⎛⎝ ⎞⎠.

(18)

As a result, the basic reproduction number
(R0 � ρ(FV− 1)), where ρ is the dominant eigenvalue of
FV− 1. &us, the first basic reproduction number R01

calculated at the first disease-free equilibrium points E1 is
given by

R01 �

���������������
β0hΨβ0mΦ0

μhμ
2
m μh + δ + ch( 􏼁

􏽳

. (19)

Similarly, the second basic reproduction number R02
calculated at the second disease-free equilibrium points E2 is
given by

R02 �

������������������������������
β0h + β2h( 􏼁Ψ β0m + β2m( 􏼁 Φ0 +Φ2m( 􏼁

μhμ
2
m μh + δ + ch( 􏼁

􏽳

, (20)

where β2h � β1hk, β2m � β1mk,Φ2m � Φ1mk, and
k � (1 + m)(Tmax − T0)/Tmax.

Generally, the basic reproduction number at maximum
temperature (Tmax) and rainfall variation in terms of R01 is
given by

R02 �

������������������������������������������������

R
2
01 +
Φ0β0hβ2m + Ψ β0m + β2m( 􏼁 β2h Φ0 +Φ2m( 􏼁 +Φ2mβ0h􏼂 􏼃

μhμ
2
m μh + δ + ch( 􏼁

􏽳

, (21)

where R01 is the first basic reproduction number at (T0, R0)

for the mosquito to be less active to breed.

3.4. Local Stability of Disease-Free Equilibrium

Theorem 2. 4e disease-free equilibrium point of system (1)
is locally asymptotically stable in Ω if R01 <R02 < 1.

Proof. We begin with finding that the Jacobian matrix of
system (1) calculated at DFE is given by

J Ε∗( 􏼁 �

− μh 0 ωh 0 − βh T
∗
, R
∗

( 􏼁
ψ
μh

0 − μh + δ + ch 0 0 βh T
∗
, R
∗

( 􏼁
ψ
μh

0 ch − ωh + μh( 􏼁 0 0

0 − βm T
∗
, R
∗

( 􏼁
Φ T
∗
, R
∗

( 􏼁

μm

0 − μm 0

0 βm T
∗
, R
∗

( 􏼁
Φ T
∗
, R
∗

( 􏼁

μm

0 0 − μm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (22)

From equation (22), we can obtain the characteristic
equation of the following form:

− λ − μh( 􏼁 − λ − μm( 􏼁 − λ − μh + ωh( 􏼁( 􏼁 λ2 + a1λ + a2􏼐 􏼑 � 0, (23)

where

a1 � μm + μh + δ + ch,

a2 � μmch + μmδ + μmμh −
βh T
∗
, R
∗

( 􏼁Ψβm T
∗
, R
∗

( 􏼁Φ T
∗
, R
∗

( 􏼁

μmμh

.

(24)

Hence, from equation (23), we have

λ1 � − μh < 0,

λ2 � − μm < 0,

λ3 � − μh + ωh( 􏼁< 0.

(25)

Another equation from equation (23) will be a second-
degree polynomial

λ2 + a1λ + a2 � 0. (26)
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By using the Routh–Hurwitz criteria [19], equation (26)
has a negative real root if a1 > 0 and a2 > 0. Hence, we can
observe that a1 > 0 since it is the sum of nonnegative

parameters and the value of a2 at (T∗, R∗) � (Tmax, Rmax) is
given by

a2 � μmch + μmδ + μmμh −
β0h + β2h( 􏼁Ψ β0m + β2m( 􏼁 Φ0 +Φ2m( 􏼁

μmμh

� 1 − R
2
02 > 0. (27)

It is worth noting from equation (27) that a2 < 0 if
R02 < 1. Since R01 <R02, so the DFE is locally asymptotically
stable if R01 <R02 < 1. □

3.5. Global Stability of Disease-Free Equilibrium

Theorem 3. If R01 <R02 < 1, R01 <R02 < 1, then the disease-
free equilibrium point(s) of system (1) is globally asymptot-
ically stable in Ω.

Proof. To discuss the global behavior of DFE of system (1),
we use a technique implemented by the Lyapunov theorem
[20] by first constructing a suitable Lyapunov function

V �
μm

βh T
∗
, R
∗

( 􏼁
Ih + Im. (28)

