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�e main goal of this paper is to introduce and investigate the related theory on monadic e�ect algebras. First, we design the
axiomatic system of existential quanti�ers on e�ect algebras and then use it to give the de�nition of the universal quanti�er and
monadic e�ect algebras. �en, we introduce relatively complete subalgebra and prove that there exists a one-to-one corre-
spondence between the set of all the existential quanti�ers and the set of all the relatively complete subalgebras. Moreover, we
characterize and give the generated formula of monadic ideals and prove that Riesz monadic ideals and Riesz monadic con-
gruences can be mutually induced. Finally, we study the strong existential quanti�er and characterize monadic simple and
monadic subdirectly irreducible e�ect algebras.

1. Introduction

E�ect algebras have been introduced by Foulis and Bennett
[1] for modeling unsharp measurement in the quantum
mechanical system. �ey are a generalization of many
structures which arise in the axiomatization of quantum
mechanics (Hilbert space e�ects), noncommutative measure
theory and probability (orthomodular lattices and posets),
fuzzy measure theory, and many-valued logic (MV-alge-
bras). Moreover, several attempts have been made to study
ideals and congruences on e�ect algebras, staring points are
in the paper [2, 3] in which it is proved that there exists an
order isomorphism between Riesz ideals and Riesz con-
gruences and developed in [4, 5].

�e name “monadic” comes from the connection with
predicate logics for languages having one placed predicate
and a single quanti�er. Monadic Boolean algebras are
Boolean algebras with an additional unary operation which
is an algebraic counterpart of the existential quanti�er; they
were introduced by Halmos [6] as an algebraic counterpart
of the one-variable fragment of the classical predicate logic.
Algebraic counterparts of the existential or universal
quanti�ers have also been consequently studied for certain
nonclassical logics. For example, monadic MV-algebras

were introduced and studied in [7], which is an algebraic
model of the one-element fragment of Łukasiewicz predicate
logic. Also, the theory of monadic MV-algebras has been
developed in [8, 9]. �en, monadic noncommutative GMV-
algebras having the same sense for noncommutative
Łukasiewicz logic were introduced and studied in [10].
Moreover, monadic Heyting algebras were introduced in
[11] as an algebraic model of the one-variable fragment of
the intuitionistic predicate logic. From then on, the notion of
monadic has been extended to other logical algebras such as
monadic BL-algebras [12–14], monadic residuated lattices
[15], monadic R0-algebras [16], monadic hoop algebras [17],
monadic equality algebras [18], monadic quantum B-alge-
bras [19, 20], and their noncommutative cases. Note that,
since both MV-algebras and GMV-algebras satisfy De
Morgan and double negation laws, in the de�nition of the
corresponding monadic algebras, it is impossible to use only
one of the existential and universal quanti�ers as initial; the
other is then de�nable as the dual of the original one.
However, in contrast to the monadic MV-algebras and
GMV-algebras, monadic Heyting algebras, monadic BL-
algebras, and other logical algebras require using both kinds
of quanti�ers simultaneously because these quanti�ers are
not mutually de�nable.
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Originally, effect algebras were introduced as partial
algebraic structure, and several attempts have been made to
combine effect algebras with total algebraic structure
[21–23]. However, previously, “monadic” was just intro-
duced and studied on total algebraic structure. In our paper,
we try to introduce the “monadic” into the effect algebra
which is a typical partial algebraic structure. We believe that
this can be helpful to study the effect algebras better.

)e paper is organized as follows. In Section 2, we recall
some basic definitions and properties in effect algebras
which will be used in the remainder of the paper. In Section
3, we design the axiomatic system of existential quantifiers
on effect algebras. Since effect algebras also satisfy the double
negation laws, we just use existential quantifier to define
monadic effect algebras. Also, the universal quantifier is
definable as the dual of the existential quantifiers. )en, we
give some nontrivial examples for monadic effect algebras
and study some properties of existential quantifiers and
universal quantifiers. Moreover, we introduce relatively
complete subalgebras of effect algebras and study the rela-
tionship between the existential quantifiers and the relatively
complete subalgebras. In Section 4, we introduce monadic
ideals on monadic effect algebras. In particular, we focus on
the relationship between Riesz monadic ideals and Riesz
monadic congruences and the relationship between the
lattice of all monadic ideals of (E,∃) and the lattice of all
ideals of ∃E. Moreover, we consider in which case the
quotient structure (E/I,∃I) is also a monadic effect algebra.
Finally, we introduce and characterize monadic simple and
monadic subdirectly irreducible effect algebras.

2. Preliminaries

In this section, we summarize some definitions and results
about effect algebras, which will be used in the following
part, and we shall not cite them every time they are used.

Definition 1 (see [1]). An effect algebra (EA for short) is a
structure (E; ⊕ , 0, 1) consisting of a set E, elements 0 and 1
in E are the zero and the unit, and a partially defined op-
eration ⊕ on E is called the orthosummation, such that for
all x, y, z ∈ E:

(EA1): if x ⊕ y is defined, then y⊕ x is defined and
x⊕y � y⊕x

(EA2): if x⊕y and (x⊕y)⊕ z are defined, then y⊕ z

and x⊕ (y⊕ z) are defined and (x⊕y)⊕ z � x⊕ (y⊕ z)

(EA3): for each x ∈ E, there exists a unique element
x ∈ E called the orthosupplement of x, such that
x⊕ x � 1
(EA4): x⊕ 1 is defined only if x � 0

Remark 1 (see [1]). In an effect algebra E, a partial ordering
is defined by a≤ b iff there is c ∈ E such that a⊕ c � b. It
turns out that the element c, if it exists, is uniquely defined. If
a⊕ b is defined, we say that a and b are orthogonal and write
a⊥b. Moreover, a⊥b if and only if a≤ b. Moreover, if a∨b

and a∧b exist for all a, b ∈ E, then we say that E is a lattice
ordered effect algebra.

