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In this article, the reproducing kernel method is presented for the fractional di�erential equations with periodic conditions in the
Hilbert space. �is method gives an approximate solution to the problem. �e approximate and exact solutions are displayed in
the form of series in the reproduction kernel space. In addition, we provide an error analysis for this technique. �e presented
method is tested by some examples to show its precision.

1. Introduction

Fractional di�erential equations are needed to model and
analyze large volumes of problems. FDEs are applied in large
number of �elds such as �uid mechanics, biology, chemistry,
and di�usion [1–7]. Some methods for solving these
equations are Laplace transforms [8], Fourier transform [9],
Adomian decomposition method [10], �nite di�erence
method [11], variational iteration method [12, 13], collo-
cation method [14], and other methods [15–19].

Many papers have worked on FDEs with periodic
conditions, some of which are listed below. Belmekki et al.
have discussed the existence and uniqueness of the solution
in [20]. Wei et al. have reviewed the minimal and maximal
solutions for periodic problems in [21]. In [22], authors have
given monotone iterative techniques for existing solutions.
In [23], Javidi and Saedshoar Heris have used the method
fractional backward di�erentiation formulas for

λnD
αn
t y(t) + λn− 1D

αn− 1
t y(t) + · · · + λ1D

α1
t y(t) + λy(t − τ) � f(t),

(1)

with periodic condition y(0) � y(T).
In this work, we use reproducing kernel Hilbert space

(RKHS) method to solve multiterm FDEs in the form as
follows:

μnD
ηn
0+v(t) + μn− 1D

ηn− 1
0+ v(t) + · · · + μ0D

η0
0+v(t) � g(t, v(t)),

t ∈ [0, T],
(2)

with periodic condition as follows:

v(0) � v(T), (3)

where 0≤ η0 < η1 < · · · < ηn < 1, T> 0, μj ∈ R(j � 0, 1,
. . . , n), μn ≠ 0 in Caputo sense. In [24], the existence and
uniqueness of the solution have been proven to this problem
by using green’s function.

�e reproducing kernel method was �rst used in re-
search on boundary value problems in the early twentieth
century. In 1907, Zarmba was the �rst to introduce the
kernel of certain functions and to express their reproducing
properties. Since 1980, with the e�orts of Cui, the repro-
ducing kernel functions of Hilbert space have been intro-
duced in the form of very simple polynomials. �ey were
able to use methods based on the reproducing kernel space
[25–27]. Many researchers use the RKHS method to �nd
approximate solutions to various problems [28–30], and also
some new applications of reproducing kernel methods and
neural networks in machine learning are found in [31–33].
Very recently, RKHS is applied on fractional di�erential
equations [34–36]. In this paper, the reproducing kernel
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method is presented for the fractional differential equations
with periodic conditions in the Hilbert space. *e ap-
proximate solution obtained from this method is uniformly
convergent to the exact solution.

*is paper is arranged as follows. Section 2 provides
some definitions. Analysis of the RKHS method is proposed
in Section 3.*e convergence of the approximate solution to
the exact solution is given in Section 4. Examples are given in
Section 5.

2. Basic Definitions

We describe some of the symbols and basic definitions used
in this article. Let C(I,R) represent the Banach space of all
continuous functions of I � [0, T] into R, and Cm(I,R)

shows the real valued functions on I where the mth order
derivative is continuous.

Definition 1. *e fractional integral of g ∈ C(I,R) of order
η> 0 is

I
η
0+ g(t) �

1
Γ(η)


t

0

g(s)

(t − s)
1− ηds, 0< t<T. (4)

Definition 2. *e Caputo fractional derivative of
g ∈ Cm(I,R) of order η> 0 is

D
η
0+ g(t) �

I
m− η

D
m

g(t), m − 1< η<m, m ∈ N,

g
(m)

(t), η � m.

⎧⎨

⎩ (5)

Definition 3 (see [37]). Suppose H is a function Hilbert
space, including all real or complex value functions defined
on a abstract space X, with the inner product 〈., .〉H. For
each fixed y ∈ X, if there exist a function Ry(.) ∈ H which
satisfies

〈f, Ry〉H � f(y), (6)

then Ry(.) is called the reproducing kernel of H and the
Hilbert space H is called the reproducing kernel space.