By differentiating equation (28) with respect to time (t),
the result obtained becomes

dV

dt
�

μm

βh T
∗
, R
∗

( 􏼁

dIh

dt
+
dIm

dt

�
μm

βh T
∗
, R
∗

( 􏼁
βh T, R

∗
( 􏼁ShIm − μh + δ + ch( 􏼁Ih( 􏼁 + βm T

∗
, R
∗

( 􏼁SmIh − μmIm

� μmShIm −
μm

βh T
∗
, R
∗

( 􏼁
μh + δ + ch( 􏼁Ih + βm T

∗
, R
∗

( 􏼁SmIh − μmIm

� βm T
∗
, R
∗

( 􏼁Sm −
μm

βh T
∗
, R
∗

( 􏼁
μh + δ + ch( 􏼁􏼠 􏼡Ih − μm 1 − Sh( 􏼁Im

≤ βm T
∗
, R
∗

( 􏼁Sm −
μm

βh T
∗
, R
∗

( 􏼁
μh + δ + ch( 􏼁􏼠 􏼡Ih

� βm T
∗
, R
∗

( 􏼁
Φ T
∗
, R
∗

( 􏼁

μm

−
μm

βh T
∗
, R
∗

( 􏼁
μh + δ + ch( 􏼁􏼠 􏼡Ih

�
μm μh + δ + ch( 􏼁

β0h + β2h( 􏼁

μh

Ψ
R
2
02 − 1􏼒 􏼓Ih.

(29)

Consequently, we observe that (dV/dt)< 0 if R02 < 1 and
(dV/dt) � 0 if and only if Ih � 0, Im � 0. So, the dominant
bounded invariant set Γ � (Sh, Ih, Rh, Sm, Im)􏼈 ∈ Ω: (dV

/dt) � 0} is the singleton which is DFE inΩ. &erefore, by the
well-known LaSalle’s invariant principle [21], every solution
that begins in the domain bounded invariant set approaches
DFE as time tends to infinity when R01 <R02. &erefore, the
DFE is globally asymptotically stable inΩ ifR01 <R02 < 1. □

3.6. Malaria Present Equilibrium. Malaria endemic equi-
librium point is a situation where malaria exists in the
human population regardless of time and other factors. &e
endemic equilibrium point E∗ � (S∗h , I∗h , R∗h , S∗m, I∗m, T∗, R∗)

can be obtained by setting RHS of all model equations of
system (1) equal to zero. Frommodel (1), the malaria present
equilibrium point at (T∗, R∗) � (T0, R0) is given by

S
∗
h �

1 + z
∗
Im( 􏼁ψ + ωhR

∗
h

β0hI
∗
m + μh 1 + z

∗
Im( 􏼁

,

R
∗
h �

chI
∗
h

ωh + μh

,

S
∗
m �

Φ0 1 + m
∗
Ih( 􏼁

β0mI
∗
h + μm 1 + m

∗
Ih( 􏼁

,

I
∗
m �

β0mS
∗
hI
∗
h

μm 1 + m
∗
Ih( 􏼁

.
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(30)

From equation (30), the endemic equilibrium easily
satisfies the following polynomial and I∗h is computed from
the equation:
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C1 I
∗
h( 􏼁

2
+ C2 I

∗
h( 􏼁 � 0, (31) where

C1 � β0m β0hΦ0 ωhδ + μh ch + ωh + δ + μh( 􏼁( 􏼁 + μh ωh + μh( 􏼁 ch + δ + μh( 􏼁μm( 􏼁,

C2 � ωh + μh( 􏼁 μhμ
2
m μh + δ + ch( 􏼁 1 − R

2
01􏼐 􏼑􏽨 􏽩.

(32)

Hence, C1 > 0 and C2 ≥ 0 whenever R01 ≥ 1. Solving for
I∗h in equation (31), we obtain I∗h � − (C2/C1)< 0. &us, the
model has no nonnegative malaria present equilibrium
whenever R01 < 1. &is guarantees that backward bifurcation
does not exist in the model if R01 < 1.

Similarly, the endemic equilibrium point at (T∗, R∗) �

(Tmax, Rmax), and solving for I∗hs as expression of parameters,
we obtain

S
∗
h �

1 + z
∗
Im( 􏼁ψ + ωhR

∗
h

β0h + β2h( 􏼁I
∗
m + μh 1 + z

∗
Im( 􏼁

,

R
∗
h �

chI
∗
h

ωh + μh

,

S
∗
m �

Φ0 1 + m
∗
Ih( 􏼁

β0m + β2m( 􏼁I
∗
h + μm 1 + m

∗
Ih( 􏼁

,

I
∗
m �

β0m + β2m( 􏼁S
∗
hI
∗
h

μm 1 + m
∗
Ih( 􏼁

,
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(33)

where β2h � β1k, β2m � β1k,Φ2m � Φ1k, and k � (1 + m)(T

− T0)/Tmax.
From equation (33), the endemic equilibrium satisfies

the following polynomial and I∗h is computed from the
equation

B1 I
∗
h( 􏼁

2
+ B2 I

∗
h( 􏼁 � 0, (34)

where

B1 � β3m β3hΦ2m ωhδ + μh ch + ωh + δ + μh( 􏼁( 􏼁 + μh ωh + μh( 􏼁 ch + δ + μh( 􏼁μm( 􏼁,

B2 � ωh + μh( 􏼁 μhμ
2
m μh + δ + ch( 􏼁 1 − R

2
02􏼐 􏼑􏽨 􏽩,

(35)

where β3h � β0h + β2h, β3m � β0m + β2m, andΦ3m � Φ0 +Φ2m.
From equation (35), we see that if R02 < 1, then it im-

mediately implies that R01 < 1 and DFE exists for both R01
and R02. However, R01 < 1 does not immediately imply
R02 < 1 as the value of R02 will be larger than unity that shows
that whereas R01 present DFE. &us, R02 may become an
endemic situation or exhibit backward bifurcation while R01
undergoes forward bifurcation only.