)e partial operation ⊖ by b⊖a :� c iff a⊕ c � b. Clearly, z

is defined iff a≤ b. With respect to this partial order, we have
0≤ a≤ 1 for all a ∈ E. In particular, a � 1⊖a. Moreover, if
a⊥b, then a⊕ b � (a⊖b) � (b⊖a). )e other partial operation
⊙ by a⊙ b :� (a⊕ b). Clearly, a⊙ b is defined iff a≤ b iff b≤ a.

Proposition 1 (see [1]). Let E be an effect algebra and
a, b, c ∈ E. -en,

(1) If a≤ b, then a≤ a⊕ b and (a⊕ b)⊖a � b

(2) If a≤ b≤ c, then a⊕ (b⊖c) � (a⊕ b)⊖c
(3) If a≤ b≤ c, then a⊕ (c⊖b) � c⊖(b⊖a) and also

(c⊖b)⊕ (b⊖a) � c⊖a

Definition 2 (see [1]). Let E be an effect algebra and F⊆E. F is
called a subalgebra of E if (i) 0, 1 ∈ F, (ii) for p ∈ F, p ∈ F,
and (iii) for p, q ∈ F with p⊥q, p⊕ q ∈ F.

Definition 3 (see [3]). A subset I of an effect algebra E is
called an ideal, if for all a, b ∈ E:

(I1): if a, b ∈ I and a⊥b, then a⊕ b ∈ I

(I2): if a ∈ I and b≤ a, then b ∈ I

An ideal I of an effect algebra E is called a Riesz ideal, if
for all a, c, d ∈ E, where c⊥d
(I3): if a ∈ I and c⊕d≥ a, then there exists h, k ∈ Iwith
h≤ c, k≤ d and h⊕ d≥ a

An ideal I of E is called a proper ideal if I≠E. Also, a
proper ideal I of E is called a maximal ideal if it is not
contained in any proper ideal of E. We denote the set of all
ideals of E by I(E) and the set of all Riesz ideals of E by
RI(E). Moreover, for any X⊆E, there will be a smallest ideal
(X] with X⊆(X]. We call (X] the ideal generated by X.

Lemma 1 (see [3]). LetE be an effect algebra and X⊆E.-en,
the ideal (X] generated by X can be constructed in the fol-
lowing way: define I0 � X, In+1 :� ∪ x∈In

E[0, x], and
In+2 :� x⊕y: x, y ∈ In+1, x⊥y , n � 0, 1, · · ·. Clearly,
In⊆In+1⊆In+2, n � 0, 1, · · ·. -en, (X] � ∪ ∞n�0In.

Definition 4 (see [3]). A congruence on an effect algebra E is
an equivalence relation ∼ such that for all a, a1, b, b1 ∈ E:

C1: if a1 ∼ a, b1 ∼ b, a⊥b, and a1⊥b1, then
a1 ⊕ b1 ∼ a⊕ b

C2: if a1 ∼ a and a⊥b, then there exists b0 ∈ E with
a1⊥b0 and b0 ∼ b

A congruence ∼ on E is a Riesz congruence provided
that the following holds for all a, b ∈ E

C3: if a ∼ b, then there exists c ∈ E such that c⊥a, c⊥b,
and a⊕ c ∼ 1 ∼ b⊕ c

Given an ideal I of an effect algebra E, we may define a
relation ∼ I on E as follows: a ∼ Ib⇔there exist i, j ∈ I: i≤ a,
j≤ b a⊖i≤ b, and b⊖j≤ a. According to the relationship
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between ideals and congruences on effect algebras, we have
the following theorem.

Theorem 1 (see [3]). Let E be an effect algebra. -en, the
following holds:

(i) If I is a Riesz ideal, then ∼ I is a Riesz congruence and
[0]∼ I

� I

(ii) If ∼ is a Riesz congruence, then I � [0]∼ is a Riesz
ideal and ∼ I � ∼

(iii) -e map which assigns to every Riesz congruence the
equivalence class of 0 is an order isomorphism between
the lattice of all Riesz congruence and the lattice of all
Riesz ideal, whose inverse is the map I↦ ∼ I

Theorem 2 (see [3]). For a congruence ∼ on an effect al-
gebra E, the set of all congruence class is denoted by E/ ∼ , i.e.,
E/ ∼ � [x]|x ∈ E{ }. We define [a]⊥[b] if there exists
a1, b1 ∈ E such that a1 ∼ a, b1 ∼ b, and a1⊥b1 and put
[a]⊕ [b] � [a1 ⊕ b1]. -en, (E/ ∼ , ⊕ , [0], [1]) is an effect
algebra which is called a quotient effect algebra of E.

Definition 5 (see [4]). Let (E; ⊕ , 0, 1) be an effect algebra.)en,

(1) E is called simple, if it has exactly two ideals: 0{ } and E

(2) E is called subdirectly irreducible if among the nontrivial
congruence relations of E, there exists the least one

Definition 6. (see [8]). LetM�(M, ⊕ , ⊙ , ∗ , 0, 1) be anMV-
algebra. Amapping ∃: M⟶M is called an existential quantifier
on M, if for all x, y ∈M, the following conditions hold:

(E1)x≤∃x
(E2)∃(x∨y) � ∃x∨∃y
(E3)∃(∃x)∗ � (∃x)∗

(E4)∃(∃x⊕∃y) � ∃x⊕∃y
(E5)∃(x⊙y) � ∃x⊙∃y
(E6)∃(x⊕y) � ∃x⊕∃y

3. Monadic Effect Algebra

In this section, we use the existential quantifier to construct
the axiomatic system of monadic effect algebras. Also, we
introduced relatively complete subalgebras of effect algebras
and prove that there exists a one-to-one correspondence
between the set of the existential quantifiers and the set of
relatively complete subalgebras.