Remark 1. *e real value function space

W
2
2[0, T] � v|v′ is absolutely continuous,

v″ ∈ L
2
[0, T], v(0) � v(T)},

(7)

is a function Hilbert space with

〈v, z〉W2
2

� 
1

i�0
v

(i)
(0)z

(i)
(0) + 

T

0
v

(2)
(t)z

(2)
(t)dt, (8)

‖v‖W2
2

� 〈v, v〉
1/2
W2

2
, (9)

where L2[0, T] denotes the set of square Lebesgue integrable
functions on [0, T].

Remark 2. *e reproducing kernel function Ry(.) in
W2

2[0, T] can be written as

Ry(t) � 

4

i�1
bi(y)t

i− 1
, t≤y, 

4

i�1
ci(y)t

i− 1
, t>y.

⎧⎨

⎩ (10)

It is easy to prove that Ry(.) is obtained as follows.
From (8), we have

〈v, Ry〉w2
2

� 
1

i�0
v

(i)
(0)

z
i
Ry(0)

zt
i

+ 
T

0
v
2
(t)

z
2
Ry(t)

zt
2 dt. (11)

Using several integration by part of


T

0 v2(t)(z2Ry(t)/zt2)dt, we obtain that

〈v, Ry〉w2
2

� 

1

i�0
v

(i)
(0)

z
i
Ry(0)

zt
i

− (− 1)
i
z
3− i

Ry(0)

zt
3− i

⎡⎣ ⎤⎦

+ 

1

i�0
(− 1)

1− i
v

(i)
(T)

z
3− i

Ry(T)

zt
3− i

+ 
T

0
v
2
(t)

z
2
Ry(t)

zt
2 dt.

(12)

If Ry(.) ∈W2
2[0, T], then Ry(0) � Ry(T); also if

v(.) ∈W2
2[0, T], then v(0) � v(1). *erefore,

〈v, Ry〉w2
2

� 
1

i�0
v

(i)
(0)

z
i
Ry(0)

zt
i

− (− 1)
i
z
3− i

Ry(0)

zt
3− i

⎡⎣ ⎤⎦

+ 
1

i�0
(− 1)

1− i
v

(i)
(T)

z
3− i

Ry(T)

zt
3− i

+ 
T

0
v
2
(t)

z
2
Ry(t)

zt
2 dt + b1(v(0) − v(1)).

(13)

*erefore, Ry(.) satisfies the following generalized dif-
ferential equation:

z
4
Ry(t)

zt
4 � δ(t − y),

z
2
Ry(T)

zt
2 � 0,

Ry(0) +
z
3
Ry(0)

zt
3 + b1 � 0,

zRy(0)

zt
−

z
2
Ry(0)

zt
2 � 0,

z
3
Ry(T)

zt
3 + b1 � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where δ denotes the Dirac delta function. While y≠ t, Ry(t)

is the solution of the constant differential equation:

z
4
Ry(t)

zt
4 � 0, (15)

with the boundary conditions
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z
2
Ry(T)

zt
2 � 0,

Ry(0) +
z
3
Ry(0)

zt
3 + b1 � 0,

zRy(0)

zt
−

z
2
Ry(0)

zt
2 � 0,

z
3
Ry(T)

zt
3 + b1 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(16)

*e characteristic equation for (15) is λ4 � 0. *erefore,
the general solution can be written as (10), where coefficients
bi(y) and ci(y), i � 1, 2, 3, 4, are obtained by solving the
following equations:

z
m

Ry(t + 0)

zt
m �

z
m

Ry(t − 0)

zt
m , m � 0, 1, 2,

z
3
Ry(t + 0)

zt
3 −

z
3
Ry(t − 0)

zt
3 � 1,

z
2
Ry(T)

zt
2 � 0,

Ry(0) +
z
3
Ry(0)

zt
3 + b1 � 0,

zRy(0)

zt
−

z
2
Ry(0)

zt
2 � 0,

z
3
Ry(T)

zt
3 + b1 � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(17)

*erefore, the reproducing kernel function Ry(.) in
W2

2[0, T] is obtained as follows:

Ry(t) �

1
12T

2
(3 + T)

36T
2

− 6t
3
T
2

+ 12T
3

− 2t
3
T
3

+ 6t
3
Ty + 12tT

3
y,

+ 6t
2
T
3
y + 3t

3
Ty

2
− 18tT

2
y
2

− 9t
2
T
2
y
2

− t
3
y
3

+ 6tTy
3

+ 3t
2
Ty

3
, y≤ t,

1
12T

2
(3 + T)