4. Sensitivity Analysis

Malaria control and eradication strategies should focus on
key parameters that have a significant impact on the basic
reproduction number. &e purpose of carrying out the
sensitivity analysis of the basic model parameter is to
identify a parameter that affects the basic reproduction
number. Essentially, the robustness of system predictions to
parameter values can be expressed using the normalized

sensitivity index of the basic reproduction number to the
given basic parameters because the values of those param-
eters can increase or decrease a basic reproduction number
and vice versa. &is method relies on our knowledge of the
parameters that have a large influence on the basic repro-
duction number (R02) in order to design the best disease
control strategies. We used the technique described in
[13, 22, 23] to perform the sensitivity analysis.

Definition 1. (See [13, 22, 24, 25]): &e forward sensitivity
index of R0, which is differentiable with respect to a given
basic parameter D, is defined as

τR0
k �

zR0

zD
×

k

R0
. (36)

&e sensitivity index of R01 of model (1) with respect to
parameter β0h, for instance, is obtained as
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τR01
β0h

�
zR01

zβ0h

×
β0h

R01
�

1

2
�������������������������

β0hΨβ0mΦ0/μhμ
2
m μh + δ + ch( 􏼁

􏽱 ×
Ψβ0mΦ0

μhμ
2
m μh + δ + ch( 􏼁

×
β0h

R01
�
1
2
> 0. (37)

Using the same approach with respect to the rest of the
parameters, τR01

β0m
, τR01
Ψ , τR01
Φ0 , τR01

μh
, τR01

μm
, τR01

δ , τR01
ch

are computed,
and the sensitivity indices are presented in Table 2.

By the same procedure, the sensitivity index of R02 of the
model (1) with respect to Ψ is given as

ΠR02
Ψ �

zR02

zΨ
×
Ψ

R02

�
1

2
���������������������������������������������

β0h + β2h( 􏼁Ψ β0m + β2m( 􏼁 Φ0 +Φ2m( 􏼁/μhμ
2
m μh + δ + ch( 􏼁

􏽱 ×
β0h + β2h( 􏼁 β0m + β2m( 􏼁 Φ0 +Φ2m( 􏼁

μhμ
2
m μh + δ + ch( 􏼁

×
Ψ

R02
�
1
2
> 0.

(38)

Similarly, with respect to other basic parameters,
ΠR02

β0h
,ΠR02

β0m
,ΠR02
Ψ ,ΠR02
Φ0 ,ΠR02

β1m
, ΠR02
Φ1m

,ΠR02
μh

,ΠR02
μm

,ΠR02
δ ,ΠR02

ch
are

computed, and the sensitivity indices are described in
Table 3.

4.1. Interpretation of the Sensitivity Indices. We described
sensitivity indices of basic reproduction number (R02) with
respect to eight basic parameters in Table 2. &e output
showed that the parameters with a positive sensitivity index
increased the value of R01 as their values increased, while the
rest of the parameters remained constant. And if the values
of the parameters with negative indices are increased while
the values of the other parameters remain constant, the value
of R01 decreases. Similarly, the sensitivity indices of R02 with
respect to eleven basic parameters are shown in Table 3. &e
parameters with positive sensitivity indices have a high
impact on malaria transmission in the community as their
values increase. &e basic parameters with negative sensi-
tivity indices increase the malaria disease if their values
decrease while the other parameters remain constant. For
example, ΠR02

Ψ � 0.5 shows that decreasing (increasing) the
rate of the human recruitment by 10% decreases (increases)
the basic reproduction number R02 by 5%; similarly, ΠR02

μm
�

− 1 indicates that decreasing (increasing) the rate of the
mosquito death by 10% increases (decreases) the basic re-
production number R02 by 10%.

5. Extension of the Model into Optimal Control

According to the necessity and severity of a disease, many
intervention strategies are applied by public health officials
to control the disease [25]. In this study, we extended the
malaria transmission model (1) to an optimal control
problem to determine control strategy decisions involving a
mathematical model of biological situations [30]. Using this
method, we hope to demonstrate the best malaria prevention

strategy. After incorporating the controls into the malaria
transmission model (1), the obtained state equations are as
follows:

dSh

dt
� Ψ 1 − u1( 􏼁 −

βh(T, R)

1 + z
∗
Im

ShIm − μhSh + ωhRh,

dIh

dt
� 1 − u1( 􏼁

βh(T, R)

1 + z
∗
Im

ShIm − μh + δ + Υh + u2( 􏼁Ih,

dR

dt
� Υh + u1( 􏼁Ih − μh + ωh( 􏼁Rh,

dSm

dt
� Φ(T) − 1 − u1( 􏼁

βm(T, R)