Definition 7. Let E � (E, ⊕ , 0, 1) be an effect algebra. A
mapping ∃: E⟶ E is called an existential quantifier on E,
if for all x, y ∈ E, the following conditions hold:

(E1): x≤∃x
(E2): if x≤y, then ∃x≤∃y
(E3)∃(∃x) � ∃x
(E4)∃(∃x⊕∃y) � ∃x⊕∃y, whenever ∃x⊕∃y is
defined

Example 1. Let E � (E, ⊕ , 0, 1) is an effect algebra. Clearly,
we have that idE is an existential quantifier on E.

From the above example, we know that monadic effect
algebra is a generalization of effect algebra.

Example 2. LetE � [0, 1]. For any x, y ∈ E, we define x⊕y �

x + y if and only if x + y≤ 1 and x � 1 − x, then (E, ⊕ , 0, 1)

is an effect algebra. For any n ∈ N, we define ∃n as follows:

∃nx �

0, x � 0,

i

n
, x ∈

i − 1
n

,
i

n
 i � 1, 2, . . . , n.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

We can check that ∃n is an existential quantifier on E.

Example 3. Let E � 0, a, b, c, d, 1{ }, where 0≤ a, b≤ c, d≤ 1.
Define operation ⊕ and as follows (see Tables and 21):

)en, (E, ⊕ , ¬, 0, 1) is an effect algebra. We define ∃ as
follows: ∃0 � 0,∃a � ∃d � d,∃b � b, and∃c � ∃1 � 1. We
can easily check that ∃ is an existential quantifier on E.

Remark 2. As is well known, we call a lattice ordered effect
algebra which satisfies a∧b � 0⇒a≤ b as an MV-effect al-
gebra, and MV-algebras and MV-effect algebras are in one-
to-one correspondence; we always identify them. However,
the existential quantifiers on MV-algebras and MV-effect
algebras are different. We can check that an existential
quantifier onMV-algebra is an existential quantifier onMV-
effect algebra, but the converse not holds. Let (E,∃) be the
monadic effect algebra given by Example 3; we can check
that E is an MV-effect algebra. Since a⊕ a � b and ∃a � d,
∃a⊕∃a � d⊕d is not defined, which implies that ∃ does not
satisfy the E6 in the definition of monadic MV-algebras.

Proposition 2. Let M be an MV-algebra and ∃ be an ex-
istential quantifier on E. -en, for all x, y ∈ E, the following
conditions are valid:

(1) ∃1 � 1 and ∃0 � 0
(2) ∃∃x � ∃x
(3) x≤∃y⇔∃x≤∃y
(4) ∃x≤∃x
(5) If ∃x⊕∃y is defined, then ∃(x⊕y)≤∃x⊕∃yx

(6) -e set ∃E is an effect subalgebra, ∃E �

x ∈ E: ∃x � x{ }, and ∃ on ∃E is the identity on ∃E
(7) If y≤x, then ∃(∃x⊖∃y) � ∃x⊖∃y
(8) If y≤x, then ∃x⊖∃y≤∃(x⊖y)

(9) ∃(∃x⊙∃y) � ∃x⊙∃y, whenever ∃x⊙∃y is defined
(10) If x≤y, then ∃(x⊙y)≤∃x⊙∃y
(11) ∃(∃x∧∃y) � ∃x∧∃y, whenever ∃x∧∃y exist

Proof

(1) By E1, 1≤∃1; thus, ∃1 � 1 as 1 is the greatest el-
ement of E. By E3, ∃0 � ∃1 � ∃(∃1) � ∃1 � 1 � 0.
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(2) By (1) and E4, ∃∃x � ∃(∃x⊕ 0) � ∃(∃x⊕∃0) �

∃x⊕∃0 � ∃x⊕ 0 � ∃x.
(3) If x≤∃y, by E2 and (2), we have ∃x≤∃∃y � ∃y;

conversely, if ∃x≤∃y, by (1), we have x≤∃x≤∃y.
(4) By (1), we have x≤∃x; then, ∃x≤ x≤∃x.
(5) If ∃x⊕∃y is defined, then we have ∃x≤ ∃y, so

x≤∃x≤ ∃y≤ y; then, we get x⊕y defined.
)erefore, ∃(x⊕y)≤∃(∃x⊕∃y) � ∃x⊕∃y.

(6) For any x ∈∃E, there exists y ∈ E, such that x � ∃y;
then, we have ∃x � ∃∃y � ∃y � x. )erefore,
∃E � x ∈ E: ∃x � x{ }. For any x, y ∈∃E, we have
x � ∃x and y � ∃y; if x⊕y is defined, then
x⊕y � ∃x⊕∃y � ∃(∃x⊕∃y). )erefore,
x⊕y ∈∃E. For any x ∈∃E, then x � ∃x, so
∃x � ∃∃x�∃x�x. )erefore, x ∈∃E. By the above,
we have ∃E as an effect subalgebra. Finally, since
∃∃x � ∃x, we have ∃ on ∃E as the identity on
∃(E).

(7) If y≤ x, then ∃y≤∃x, so ∃x⊖∃y is defined. Now,
we assume ∃x⊖∃y � z; then, ∃x⊖∃y � (∃x⊕∃y) �

(∃∃x⊕∃y) � (∃(∃∃x⊕∃y)) � ∃(∃(∃∃x⊕∃y)),
so z ∈∃E. )en, we have z � ∃z. )erefore,
∃(∃x⊖∃y) � ∃z � z � ∃x⊖∃y.

(8) If y≤x, then there exists z ∈ E, such that y⊕ z � x,
so ∃x⊖∃y � ∃(y⊕ z)⊖∃y≤ (∃y⊕∃z)⊖∃y � ∃z �

∃(x⊖y).
(9) ∃(∃x⊙∃y) � ∃(∃x⊕ ∃y) � ∃(∃∃x⊕∃∃y) � ∃∃

(∃∃x⊕∃∃y) � ∃(∃∃x⊕∃∃y) � ∃(∃∃x⊕∃∃y) �

(∃x⊕ ∃y) � ∃x⊙∃y.
(10) If x≤y is defined, then x≤y, so ∃x≤∃y, and so
∃x≤∃x≤∃y. )en, we have ∃x⊙∃y defined.
)erefore, ∃(x⊙y)≤∃(∃x⊙∃y) � ∃x⊙∃y.