36T
2

+ 12T
3

+ 6t
3
Ty − 18t

2
T
2
y + 12tT

3
y + 3t

3
Ty

2
,

− 9t
2
T
2
y
2

+ 6tT
3
y
2

− t
3
y
3

+ 6tTy
3

+ 3t
2
Ty

3
− 6T

2
y
3

− 2T
3
y
3
, y> t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Remark 3. *e real value function space

W
1
2[0, T] � v | v is absolutely continuous, v′ ∈ L

2
[0, T] ,

(19)

is a function Hilbert space with inner product

〈v, z〉W1
2

� v(0)z(0) + 
T

0
v′(t)z′(t)dt. (20)

It can be proved that W1
2[0, T] is a reproducing kernel

Hilbert space and

Ry(t) �
t + 1, t≤y,

y + 1, t>y.
 (21)

3. Solution Procedure (2) by RKHS Method

Here, we will construct a linear differential operator and an
orthogonal system in W1

2[0, 1]. After that, the RKHSmethod
for obtaining solution (2) with condition (3) is presented.

First, by introducing linear operator L: W2
2[0, T]

⟶W1
2[0, T] as

Lv(t) � 
n

j�0
μjD

ηj

0+ v(t), (22)

then problem (2) will be converted into the following form:

(Lv)(t) � g(t, v(t)), 0≤ t≤T,

v(0) � v(T).
 (23)

Theorem 1. -e operator L is a bounded linear operator.

Proof. It can be easily shown that L is a linear operator. So,
we only prove the boundary of L. From (20), we have

‖Lv‖
2
W1

2
� 〈Lv, Lv〉W1

2
� [(Lv)(0)]

2
+ 

1

0
(Lv)′(t) 

2dt. (24)

By reproducing property of Ry(.), we have

v(t) �〈v(y), Rt(y)〉W2
2
,

(Lv)(t) �〈v(y), LRt(y)〉W2
2
,

(Lv)′(t) �〈v(y), LRt(y)′( 〉W2
2
.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(25)

By Schwarz inequality, we get

|(Lv)(t)| � 〈v(y), LRt(y)〉W2
2



≤ LRt

����
����W2

2
‖v‖W2

2
� M1‖v‖W2

2
,

(Lv)′(t)


 � 〈u(y), LRt(y)( ′〉W2
2



≤ LRt( ′
����

����W2
2
‖v‖W2

2
� M2‖v‖W2

2
,

(26)
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where M1, M2 > 0 are positive constants and the proof is
completed.

*us, [(Lv)(0)]2 ≤M2
1‖v‖2W2

2
, ‖[(Lv)′(t)]2 ≤M2

2‖ and

1
0[(Lv)′(t)]2dt≤M2

2‖v‖2W2
2
.*at is,

‖(Lv)‖
2
W1

2
� [(Lv)(0)]

2
+ 

1

0
(Lu)′(t) 

2dx≤ M
2
1 + M

2
2 ‖v‖W2

2
,

(27)

where M � M2
1 + M2

2 > 0. We will construct a complete
system of Ψi(.) 

∞
i�1 of W2

2[0, T] by settingΦi(t) � Tti
(t) and

Ψi(t) � L⋆Φi(t), where ti 
∞
i�1 is dense on [0, T] and

L⋆: W1
2[0, T]⟶W2

2[0, T] is conjugate operator of L. □

Lemma 1 (see [37]). If ti 
∞
i�1 is dense on [0, T], then

Ψi(.) 
∞
i�1 is a complete system of W2

2[0, T] and Ψi(t) �

LRy(t)|y�ti
.

By using the Gram–Schmidt process of Ψi(.) 
∞
i�1 is

obtained the orthonormal basis Ψi(.) 
∞
i�1 of space W2

2[0, T],
which satisfies

Ψi(t) � 
i

k�1
ρjkΨk(t). (28)

*e coefficients ρjk are positive and given by

ρ11 �
1
Ψ1

����
����
,

ρii �
1

�������������

Ψi

����
����
2

− 
i− 1
k�1d

2
ik

 ,

ρij �
− 

i− 1
k�jdikρkj

�������������

Ψi

����
����
2

− 
i− 1
k�1d

2
ik

 ,

(29)

where dik � 〈Ψi,Ψk〉W2
2
.

v(t) � 
∞

i�1
AiΨi(t), (30)

where Ai � 
i
k�1 ρikg(tk, vk− 1(tk)) are unknown and we will

obtain Ai by using Bi. So, suppose v0(t) � 0 and vn(t) is
given by

vn(t) � 
n

i�1
BiΨi(t), (31)

where Bi of Ψi(t) is given by

B1 � ρ11g t1, v0 t1( ( ,

v1(t) � B1Ψ1(t),

B2 � 
2

k�1
ρ2kg tk, vk− 1 tk( ( ,

v2(t) � 
2

i�1
BiΨi(t),

⋮

Bn � 
n

k�1
ρnkg tk, vk− 1 tk( ( .