1 + m
∗
In

SmIh − μm + u3( 􏼁Sm,

dIm

dt
� 1 − u1( 􏼁

βm(T, R)

1 + m
∗
Ih

SmIh − μm + u3( 􏼁Im,

dT

dt
� r 1 −

T

Tmax
􏼠 􏼡 T − T0( 􏼁,

dR

dt
� m

dT

dt
⇒R(t) � m T(t) − T0( 􏼁 + ε,
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(39)

where βh(T, R) � β0h + β1hk, βm(T, R) � β0m + β1mk, v

(T, R) � v0 + v1m, and k � ((1 + m)(T − T0)/Tmax).
&e control functions represent that the use of a treated

bed net to protect against mosquitoes is u1(t), the treatment
of infected humans with antimalarial drugs is u2(t), and the
use of indoor residual spraying to kill mosquitoes is u3(t).
&e objective functional that we developed for the optimal
control model (39) is given as

J u1, u2, u3( 􏼁 � min􏽚
tf

0
D1Ih + D2Im +

1
2

C1u
2
1 + C2u

2
2 + C3u

2
3􏼐 􏼑􏼔 􏼕dt, (40)
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where tf denoted the terminal time, D1 and D2 are weight
constants for the infected human and mosquito,

respectively, and C1, C2, and C3 are weight constants for
each control, respectively. &e expression (1/2)Biu

2
i repre-

sents the cost function that corresponds to the controls ui(t)

and is quadratic in the other pieces of literature [18, 31–34,
36–38]. &e goal of the objective functional (40) is to reduce
the total number of infected humans Ih(t), infected mos-
quitoes Im(t), and control costs ui(t). &e primary goal is to
compute a triple optimal control u∗1 , u∗2 , and u∗3 such that

J u
∗
1 , u
∗
2 , u
∗
3( 􏼁 � min J{ ) u1, u2, u3( 􏼁: u1, u2, u3 ∈ ϑ}, (41)

where ϑ � (u1, u2, u3): ui(t) such that u1, u2, and u3 are
Lebesgue measurable on t ∈ [0, tf] with 0≤ ui(t)≤ 1 is the
control set. &e obtained Hamiltonian (H) function of the
optimal control problem that consists of equations (39) and
(40) is represented as

H � A1Ih + A2Im +
1
2

􏽘

3

i�1
Biu

2
i

⎡⎣ ⎤⎦ + λ1
dSh

dt
+ λ2

dIh

dt
+ λ3

dRh

dt

+ λ4
dSm

dt
+ λ5

dIm

dt
+ λ6

dT

dt
+ λ7

dR

dt
.

(42)

From equation (42), the minimize Hamiltonian function
with respect to u1, u2, u3 is given by

H � A1Ih + A2Im +
1
2
B1u

2
1 + B2u

2
2 + B3u

2
3􏼔 􏼕

+ λ1 Ψ − 1 − u1( 􏼁
βh(T, R)

1 + z
∗
Im

ShIm − µhSh + ωhRh􏼠 􏼡

+ λ2 1 − u1( 􏼁
βh(T, R)

1 + z
∗
Im

ShIm − µh + δ + ch + u2( 􏼁Ih􏼠 􏼡

+ λ3 ch + u2( 􏼁Ih − µh + ωh( 􏼁Rh( 􏼁

+ λ4 v(T, R) − 1 − u1( 􏼁
βm(T, R)

1 + m
∗
Ih

SmIh − µm + u3( 􏼁Sm􏼠 􏼡

+ λ5 1 − u1( 􏼁
βm(T, R)

1 + m
∗
Ih

SmIh − µm + u3( 􏼁Im􏼠 􏼡

+ λ6r 1 −
T

Tmax
􏼠 􏼡 T − T0( 􏼁

+ λ7mr 1 −
T

Tmax
􏼠 􏼡 T − T0( 􏼁,

(43)

where λ1, λ2, λ3, λ4, λ5, λ6, and λ7 are adjoint variables. Next,
to obtain the costate variables by using Pontryagin’s

maximum principle [32], with the existence result of [35],
the following theorem is stated.

Table 2: Sensitivity indices of parameter.

Parameter Sensitivity index
Ψ 0.5
Φ0 0.5
β0h 0.5
β0m 0.5
μm 1
μh − 0.087541
δ − 0.485158
ch − 0.024462

Table 3: Sensitivity indices of parameter.