(11) Assume that d � ∃x∧∃y is defined in E. We show
that ∃d � d. Check, ∃d≤∃∃x � ∃x and
∃d≤∃∃y � ∃y. )is yields ∃d≤∃x∧∃y � d, so
∃d � d. )en, ∃(∃x∧∃y) � ∃x∧∃y.

In monadic MV-algebras, the existential quantifier ∃ and
the universal quantifier ∀ can be mutually induced. Simi-
larly, by means of ∃, we define ∀ on E by the rule

∀x: � ∃x( )(R). (2)
□

Proposition 3. Let E be an effect algebra and ∃ be an ex-
istential quantifier on E. If ∀ is defined by (R), then the
following conditions are satisfied:

(A1): ∀x≤ x

(A2): if x≤y, then ∀x≤∀y
(A3)∀(∀x) � ∀x
(A4): ∀(∀x⊙∀y) � ∀x⊙∀y, whenever ∀x⊙∀y is
defined

Proof

(A1): since x≤∃x, then x�x≥ (∃x) � ∀x
(A2): if x≤y, then y≤ x, so ∃y≤∃x, and then
∀x � (∃x)≤ (∃y) � ∀y
(A3)∀(∀x) � ∃(∀x) � ∃((∃x)) � y(∃x) � ∀x
(A4)∀(∀x⊙∀y) � (∃((∃x)⊙ (∃y)) ) �

∃(∃x⊕∃y) � (∃x⊕∃y) � ((∃x)⊕ (∃y)) � ∀x⊙∀y

An unary operation ∀: E⟶ E on an effect algebra that
satisfies (A1) − (A4) will be called a universal quantifier. □

Proposition 4. Let E � (E, ⊕ , 0, 1) be an effect algebra and
∀ be a universal quantifier on E. Define ∃x�(∀x); then, ∃ is
an existential quantifier on E.

Proof. It is similar to the above proposition.
From Propositions 2 and 3, we get that for an effect

algebra, there exists a one-to-one correspondence between
existential quantifiers and universal quantifiers. )erefore,
alike monadic MV-algebras, we can choose only one be-
tween the existential quantifiers and the universal quantifiers
to construct the axiomatic system of monadic effect algebras.
In order to study the monadic ideals and the related theory
on effect algebra and for an ideal I on an effect algebra, when
∃x ∈ I, we can get ∀x ∈ I, but the reverse side not holds.
)erefore, we use the existential quantifiers to construct the
axiomatic system of monadic effect algebras which is more
natural and convenient. □

Definition 8. Let E be an effect algebra and ∃ be an exis-
tential quantifier on E. )en, the couple (E,∃) is called a
monadic effect algebra.

Proposition 5. Let ∀ be a universal quantifier on an effect
algebra E. For all x, y ∈ E, the following conditions are valid:

(1) ∀0 � 0 and ∀1 � 1
(2) ∀∀x � ∀x
(3) ∀x≤y⇔∀x≤∀y
(4) ∀x≤ ∀x

Table 1

⊕ 0 a b c d 1
0 0 a b c d 1
a a d c 1 — —
b b c — — 1 —
c c 1 — — — —
d d — 1 — — —
1 1 — — — — —

Table 2

¬
0 1
a c
b d
c a
d b
1 0
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(5) If ∀x⊙∀y is defined, then ∀x⊙∀y≤∀(x⊙y)

(6) ∀(∀x⊕∀y) � ∀x⊕∀y, whenever ∀x⊕∀y is defined
(7) If x⊕y is defined, then ∀x⊕∀y≤∀(x⊕y)

(8) -e set ∀E is an effect subalgebra, ∀E �

x ∈ E: ∀x � x{ }, and ∀ on ∀E is the identity on ∀E
(9) If y≤x, then ∀(∀x⊖∀y) � ∀x⊖∀y
(10) If y≤x, then ∀(x⊖y)≤∀x⊖∀y
(11) ∀(∀x∨∀y) � ∀x∨∀y, whenever ∀x∨∀y exists

Proof

(1) Since ∀0≤ 0, we have ∀0 � 0 as 0 is the least element
of E. ∀1 � ∀0�∀0�∃0�0 � 1.
(2) ∀∀x � ∀(∀x⊙ 1) � ∀(∀x⊙∀1) � ∀x⊙∀1 � ∀x⊙
1 � ∀x.
(3) If ∀x≤y, we have ∀x≤∀∀y � ∀y; conversely, if
∀x≤∀y, we have ∀x≤∀y≤y.
(4) Since ∀x≤x, we have ∀x≤ x≤ ∀x.
(5) If ∀x⊙∀y is defined, then we have ∀x≤∀y, so
x≤ ∀x≤∀y≤y; therefore, x⊙y is defined. So,
∀x⊙∀y � ∀(∀x⊙∀y)≤∀(x⊙y).
(6) ∀(∀x⊕∀y) � ∀(∀x⊙ ∀y) � ∀(∀∀x⊙∀∀y) �

∀∀(∀∀x⊙∀∀y) � ∀(∀∀x⊙∀∀y) � (∀∀x⊙∀∀y) �

(∀x⊙ ∀y) � ∀x⊕∀y.
(7) If x⊕y is defined, then x≤ y; thus, ∀x≤ x≤ y≤ ∀y.
)erefore, ∀x⊕∀y is defined. So, ∀x⊕∀y �

∀(∀x⊕∀y)≤∀(x⊕y).
(8 and 9) Similar to (6) and (7) of Proposition 2.
(10) If y≤x, then there exists z such that y⊕z � x and
∀y≤∀x, so
∀x⊖∀y � ∀(y⊕z)⊖∀y≥ (∀y⊕∀z)⊖∀y � ∀z � ∀(x⊖y).
(11) Assume that d � ∀x∨∀y is defined in E. We show
that ∀d � d. Check ∀d≥∀∀x � ∀x and ∀d≥∀∀y � ∀y.
)is yields ∀d≥∀x∨∀y � d, so ∀d � d. )en,
∀(∀x∨∀y) � ∀x∨∀y. □

Proposition 6. Let (E,∃) be a monadic effect algebra and ∀
be the universal quantifier defined by (R). For all x, y ∈ E, the
following conditions are valid:

(1) ∀∃x � ∃x and ∃∀x � ∀x
(2) ∀x � x⇔∃x � x

(3) ∃x � ∀x and ∀x � ∃x
(4) ∀(∃x⊙∃y) � ∃x⊙∃y and ∃(∀x⊙∀y) � ∀x⊙∀y,

whenever ∃x⊙∃y and ∀x⊙∀y are defined
(5) ∀(∃x⊕∃y) � ∃x⊕∃y and ∃(∀x⊕∀y) � ∀x⊕∀y,

whenever ∃x⊙∃y and ∀x⊙∀y are defined
(6) If y≤x, then ∃(∀x⊖∀y) � ∀x⊖∀y and ∀(∃x⊖
∃y) � ∃x⊖∃y

(7) (∃, ∀) establishes a Galois connection

Proof

(1) ∀∃x�∃∃x�∃x � ∃x and ∃∀x�∀∀x�∀x � ∀x.
(2) If ∀x � x, then we have x ∈∀(E), so there exists y,

such that ∀y � x. )us, ∃x � ∃∀y � ∀y � x. Con-
versely, if ∃x � x, then we have x ∈∃(E), so there
exists y, such that ∃y � x. )us, ∀x � ∀
∃y � ∃y � x.

(3) x∃x � ∀x � ∀x and ∀x � ∃x � ∃x.
(4) ∀(∃x⊙∃y) � ∀(∀∃x⊙∀∃y) � ∀∃x⊙∀∃y � ∃x⊙
∃y. ∃(∀x⊙∀y) � ∃(∃∀x⊙∃∀y) � ∃∀x⊙∃∀y �

∀x⊙∀y.
(5) ∀(∃x⊕∃y) � ∀(∀∃x⊕∀∃y) � ∀∃x⊕∀∃y � ∃x⊕∃y.
∃(∀x⊕∀y) � ∃(∃∀x⊕∃∀y) � ∃∀x⊕∃∀y � ∀x⊕∀y.

(6) If y≤ x1, then ∀x⊖∀y and ∃x⊖∃y are defined.
∃(∀x⊖∀y) � ∃(∃∀x⊖∃∀y) � ∃∀x⊖∃∀y � ∀x⊖∀y
and ∀(∃x⊖∃y) � ∀(∀∃x⊖∀∃y) � ∀∃x⊖∀∃y �

∃x⊖∃y.
(7) ∃∀x � ∀x≤x and ∀∃x � ∃x≥ x, so (∃, ∀) estab-

lishes a Galois connection.

Let ∀ be a universal quantifier on E. We denote the
kernel of ∀ by Ker(∀) � x ∈ E: ∀x � 0{ }. Moreover, we call
∀ as faithful if Ker(∀) � 0{ }. □

Proposition 7. Let ∀ be a universal quantifier on an effect
algebra E. -en, the following conditions are valid:

(1) If ∀ is faithful, then x<y implies ∀x<∀y
(2) ∀ is faithful ⇔∀x � x, for any x ∈ E

(3) ∀ is faithful ⇔∃x � x, for any x ∈ E

Proof

(1) Suppose that x<y, and ∀x � ∀y and
∀(y⊖x)≤∀y⊖∀x � 0 giving y⊖x � 0 so that x � y;
this is a contradiction.

(2) For any x ∈ E, ∀(x⊖∀x)≤∀x⊖∀∀x � 0; since ∀ is
faithful, we have x⊖∀x � 0; then, x � ∀x. )e con-
verse is clear.

(3) ∀x � x⇔∃x � x.

Next, we study the relationship between the existential
quantifiers and the relatively complete subalgebras on
monadic effect algebras.

A subalgebra E0 of an effect algebra E is said to be
relatively complete if for every a ∈ E, the set b ∈ E0|a≤ b 

has the least element in E0, which is denoted by

inf b ∈ E0|a≤ b  or∧a≤ b ∈E0
b. (3)

□

Theorem 3. Let (E,∃) be a monadic effect algebra. -en, ∃E
is a relatively complete subalgebra of E and ∃a �

inf b ∈∃E|a≤ b{ }.
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Proof. By Proposition 2 (6), ∃E is a subalgebra of E. Let
a ∈ E and A � b ∈∃E|a≤ b{ }. )en, ∃a ∈∃E and for any
b ∈ A, we have b � ∃b. So, ∃a≤∃b � b; thus, ∃a is the least
element of A. )erefore, ∃E is a relatively complete sub-
algebra of E. □

Remark 3. Let E be the effect algebra given in Example 2.
)en, by)eorem 3, we know that, for any n ∈ N, the subset
0, 1/n, 2/n, . . . , n − 1/n, 1{ } is a relatively complete subalgebra
of E.

Theorem 4. Let E � (E;⊕, 0, 1) be an effect algebra and E0
be a relatively complete subalgebra of E. For any a ∈ E, define
∃a � inf b ∈ E0|a≤ b . -en, E � (E;⊕,∃, 0, 1) is a monadic
effect algebra.

Proof. We only need to prove ∃ defined above which is an
existential quantifier on E.