(32)

Theorem 2 (see [37]). Let ti 
∞
i�1 be dense set in [0, T] and

the exact solution v(.) of (23) in space W2
2[0, T] be unique,

then

v(t) � 
∞

i�1


i

k�1
ρikg tk, v tk( ( Ψi(t), (33)

and for this problem, approximate solution nth order as
follows:

vn(t) � 
n

i�1


i

k�1
ρikg tk, v tk( ( Ψi(t). (34)

Theorem 3. If v ∈W2
2[0, T], then there exists constant C> 0

such that

v
(i)

(t)


≤C‖v‖W2
2
, i � 0, 1. (35)

Proof. For each t ∈ [0, T], we obtain

|v(t)| � 〈v(ξ), Rt(ξ)〉W2
2



≤ Rt(ξ)
����

����W2
2
‖v(ξ)‖W2

2
≤C1‖v(ξ)‖W2

2
,

(36)

and we also have

v′(t)


 � 〈v(ξ),
zRt(ξ)

zt
〉W2

2




≤

zRt(ξ)

zt

�������

�������W2
2

‖v(ξ)‖W2
2
≤C2‖v(ξ)‖W2

2
, (37)

where C1 and C2 are positive constants and C � max C1, C2 .

Corollary 1. -e approximate solutions vn(.) and vn
′(.)

uniformly converge to the exact solutions v(.) and v′(.),
respectively.

Proof. From *eorem 3, for each t ∈ [0, T], we obtain

v
(i)
n (t) − v

(i)
(t)



 � 〈vn(ξ) − v(ξ),
ziRt(ξ)

zt
〉W2

2




,

≤
ziRt(ξ)

zt

��������

��������W2
2

vn(ξ) − v(ξ)
����

����W2
2
,

≤Ci vn(ξ) − v(ξ)
����

����W2
2
,

(38)

where Ci, i � 0, 1 are positive constants. *en, if
vn(ξ)⟶

(.)
W2
2 v(ξ) as n⟶∞, the approximate solutions

vn(t) and vn
′(t) converge uniformly to v(t) and v′(t),

respectively. □

Remark 4. We apply the following two cases to solve
equations (2) and (3) by using the RKHS method.

Case 1. Let (2) be linear and (30) and (31) denote the exact
and approximate solutions, respectively.

Case 2. Let (2) be nonlinear; in this case, the solution of (2)
is as follows:
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We can guarantee that vn(t) in equation (37) satisfies
condition (3).

4. Convergence Analysis

In this section, we will show that approximate solution vn(.)

of equation (37) is convergent to the exact solution v(.) of
equation (2). First, we express the following lemma.

Lemma 2. If vn(t)⟶
(.)

W2
2 v(t), tn⟶ y, (n⟶∞) and

g(t, y) is continuous function with respect to t ∈ [0, T] and
y ∈ (− ∞,∞), then g(tn, vn− 1(tn))⟶ g(y, v(y))asn

⟶∞.

Proof. Observe that

vn− 1 tn(  − v(y)


 � vn− 1 tn(  − vn− 1(y) + vn− 1(y) − v(y)




≤ vn− 1 tn(  − vn− 1(y)


 + vn− 1(y) − v(y)


.
(39)

Reproducing property of Ry(ξ) yields that

vn− 1 tn(  − vn− 1(y)


 � 〈vn− 1(ξ), Rtn
(ξ) − Ry(ξ)〉W2

2





≤ vn− 1
����

����W2
2

Rtn
(ξ) − Ry(ξ)

�����

�����W2
2
.

(40)

From the symmetry of Ry(ξ), result is
‖Rtn

(ξ) − Ry(ξ)‖⟶ 0. *erefore, |vn− 1(tn) − vn− 1(y)|

⟶ 0 as tn⟶ y, (n⟶∞). From Corollary 1, it holds
that |vn− 1(y) − v(y)|⟶ 0 asn⟶∞. *en, vn− 1(tn)

⟶
(.)