Parameter Sensitivity index
Ψ 0.5
Φ0 0.072438
β0h 0.281659
β0m 0.305714
Φ1m 0.079169
β1h 0.218341
β1m 0.224286
μm − 1
μh − 0.092541
δ − 0.475258
ch − 0.024461
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Theorem 4. Given optimal controls u∗1 , u∗2 , u∗3 and a solution
S∗h , I∗h , R∗h , S∗m, I∗m, T∗, R∗ of the corresponding state system
that minimize J(u1, u2, u3) over ϑ subject to equation (39),

then adjoint variables λ1, λ2, λ3, λ4, λ5, and λ6 hold the adjoint
system

dλ1
dt

� 1 − u1( 􏼁
βh(T, R)

1 + z
∗
Im

Im λ2 − λ1( 􏼁􏼠 􏼡 + μhλ1,

dλ2
dt

� 1 − u1( 􏼁
βh(T, R)

1 + z
∗
Im

Sm λ5 − λ4( 􏼁􏼠 􏼡 + λ2 μh + δ + ch + u2( 􏼁 − λ3 ch + u2( 􏼁
− D1 ,

dλs

dt
� − ωhλ1 + λ3 μh + ωh( 􏼁,

dλ4
dt

� − 1 − u1( 􏼁
βm(T, R)

1 + m
∗
Ih

Ih λ5 − λ4( 􏼁􏼠 􏼡 + λ4 μm + u3( 􏼁,

dλ5
dt

� − 1 − u1( 􏼁
βm(T, R)

1 + m
∗
Ih

Sh λ2 − λ1( 􏼁􏼠 􏼡 + λ4 μm + u3( 􏼁 − D2,

dλ6
dt

� rλ6 − rλ6
T0

Tmax
−

T

Tmax
􏼠 􏼡,

dλ7
dt

� mrλ7 − rmλ7
T0

Tmax
−

T

Tmax
􏼠 􏼡.
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(44)

With transversality conditions,

λ1 tf􏼐 􏼑 � λ2 tf􏼐 􏼑 � λ3 tf􏼐 􏼑 � λ4 tf􏼐 􏼑 � λ5 tf􏼐 􏼑

� λ6 tf􏼐 􏼑 � λ6 tf􏼐 􏼑 � λ6 tf􏼐 􏼑 � 0.
(45)

Furthermore, the optimal controls u∗1 , u∗2 , u∗3 are repre-
sented by

u
∗
1 � max 0, min 1,

λ2 − λ1( 􏼁 βh(T, R)/1 + z
∗
Im􏼒 􏼓S
∗
hI
∗
m + λ5 − λ4( 􏼁 βm(T, R)/1 + m

∗
Ih􏼒 􏼓S
∗
mI
∗
h

C1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

u
∗
2 � max 0, min 1,

λ2 − λ3( 􏼁I
∗
h

C2
􏼨 􏼩􏼨 􏼩,

u
∗
3 � max 0, min 1,

λ4S
∗
m + λ5I

∗
m

C3
􏼨 􏼩􏼨 􏼩.

(46)

Proof. To obtain the form of the costate equations, we
compute the derivative of the Hamiltonian function (H)
equation (42) with respect to Sh, Ih, Rh, Sm, Im, and T, re-
spectively. &en, the adjoint or costate equation obtained is
given by
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dλ1
dt

� − 1 − u1( 􏼁
βh(T, R)

1 + z
∗
Im

Im λ2 − λ1( 􏼁􏼠 􏼡 + μhλ1,

dλ2
dt

� − 1 − u1( 􏼁
βh(T, R)

1 + z
∗
Im

Sm λ5 − λ4( 􏼁􏼠 􏼡 + λ2 μh + δ + ch + u2( 􏼁 − λ3 ch + u2( 􏼁 − D1,

dλs

dt
� − ωhλ1 + λ3 μh + ωh( 􏼁,

dλ4
dt

� − 1 − u1( 􏼁
βm(T, R)

1 + m
∗
Ih

Ih λ5 − λ4( 􏼁􏼠 􏼡 + λ4 μm + u3( 􏼁,

dλ5
dt

� − 1 − u1( 􏼁
βm(T, R)

1 + m
∗
Ih

Sh λ2 − λ1( 􏼁􏼠 􏼡 + λ4 μm + u3( 􏼁 − D2,

dλ6
dt

� rλ6 − rλ6
T0

Tmax
−

T

Tmax
􏼠 􏼡,

dλ7
dt

� mrλ7 − rmλ7
T0

Tmax
−

T

Tmax
􏼠 􏼡.
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(47)

With transversality conditions,

λ1 tf􏼐 􏼑 � λ2 tf􏼐 􏼑 � λ3 tf􏼐 􏼑 � λ4 tf􏼐 􏼑

� λ5 tf􏼐 􏼑 � λ6 tf􏼐 􏼑 � λ7 tf􏼐 􏼑 � 0.
(48)

To obtain the control value, we compute the partial
derivative of Hamiltonian given by

zH

zui

� 0for i � 1, 2, 3. (49)

Obviously, after a partial derivative of Hamiltonian with
respect to the controls, the result becomes

0 �
zH

zu1
� λ2 − λ1( 􏼁 βh(T, R)/1 + z

∗
Im􏼒 􏼓S
∗
hI
∗
m + λ5 − λ4( 􏼁 βm(T, R)/1 + m

∗
Ih􏼒 􏼓S
∗
mI
∗
h + u1C1,

0 �
zH

zu2
� λ3I
∗
h − λ2I

∗
h + u2C2,

0 �
zH

zu3
� − λ4S

∗
m + λ5I

∗
m( 􏼁 + u3C3.