(E1): a≤ b, where b ∈ E0|a≤ b . )en, we get
a≤ inf b ∈ E0|a≤ b  � ∃a.
(E2): if x≤y, then b ∈ E0|y≤ b ⊆ b ∈ E0|x≤ b . So,
inf b ∈ E0|x≤ b ≤ inf b ∈ E0|y≤ b , i.e., ∃x≤∃y.
For any x ∈ E0, since x≤ x, we have inf b ∈{

E0|x≤ b}≤x, i.e., ∃x≤x. Also, by the definition of ∃,
we have x≤∃x. )erefore, for any x ∈ E0, we have
x � ∃x.
(E3): for any x ∈ E, we have ∃x ∈ E0; since E0 is a
subalgebra of E, we get ∃x ∈ E0, and hence
∃(∃x) � ∃x.
(E4): ∃x,∃y ∈ E0, and E0 is a subalgebra of E. Hence, if
∃x⊕∃y is defined, then ∃x⊕∃y ∈ E0, and so we have
∃(∃x⊕∃y) � ∃x⊕∃y.

)erefore, E � (E;⊕,∃, 0, 1) is a monadic effect algebra.
Let A andB be two posets. Consider a function

h: A⟶ B; the function k: B⟶ A is called left adjoint to
h, if k(b)≤ a⇔b≤ h(a) for any a ∈ A and b ∈ B. □

Theorem 5. Let E be an effect algebra. -en, there exists a
one-to-one correspondence between each pair of the following
sets:

(1) -e set of all the existential quantifiers on E, denoted
by E(E)

(2) -e set of all the relatively complete subalgebras on E,
denoted by RCS(E)

(3) -e set of all the pairs (E, E0), where E0 is a sub-
algebra of E and the canonical embedding
h: E0⟶ E has left adjoint function, denoted by
P(E, E0)

Proof
(i) Consider the mapping f: E(E)⟶ RCS(E), i.e.,

f(∃) � ∃E. For any ∃∈ E(E), according to)eorem
3, ∃E is a relatively complete subalgebra of E. Also,
consider the mapping g: RCS(E)⟶ E(E), i.e.,
g(E0) � ∃′. For any relatively complete subalgebra

E0 ∈ RCS(E), according to )eorem
4,∃′a � inf b ∈ E0|a≤ b  is an existential quanti-
fier on E. So, for any a ∈ E, we have ∃a � inf
b ∈∃E|a≤ b{ } � ∃′a. )erefore, g°f � idE(E). On
the other hand, for any E0 ∈ RCS(E), suppose
g(E0) � ∃′; then, f(∃′) � ∃′E. For any a ∈ E0, by
the definition of ∃′, we have a � ∃′a ∈∃′E, so
E0⊆∃′E. Conversely, for any a ∈∃′E, there exists
b ∈ E, which satisfies ∃′b � a. Since ∃′ is an ex-
istential quantifier, then ∃′a � ∃′∃′b � ∃′b � a;
therefore, a � ∃′a � inf b ∈ E0|a≤ b ∈ E0 , i.e.,
∃′E⊆E0. )erefore, ∃′E � E0, which implies that
f°g � idRCS(E). According to the above, there
exists a one-to-one correspondence between (1)
and (2).

(ii) Let E0 be a relatively complete subalgebra of E. We
define ∃h(a) � inf b ∈ E0|a≤ b , and h: E0⟶ E is
the canonical embedding. If ∃h(a)≤ b, where a ∈ E

and b ∈ E0, then b ∈ c ∈ E0|a≤ c ; hence,
a≤ b � h(b). Conversely, if a≤ h(b), then a≤ b, so
b ∈ c ∈ E0|a≤ c , and so ∃h(a)≤ b. Hence,
∃h(a)≤ b⇔a≤ h(b). )erefore, the canonical em-
bedding h: E0⟶ E has left adjoint function, and
the left adjoint function of h is ∃h. On the other
hand, for a given pair (E, E0), where E0 is a sub-
algebra of E, the canonical embedding h: E0⟶ E

has left adjoint function. Now, we prove
inf b ∈ E0|a≤ b  exists. For any a ∈ E, ∃h(a) ∈ E0.
For any x ∈ b ∈ E0|a≤ b , we have a≤ x � h(x), so
∃h(a)≤ x. Also, ∃h(a)≤∃h(a); then, a≤ h∃h(a) �

∃h(a), so we have a≤∃h(a). Hence, ∃h(a) is the
least element in b ∈ E0|a≤ b . )erefore,
inf b ∈ E0|a≤ b  � ∃h(a). And so, there exists a
one-to-one correspondence between (2) and (3).

(iii) By (i) and (ii), we know that there exists a one-to-
one correspondence between (1) and (3). □

4. Monadic Ideals on Monadic Effect Algebras

In this section, we introduce and investigate monadic
ideals on monadic effect algebras. Also, in order to get
some more and better results, we introduce strong ex-
istential quantifier. Moreover, we introduce and char-
acterize simple and subdirectly irreducible monadic effect
algebras.

Definition 9. Let E � (E;⊕,∃, 0, 1) be a monadic effect al-
gebra and I be an ideal of E. )en, I is called a monadic ideal
if for any i ∈ I, we have ∃i ∈ I.

When I is a Riesz ideal and I is also a monadic ideal, we
say I is a Riesz monadic ideal. We denote the sets of all the
monadic ideals and the Riesz monadic ideals of (E,∃) by
MI(E) and RMI(E), respectively.

Example 4. For any n ∈ N, let (E,∃n) be the monadic effect
algebras given by Example 2. )en, 0{ } is the only monadic
ideal in each (E,∃n).
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Example 5. Let (E,∃) be the monadic effect algebra given in
Example 3. Take I1 � 0, a, d{ } and I2 � 0, b{ }; we can check
that I1 and I2 are monadic ideal of (E,∃). I3 � 0, a{ } is an
ideal but not a monadic ideal. a ∈ I3, but ∃a � d∈I3.