W2
2 v(y)asn⟶∞. Because g(.) is continuous

functions, then g(tn, vn− 1(tn))⟶ g(y, v(y)) asn

⟶∞. □

Lemma 3. For vn(t) in equation (37), we have

Lvn tj  � Lv tj  � g tj, vj− 1 tj  . (41)

Proof. Suppose j≤ n, therefore,

Lvn tj  � 

n

i�1
BiLΨi tj  � 

n

i�1
Bi〈LsΨi(t),Φj(t)〉W1

2

� 
n

i�1
Bi〈Ψi(t), L

∗Φj(t)〉W2
2

� 
n

i�1
Bi〈Ψi(t),Ψj(t)〉W2

2
.

(42)

By using orthogonality of Ψi(t) 
∞
i�1, we obtain



j

l�1
ρjlLvn tl(  � 

n

i�1
Bi〈Ψi(t), 

j

l�1
ρjlΨl(t)〉W2

2
,

� 
n

i�1
Bi〈Ψi(t),Ψj(t)〉W2

2
,

� Bj � 

j

l�1
ρjlg tl, vl− 1 tl( ( .

(43)

If j � 1, then

Lvn t1(  � g t1, v0 t1( ( . (44)

Besides if j � 2, then

ρ21Lvn t1(  + ρ22Lvn t2(  � ρ21g t1, v0 t1( (  + ρ22g t2, v1 t2( ( ,

(45)

that is, Lvn(t2) � g(t2, v1(t2)). By the same manner, it yields
that

Lvn tj  � g tj, vj− 1 tj  . (46)

Hence, v(t) � 
∞
i�1 Biψi(t) is obtained by taking the limit

of equation (37). *erefore, vn(t) � Pnv(t), Pn is an or-
thogonal projector of W2

2[0, 1] to span Ψ1,Ψ2, . . . ,Ψn .
*en,

Lvn tj  �〈Lvn(t),Φj(t)〉W1
2

�〈vn(t), L
∗Φj(t)〉W2

2

�〈Pnv(t),Ψj(t)〉W2
2

�〈v(t), PnΨj(t)〉W2
2

�〈v(t),Ψj(t)〉W2
2

�〈v(t), L
∗Φj(t)〉W2

2

�〈Lv(t),Φj(t)〉W1
2

� Lv tj .

(47)

Theorem 4. Let ‖vn‖W2
2
be bounded and ti 

∞
i�1 is dense on

[0, T], then n-term approximate solutions vn(t) in equation
(37) converge to

v(t) � 
∞

i�1


i

k�1
ρikg tk, vk− 1( Ψi(t). (48)

Proof. Firstly, we prove that the convergence of vn 
∞
n�1 in

equation (37) is convergent in the sense of ‖.‖W2
2
. From

equation (37), it is inferred that vn+1(t) �

vn(t) + Bn+1Ψn+1(t). Since Ψi 
∞
i�1 is orthogonal, hence,

vn+1
����

����
2
W2

2
� vn

����
����
2
W2

2
+ Bn+1( 

2
� · · · � 

n+1

i�1
Bi( 

2
, (49)

where Bi � 
i
k�1 ρikg(tk, vk− 1(tk)). It holds that ‖vn‖2W2

2
≤

‖vn+1‖
2
W2

2
.

Because ‖vn‖2W2
2
is bounded, ‖vn‖W2

2
is convergent as

n⟶∞. *erefore, there exists constant c such that

∞
i�1 (Bi)

2 � c. *e implies that Bi ∈ l2 � B| 
∞
i�1

(Bi)
2 <∞}.
Let m> n, then from the orthogonality of vn+1(t) − vn(t),

it follows that

vm − vn

����
����
2
W2

2
� vm − vm− 1 + vm− 1 − · · · + vn+1 − vn

����
����
2
W2

2
,

� vm − um− 1
����

����
2
W2

2
+ · · · + vn+1 − vn

����
����
2
W2

2
,

(50)

because ‖vm − vm− 1‖
2
W2

2
� (Bm)2. Consequently,

vm − vn

����
����
2
W2

2
� 

m

i�n+1
Bi( 

2⟶ 0 asn, m⟶∞. (51)
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Hence, W2
2[0, T] is complete, and then

vn(t)⟶
(.)