(50)

Moreover, solving for controls variables from equation
(50), we obtain

u
∗
1 �

λ2 − λ1) βh(T, R)/1 + z
∗
Im􏼒 􏼓S
∗
hI
∗
m + λ5 − λ4( 􏼁 βm(T, R)/1 + m

∗
Ih􏼒 􏼓S
∗
mI
∗
h

C1
,

u
∗
2 �

λ2 − λ3( 􏼁I
∗
h

C2
,

u
∗
3 �

λ4S
∗
m + λ5I

∗
m

C3
.

(51)
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Rearranging the solution of (51) with the boundary
condition of each control, we got

u
∗
1 � max 0, min 1,

λ2 − λ1( 􏼁 βh(T, R)/1 + z
∗
Im􏼒 􏼓S
∗
hI
∗
m + λ5 − λ4( 􏼁 βm(T, R)/1 + m

∗
Ih􏼒 􏼓S
∗
mI
∗
h

C1

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

u
∗
2 � max 0, min 1,

λ2 − λ3( 􏼁I
∗
h

C2
􏼨 􏼩􏼨 􏼩,

u
∗
3 � max 0, min 1,

λ4S
∗
m + λ5I

∗
m

C3
􏼨 􏼩􏼨 􏼩.

(52)

Next, we will see the simulation of the optimality system
to identify an optimal strategy that is most optimal to
minimize the spread of malaria transmission. □

6. Numerical Simulation

In this study, we solved the optimality system and used the
forward-backward sweep to solve the state and adjoint
systems in order to obtain the optimal strategy. We used the
forward fourth-order Runge–Kutta to solve the state
equations (39) due to the initial value of state variables.
Similarly, the adjoint equations are solved using backward
fourth-order Runge–Kutta due to the transversality condi-
tion (45) having the solution of state functions and the value
of optimal controls. &e controls are then updated using a
convex combination of the previous controls and the value
from the optimality conditions (46). &is situation will
continue until two consecutive iterations are close enough to
each other [30]. &e initial conditions that we used for
numerical simulation of the optimality system are Sh(0) �

120, Ih(0) � 20, Rh(0) � 10, Sm(0) � 300, Im(0) � 30,

T(0)� 16°C, and R(0)� 11mm, as well as the parameter
values from Table 4. We used the following weight constant
values for the states and controls:
D1 � 60, D2 � 80, C1 � 40, C2 � 100, andC3 � 60.We used
the following four strategies with different combinations of
two controls at a time and three controls at a time to de-
termine the impact of each control on malaria reduction.

6.1. Strategy A: Combination of Use of Treated Bed Nets (u1)
and Treatment of Infected Humans (u2). We optimized the
objective function (39) using the treated bed net u1 and the
treatment of infected humans with antimalarial drugs u2
when the value of the indoor residual spraying u3 was set to
zero. Also, as shown in Figure 2(a), if there are controls, the
number of infected humans Ih decreases and then tends to
zero, whereas the number of infected humans increases if
there are no controls. Similarly, in Figure 2(b), we can see
that the infected mosquito Im decreases as the control
strategy is used, whereas the infected mosquito increases in
the uncontrolled case. &e control profiles shown in
Figure 2(c) with this strategy suggest that controls on treated

bed net u1 kept maximum level (100%) until the end of the
implementation while infected human treatment using
antimalarial drugs u2 retained its maximum bound for 6
days then gradually tended to a minimum after the 82nd day.

6.2. StrategyB:CombinationofUseofTreatedBedNet (u1) and
IndoorSpraying (u3). &is strategy combined the treated bed
net as a controlu1 and indoor residual spraying as a control u3 to
reduce total infected populations and costs associated with the
treatment of infected humans u2. We can see in Figure 3(a) that
the amount of infected human Ih with controls decreases and
reaches its lowest point. In contrast, when there are no controls,
the number of infected humans increases to a certain point.
According to Figure 3(b), an infected mosquito Im decreases in
the control strategy and decreases. To its minimum point, an
infected mosquito increases in the uncontrolled case. According
to the control profiles depicted in Figure 3(c), control on treated
bed net u1 is maintained at its maximum(100%) for 171 days,
while indoor residual spraying u3 is maintained at its maximum
for 8 days before dropping to its lowest value after the 120th day.

6.3. StrategyC: Combination of Treatment of InfectedHumans
(u2) and Indoor Spraying (u3). In this study, we used a
combination treatment of infected humans as control u2
and indoor residual spraying as control u3 to reduce total
infected populations and save money. Figure 4(a) shows
that when using this control strategy, the number of in-
fected humans Ih decreases to its lowest value and becomes
smaller when controls are used. In Figure 4(b), the infected
mosquito Im decreases in the occurrence of control strategy
and then drops to its minimum values, whereas in the un-
controlled case, an infected mosquito increase is observed.
With this approach, the control profiles in Figure 4(c) con-
clude that controls on the treatment of infected human u2
maintain upper level (100 percent) for 9 days, while the in-
secticides spray u3 maintains maximum level for 7 days and
then declines to lower bound at the end of the 80th day.