Example 6. Let (E,∃) be the monadic effect algebra given in
Example 3. Take I1 � 0, a, d{ }, I2 � 0, b{ }, I3 � 0, a{ }, and
I4 � 0, c{ }. We can check that I2 is a Riesz monadic ideal. I1
is not a Riesz monadic ideal as I1 is not a Riesz ideal. Since
d≤ a⊕c, h, k ∈ I1 does not exist such that d≤ h⊕k. I3 is not a
Riesz monadic ideal as I3 is not a monadic ideal. I4 is not a
Riesz monadic ideal as I4 is neither a monadic ideal nor a
Riesz ideal.

Proposition 8. Let (E,∃) be a monadic effect algebra and
X⊆E. -e monadic ideal generated by X is denoted by (X]∃;
then, (X]∃ can be constructed in the following way: define
I0 � X, In+1: � ∪ x∈∃In

E[0, x], and In+2: � x⊕y:

x, y ∈ In+1, x⊥y}, n � 0, 1, · · ·. Clearly, In⊆In+1⊆In+2,
n � 0, 1, · · ·. -en, (X]∃ � ∪∞n�0In.

Proof. Clearly,(X]∃ is an ideal of(E,∃). For any t ∈ (X]∃, there
exists n ∈ N such that t ∈ In. If In � ∪ x∈∃In− 1

E[0, x], then there
exists y ∈∃In− 1 such that t≤y; then, ∃t≤∃y � y, which implies
∃t ∈ In⊆(X]∃. If In � x⊕y: x, y ∈ In− 1, x⊥y}, then there exist
a, b ∈ In− 1 such that t � a⊕b; then, ∃t � ∃(a⊕b) and
∃(a⊕b) ∈ In+1, which implies ∃t ∈ In+1⊆(X]∃. )erefore, (X]∃
is a monadic ideal of (E,∃). □

Definition 10. Let (E,∃) be a monadic effect algebra. If for
any x, y ∈ E, x⊥y and x⊕y≠ 1 imply ∃x⊥∃y; then, we say
the existential quantifier ∃ is a strong and (E,∃) is a strong
monadic effect algebra.

Example 7. Let E � (E,⊕, 0, 1) be an effect algebra. We have
that idE is a strong existential quantifier on E.

Example 8. Let (E,∃) be the monadic effect algebra given by
Example 3. )en, we have a⊥a on E and ∃a � d, but d⊥d.
Hence, the existential quantifier ∃ is not strong.

Example 9. Let E�{0, a, b, c, 1}. Define operation ⊕ and ¬ as
follows:(see Tables 3 and 4):

)en, (E,⊕, ¬, 0, 1) is an effect algebra. We define ∃ as
follows: ∃0 � 0,∃a � ∃b � b, and∃c � ∃1 � 1.We can easily
check that ∃ is a strong existential quantifier on E.

Proposition 9. Let (E,∃) be a strong monadic effect algebra
a ∈∃E and I be a monadic ideal. If J � ( a{ }∪ I], then J is also
a monadic ideal.

Proof. For any x ∈ J, since the ⊕ is commutative and as-
sociative, then there exist n ∈ N and i ∈ I such that x≤ na⊕i.
If na⊕i � 1, then ∃x≤∃(na⊕i) � ∃1 � 1. )en, ∃x ∈ J. If
na⊕i≠ 1, then ∃x≤∃(na⊕i)≤∃(na)⊕∃i≤ n∃a⊕∃i � na⊕∃i
as ∃ is strong. Since ∃i ∈ I, then na⊕∃i ∈ J; it follows that
∃x ∈ J. )erefore, J is a monadic ideal of (E,∃). □

Theorem 6. Let (E,∃) be a strong monadic effect algebra
and I be an ideal of E. -en,

(1) I is a monadic ideal of (E,∃) if and only if
I � (I∩∃E]

(2) -ere exists a lattice isomorphism between the lattice
of all monadic ideals of (E,∃) and the lattice of all
ideals of ∃E

Proof

(1) Let (E,∃) be a monadic effect algebra. I⊆E is a
monadic ideal. Let i ∈ I, then ∃i ∈ I and ∃i ∈ I∩∃E;
since i≤∃i, we get i ∈ (I∩∃E], so I⊆(I∩∃E].
Moreover, since I∩∃E⊆I, then we have
(I∩∃E]⊆(I]⊆I. )erefore, we get I � (I∩∃E].
Conversely, let I � (I∩∃E]; if I � E, clearly, I is a
monadic ideal. If I≠E, for I0 in (I∩∃E], we can
easily check that ∃I0⊆(I∩∃E]. For I1 in (I∩∃E], for
any x ∈ I1, then there exists a ∈ I0 such that x≤ a;
then, we have ∃x≤∃a � a ∈ I0, so ∃x ∈ I1; hence,
∃I1 ∈ (I∩∃E]. For I2 in (I∩∃E], for any x ∈ I2,
there exists a, b ∈ I1 such that a⊥b and x � a⊕b;
then, ∃x � ∃(a⊕b)≤∃a⊕∃b as ∃ is strong and
a⊕b≠ 1. Since ∃a, ∃b ∈ I1, then ∃a⊕∃b ∈ I2. We have
∃x ∈ I3. )erefore, we get ∃I2⊆(I∩∃E]. )e rest
may be deduced by analogy. )erefore, for any In in
(I∩∃E], we have ∃In⊆(I∩∃E]. )en, we have
∃(I∩∃E]⊆(I∩∃E], so (I∩∃E] is a monadic ideal of
(E,∃). )erefore, we get that if I � (I∩∃E], then I is
a monadic ideal of (E,∃).