W2
2 v(t), as (n⟶∞).

Now, we prove that v(t) is the solution of equation (23).
Because ti 

∞
i�1 is dense on [0, T], for each t ∈ [0, T], there

exists a subsequence tnj
  such that tnj

 ⟶ t as j⟶∞.

Since tj 
∞
j�1 is dense on [0, T], thus for all t ∈ [0, T],

there exists a subsequence tnj
  such that tnj

⟶ t, as

i⟶∞. By Lemma 3, it follows that

Lvn(tnj
) � g(tnj

, vnj− 1(tk)). Hence, let j⟶∞, from
Lemma 2 and the continuity of g, we have
Lv(t) � g(t, v(t)). □

Theorem 5. Assume rn � ‖v(t) − vn(t)‖2W2
2
, where vn(t) is

derived from the RKHS method. -erefore, rn is decreasing in
‖.‖W2

2
.

Proof. Note that

r
2
n � v(t) − un(t)

����
����
2
W2

2
� 
∞

j�n+1
〈v(t),Ψj(t)〉W2

2
Ψ(t)

����������

����������

2

� 
∞

j�n+1
〈v(t),Ψj(t)〉W2

2
 

2
,

r
2
n− 1 � v(t) − vn− 1(t)

����
����
2
W2

2
� 
∞

j�n

〈v(t),Ψj(t)〉W2
2
Ψj(t)

����������

����������

2

W2
2

� 
∞

j�n

〈v(t),Ψj(t)〉W2
2

 
2
,

(52)

therefore, ‖rn(t)‖W2
2
≤ ‖rn− 1(t)‖W2

2
. □

Table 1: *e absolute error for Example 1 with n � 22.

ti v(t) v22(t) Absolute error

0.1 0.081 0.0808825 0.000223837
0.2 0.128 0.127862 0.000172347
0.3 0.147 0.14684 0.000157614
0.4 0.144 0.143828 0.000150239
0.5 0.125 0.12483 0.000143359
0.6 0.096 0.0958422 0.000134868
0.7 0.063 0.0628596 0.000124506
0.8 0.032 0.0318794 0.000112694
0.9 0.009 0.00890275 0.0000997064
1 0 − 1.55353 × 10− 15 1.55353 × 10− 15

0.2 0.4 0.6 0.8 1.0
t

0.2 0.4 0.6 0.8 1.0
t

0.05

0.10

0.15

v (t)
v22 (t)

0.00005

0.00010

0.00015

0.00020

0.00025

e (
t)

Absolute error

Figure 1: Graphs of numerical solution and absolute error with n � 22 for Example 1.
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Table 2: *e absolute error for Example 2 with n � 20.

ti v(t) v20(t) Absolute error

0.1 − 0.09 − 0.092247 0.00224696
0.2 − 0.16 − 0.161132 0.00113237
0.3 − 0.21 − 0.210852 0.000852089
0.4 − 0.24 − 0.240714 0.000713747
0.5 − 0.25 − 0.250521 0.00062149
0.6 − 0.24 − 0.240549 0.000549103
0.7 − 0.21 − 0.210485 0.000485426
0.8 − 0.16 − 0.160424 0.000423569
0.9 − 0.09 − 0.0903508 0.000350814
1 0 − 7.51086 × 10− 16 7.51086 × 10− 16

0.2 0.4 0.6 0.8 1.0
t

0.2 0.4 0.6 0.8 1.0
t

–0.25

–0.20

–0.15

–0.10

–0.05

v (t)
v20 (t)

0.0020

0.0015

0.0010

0.0005

e (
t)

Absolute error

Figure 2: Graphs of numerical solution and absolute error with n � 20 for Example 2.

Table 3: Numerical solution for Example 3 with n � 10.

ti v(t) v10(t) η0 � 0.4, η1 � 0.5 η0 � 0.5, η1 � 0.6 Absolute error

0.2 − 0.36 − 0.351811 − 0.350017 − 0.34599 0.00818945
0.4 − 0.64 − 0.637683 − 0.636476 − 0.633814 0.00231702
0.6 − 0.84 − 0.837922 − 0.836963 − 0.834929 0.00207829
0.8 − 0.96 − 0.958537 − 0.95775 − 0.956096 0.0014633
1 − 1 − 0.998869 − 0.998235 − 0.99692 0.00113105
1.2 − 0.96 − 0.959148 − 0.958648 − 0.957624 0.000852181
1.4 − 0.84 − 0.839392 − 0.83902 0.83827 0.00060833
1.6 − 0.64 − 0.639624 − 0.639379 − 0.638901 0.000376393
1.8 − 0.36 − 0.359955 − 0.359858 − 0.359676 0.0000452721
2 0 3.3158 × 10− 14 1.37181 × 10− 14 3.4689 × 10− 14 3.3158 × 10− 14
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5. Numerical Tests

We provide three examples to explain the content given, and
we realize the validity and accuracy of the RKHS method.