6.4. Strategy D: Use of Treated Bed Net (u1), Treatment (u2),
and Indoor Spraying (u3). We used a combination of three
continuous controls on the treated bed net u1; treatment of
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infected human u2; and indoor residual spraying u3 to re-
duce the objective function (39). By implementing those
three control strategies, we discovered that, in Figure 5(a),
the amount of infected human Ih decreases and decreases to
a minimum level, whereas the amount of infected human
increases to a certain point if no control is used. In
Figure 5(b), the infected population of mosquitoes Im is
decreasing andminimized to its lower bound when a control
strategy is used, whereas in the absence of a control strategy,
an increase in infected mosquitoes is observed. Using this
strategy, the control profile in Figure 5(c) depicted that
controls on treated bed net u1 and treatment u2 were kept at
100% coverage for 5 and 8 days, respectively. &en, treated
bed net u1 and treatment u2 tend to their lowest bound after
80 days, whereas indoor spraying u3 retains its highest values
(100 percent) for 162 days before dropping to the lowest level
on the 100th day.

Figure 6 shows the existence of bifurcation for malaria
transmission model. Bifurcation occurs. &is implies that, in
equation (13), if R02 < 1, this automatically implies that
R01 < 1 and DFE exists for both R01 and R02. However,
R01 < 1 do not automatically describe R02 < 1, R02 < 1, be-
cause the value of R02 may be larger than unity that shows
that DFE (E2) may depict backward bifurcation while DFE
(E1) only depicts forward bifurcation.

7. Cost-Effectiveness Analysis

In this study, we must determine the most effective and least
expensive method of reducing disease transmission. We
employed the incremental cost-effectiveness ratio method
to arrive at this strategy (ICER). Using this technique, we
incrementally compare more than one competing inter-
vention; for example, one intervention could be compared
to a second, less effective alternative. &is approach was
defined as the ratio of the difference in averted costs
between two strategies to the difference in the total

number of infections saved [23]. We calculated the total
cost avoided and total infections saved from the numerical
simulation of the optimal control problem, and the
control strategy is ordered in increasing order based on
the total infections saved, as shown in Table 5. &e amount
of total infection saved is calculated by subtracting the
total number of humans infected with malaria using
control from the total number of humans infected with
malaria without control, while the cost averted of each
strategy was obtained by using the cost function repre-
sented by (1/2)C1u

2
1, (1/2)C2u

2
2, and (1/2)C3u

2
3 over the

time [17, 28]. &e amount of the total infection saved and
the total cost of all strategies with their ICER is given in
Table 6.

&e value of the cost-effectiveness ratio (ICER) is
computed from the total number of saved populations and
total cost of averted for each strategy given in Table 5, which
is used to compare the differences between the two strategies
as obtained and given by

ICER(B) �
6421.36
3794.79

� 1.693,

ICER(C) �
1955.46 − 6420.36
4094.55 − 3792.79

� − 14.99,

ICER(A) �
6476.61 − 1958.46
4116.46 − 4092.55

� 188.96,

ICER(D) �
6492.28 − 6476.61
4118.48 − 4116.46

� 7.76.

(53)

With the above results, the number of infections saved
with ICER for four different strategies is shown in Table 6.

Table 6 compares the interventions B and C. ICER(C) is
less than ICER(B) as shown in the table.

It implies that strategy B is costly and has a low likeli-
hood of saving people. As a result, C saves more people than
B. &en, from the competing strategies, we have removed

Table 4: Parameter description and taken values for model (1).

Parameters Parameters’ description Values References
ch Infected human recover rate 0.0035 [19]
Ψ Human population recruitment rate 0.071 [26]
Φ0 Mosquito population recruitment rate 0.041 [22]
μm Mosquito population natural death rate 0.05 [19]
μh Human population natural death rate 0.00004 [13]
δ Human population induced death rate 0.068 [27]
ωh Immunity loss rate of human population 0.09 [17]
β1m Increasing amount of vector breeding rate 0.07 [17]
β1h Increasing amount of human contact rate 0.05 [28]
Φ1m Increasing amount of vector contact rate 0.09 [28]
β0h Contact rate human with mosquito 0.03 [17]
β0m Contact rate of mosquito with human 0.04 [13]
z∗ Proportion of an antibody produced by human 0.06 Assumed
m∗ Proportion of an antibody produced by mosquito 0.04 Assumed
m Temperature-dependent rate of precipitation 0.08 Assumed
r Temperature growth rate 0.007 [28]
T0 Minimum values of temperature 16℃ [13]
Tmax Maximum values of temperature 28℃ [29]
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B. &en, as shown in Table 7, calculate the ICER for the
remaining strategies C, A, and D.

&e ICER(A) is greater than the ICER(C) from the
competing intervention strategies listed in Table 7. &is
demonstrates that ICER(C) strategy outperforms ICER(A).
As a result, ICER(A) is less effective and more expensive
than ICER(C). As a result, we removed strategy A from the

group of competing strategies and calculated the ICER as
shown in Table 8.

Table 8 with intervention strategies C and D shows that
ICER(C) is less than ICER(D). &is indicates that strategy C
strongly outperforms strategy D. As a result, the C strategy
has the lowest total cost and is the most optimal. Based on
the findings of the analysis, we believe that intervention C,
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Figure 2: Simulation results showing the use of (a) treated bed net (u1), (b) treatment of infectious human (u2), and (c) the control profile
for u1, u2 ≠ 0.
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Figure 3: Simulation results depicting the use of (a) treatment of infectives (u1), (b) indoor spray of insecticides (u3), and (c) the control
profile u1, u3 ≠ 0.

Journal of Mathematics 15



200

180

140

100

60

20

0
0 20 40 60 80 100 120 140 180160

Time (days)

In
fe

ct
ed

 M
os

qu
ito

160

120

80

40

u1 = 0, u2 = 0, u3 = 0

u1 = 0, u2 ≠ 0, u3 ≠ 0

(a)

120

100

80

60

40

20

0
0 20 40 60 80 100 120 140 180160

Time (days)

In
fe

ct
ed

 H
um

an
u1 = 0, u2 = 0, u3 = 0

u1 = 0, u2 ≠ 0, u3 ≠ 0

(b)

1

0.9

0.7

0.5

0.3

0.1

0
0 20 40 60 80 100 120 140 180160

Time (days)

Co
nt

ro
l P

ro
fil

e

0.8

0.6

0.4

0.2

u2 ≠ 0

u3 ≠ 0

(c)

Figure 4: Simulation results representing (a) treatment of malaria infectious (u2), (b) indoor spray of insecticides (u3), and (c) the control
profile for u2, u3 ≠ 0.
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Figure 5: Simulation results indicating treated bed net (u1), treatment (u2), and insecticides spray (u3).
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which consists of treating infected humans and spraying
indoors, is the best optimal and least expensive strategy for
limiting disease spread.

8. Conclusion

&e impact of climate variability on malaria epidemics is
described in this paper using deterministic mathematical
modeling. &e model analysis revealed qualitatively that the
model’s solution is both bounded and positive in the fixed
domain.&emethod of the next-generationmatrix is used to
calculate the basic reproduction number with respect to the
disease-free equilibrium. &e Jacobian matrix and the

Lyapunov method are used to demonstrate the local stability
and global stability of the disease-free equilibrium. Fur-
thermore, if the basic reproduction number is less than one,
the disease-free equilibrium is locally and globally asymp-
totically stable; otherwise, a positive endemic equilibrium
occurs. &e model’s sensitivity has been described in detail,
and the model demonstrates forward and backward bifur-
cation. According to the analytical findings, the best optimal
way to prevent malaria epidemics is to reduce human-
mosquito contact, increase mosquito death rates, and in-
crease the treated rate of an infected human. Furthermore,
we extended the model to an optimal control problem with
three continuous controls, such as personal prevention with
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Figure 6: Diagram showing the existence of bifurcation when T�T0 and T� Tmax for the malaria model problem.

Table 5: Number of total infections saved and cost averted for all strategies.

Strategy Description Total infections averted Total cost ($)
A Treated bed net and insecticides spray 3794.79 6421.36
C Treatment of infected and insecticides spray 4092.55 1958.46
B Treated bed net and treatment of infectious 4116.46 6476.61
D Treated bed net, treatment, and indoor spray 4118.48 6492.28

Table 6: Amount of the total infection averted and total cost used with ICER.

Strategy Amount of infections saved Total cost ($) ICER
B 3794.79 6421.36 1.693
C 4092.55 1958.46 − 14.99
A 4116.46 6476.61 188.96
D 4118.48 6492.28 7.76

Table 7: Amount of the total infection averted and total cost used with ICER.

Strategy Amount of infections saved Total cost ($) ICER
C 4092.55 1958.46 2.09
A 4116.46 6476.61 188.96
D 4118.48 6492.28 7.76

Table 8: Amount of the total infection averted and total cost used with ICER.

Strategy Amount of infections saved Total cost ($) ICER
C 4092.55 1958.46 2.09
D 4118.48 6492.28 181.35
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a treated bed net, drug treatment of infected humans, and
indoor residual spraying for mosquito minimizing strategy.
&e maximum principle of Pontryagin is applied to obtain
the necessary conditions for optimal control, and the cost-
effectiveness analysis is described for all combinations of the
controls considered in the study. Based on the numerical
analysis, we propose that the combination of treatment and
indoor residual spraying is the best strategy for effectively
reducing malaria.
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