Example 1. In this example, we consider FDE with periodic
condition:

D
0.4
0+ v(t) + D

0.3
0+ v(t) + v

2
(t)e

v(t)

�
Γ(4)

Γ(3.6)
t
2.6

− 2
Γ(3)

Γ(2.6)
t
1.6

+
Γ(2)

Γ(1.6)
t
0.6

+
Γ(4)

Γ(3.7)
t
2.7

− 2
Γ(3)

Γ(2.7)
t
1.7

+
Γ(2)

Γ(1.7)
t
0.7

+ t
3

− 2t
2

+ t 
2
e

t3− 2t2+t
,

· v(0) � v(1),

(53)

for t ∈ [0, 1]. *e exact solution is v(t) � t3 − 2t2 + t. We
choose 22 points in [0, 1], and by using the proposed
method, the approximate solution v22 is obtained. Absolute
error values are reported in Table 1 for T � 1 and
ti � i/n, i � 1, 2, . . . , n. *e graphs of the absolute error and
the numerical solution are plotted in Figure 1. Here,

L � D
0.4
0+ v(t) + D

0.3
0+ v(t),

g(t, v(t)) �
Γ(4)

Γ(3.6)
t
2.6

− 2
Γ(3)

Γ(2.6)
t
1.6

+
Γ(2)

Γ(1.6)
t
0.6

+
Γ(4)

Γ(3.7)
t
2.7

− 2
Γ(3)

Γ(2.7)
t
1.7

+
Γ(2)

Γ(1.7)
t
0.7

+ t
3

− 2t
2

+ t 
2
e

t3− 2t2+t

− v
2
(t)e

v(t)
,

(54)

and

Ψi(t) � LRy(t)|y�ti
� D

0.4
0+ Rti

(t) + D
0.3
0+ Rti

(t), (55)

finally v(t) and vn(t) are obtained from (36) and (37),
respectively.

Example 2. We consider FDE with periodic condition:

D
0.6
0+ v(t) + D

0.5
0+ v(t) + D

0.2
0+ v(t)

+
Γ(3)

Γ(2.5)
t
1.5

−
Γ(2)

Γ(1.5)
t
0.5

−
Γ(2)

Γ(1.8)
t
0.8

+ sinh t
2

− t (1 − t),

v(0) � v(1),

(56)

for t ∈ [0, 1]. *e exact solution is v(t) � t2 − t. We choose
20 points in [0, 1], and by using the proposed method, we
obtained the approximate solution v20. Absolute error values
are reported in Table 2 for T � 1 and ti � i/n, i � 1, 2, . . . , n.
*e graphs of the absolute error and the numerical solution
are plotted in Figure 2.

Example 3. We consider FDE with periodic condition

D
η1
0+ v(t) + D

η0
0+ v(t) �

Γ(3)

Γ 3 − η1( 
t
2− η1 − 2

Γ(2)

Γ 2 − η1( 
t
1− η1

+
Γ(3)

Γ 3 − η0( 
t
2− η0 − 2

Γ(2)

Γ 2 − η0( 
t
1− η0 ,

v(0) � v(2),

(57)

for t ∈ [0, 2]. *e exact solution is v(t) � t2 − 2t. Using this
method, taking ti � i/n, i � 1, 2, . . . , n, for n � 10 and T � 2,
the numerical results are given in Table 3 for
η0 � 0.2 and η1 � 0.5. *ree graphs of the approximate
solution for η1 and η0 are drawn in Figure 3.

6. Conclusion

In this paper, we have proposed the RKHS method to solve
fractional differential equations with periodic conditions.
*ismethod is a powerful technique for finding approximate
solutions. *e approximation error and convergence anal-
ysis are obtained in the RKHS. We illustrate the efficiency of
the method with a few examples.
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