(2) First, we prove that, for any ideal I of ∃E, we have
I � (I]∩∃E.
If I � ∃E, clearly, we have I � (I]∩∃E. If I is proper,
it is clear that I⊆(I]∩∃E. Conversely, for I0 in (I],
we have I0 � I; then, ∃I0 � I. For I1 in (I], for any
x ∈ I1, there exists y ∈ I0, such that x≤y; then,
∃x≤∃y. Since ∃I0 � I and I is an ideal, we have
∃x ∈ I; then, ∃I1⊆I. For I2 in (I], for any x ∈ I2,

Table 3

⊕ 0 a b c 1
0 0 a b c 1
a a b c 1 —
b b c 1 — —
c c 1 — — —
1 1 — — — —

Table 4

¬
0 1
a c
b b
c a
1 0

Journal of Mathematics 7



there exists a, b ∈ I1 such that a⊥b and x � a⊕b. If
a ∈ I1, then ∃a ∈∃I1⊆I, and so ∃a ∈ I, Since a ∈ I1,
then ∃a ∈∃I1⊆I, so ∃a⊕∃a � 1 ∈ I, which is a con-
tradictory to I is proper, so a∈I1. )erefore, a⊕b≠ 1.
)en, ∃x � ∃(a⊕b)≤∃a⊕∃b as ∃ is strong and
a⊕b≠ 1. Since I is an ideal, then we have ∃a⊕∃b ∈ I;
it follows that ∃x ∈ I and so ∃I2⊆I. )e rest may be
deduced by analogy. We have that, for any In in (I],
we have ∃In⊆I. Also, for any In in (I], for any x ∈ In,
∃x ∈∃In⊆I. If x ∈ In, ∃x ∈∃In⊆I, so ∃x ∈ I, and so
∃x⊕∃x � 1 ∈ I, which is a contradictory to I that is
proper, so a∈In. It follows that if I is proper, then we
have (I] that is proper. For I0 in (I], I0 ∩∃E � I⊆I.
For I1 in (I], for any x ∈ I1 ∩∃E, there exists a ∈ I0
such that x≤ a; then, x � ∃x≤∃a ∈ I, so x ∈ I.
)erefore, I1 ∩∃E⊆I. For I2 in (I], for any
x ∈ I2 ∩∃E, there exists a, b ∈ I1 such that x � a⊕b,
so x � ∃x � ∃(a⊕b)≤∃a⊕∃b as ∃ is strong and
a⊕b≠ 1. Since a, b ∈ I1, we have ∃a,∃b ∈ I, and so
x≤∃a⊕∃b ∈ I. )erefore, I2 ∩∃E⊆I. )e rest may be
deduced by analogy. For any In in (I], we have
In ∩∃E⊆I. )erefore, for any ideal I of ∃E, we have
I � (I]∩∃E.

Next, we prove that there exists a lattice isomorphism
between the lattice of all monadic ideals of (E,∃) and the
lattice of all ideals of ∃E. We have already known that ∃E is
an effect algebra. )en, correspondence I⟶ (I] maps any
ideal I of ∃E to the monadic ideal (I] of (E,∃). Moreover,
I � (I]∩∃E. On the other hand, let J be a monadic ideal of
(E,∃), then J � (J∩∃E], where J∩∃E is an ideal of ∃E. So,
we have found the required 1 − 1 correspondence between
the set of monadic ideals of (E,∃) and the set of ideals of ∃E.
Moreover, it is clear that I1⊆I2⇒(I1]⊆(I2] and
J1⊆J2⇒J1 ∩∃E⊆J2 ∩∃E. )erefore, there exists a lattice
isomorphism between the lattice of all monadic ideals of E

and the lattice of all ideals of E0. □

Definition 11. Let E � (E;⊕,∃, 0, 1) be a monadic effect
algebra and ∼ be a congruence relation on E. ∼ is called a
monadic congruence relation if a ∼ b implies that ∃a ∼ ∃b,
for any a, b ∈ E.

Proposition 10. If I is a Riesz monadic ideal of a monadic
effect algebra (E,∃), we define a relation ∼ I on (E,∃) as
follows: a ∼ Ib⇔ there exist i, j ∈ I: i≤ a, j≤ b, a⊖i≤ b, and
b⊖j≤ a; then, ∼ I is a monadic congruence of (E,∃).

Proof. By )eorem 1, we have already known that if I is a
Riesz ideal, then ∼ I is a congruence of E. Now, we prove
∼ I is a monadic congruence of E. If a ∼ Ib, then there exists

i, j ∈ I such that i≤ a, j≤ b, a⊖i≤ b, and b⊖j≤ a. )en,
∃a⊖∃i≤∃(a⊖i)≤∃b and ∃b⊖∃j≤∃(b⊖j)≤∃a; since I is a
Riesz monadic ideal, we have ∃i,∃j ∈ I. )en, ∃a ∼ I∃b.
)erefore, ∼ I is a monadic congruence of (E,∃). □

Theorem 7. Let (E,∃) be a monadic effect algebra. -en, the
following holds:

(i) If I is a Riesz monadic ideal, then ∼ I is a Riesz
monadic congruence and [0] ∼ I

� I

(ii) If ∼ is a Riesz monadic congruence, then I � [0]∼ is
a Riesz monadic ideal and ∼ I � ∼

(iii) -ere exists an order isomorphism between the lattice
of all Riesz monadic congruence and the lattice of all
Riesz monadic ideal

Proof

(a) From )eorem 1 and Proposition 10, the result is
stragightforward.

(b) By )eorem 1, we get I � [0]∼ which is a Riesz ideal.
So, we just prove I � [0]∼ is a Riesz monadic ideal.
For any x ∈ [0]∼, we have x ∼ 0. Since ∼ is a Riesz
monadic congruence, then ∃x ∼ ∃0 � 0, so
∃x ∈ [0]∼. )erefore, I � [0]∼ is a Riesz monadic
ideal and ∼ I � ∼ .

(c) From (a) and (b), we know that the mapping
f: I↦ ∼ I is a bijection, whose inverse is the map
g: ∼↦[0]∼. Now, we prove the mapping f and g

are isotone. Let I and J be two Riesz monadic ideals
of (E,∃) such that I⊆J. If a ∼ Ib, then there exists
i, j ∈ I such that a⊖i≤ b and b⊖j≤ a. Since i, j ∈ I⊆J,
then a ∼ Jb, which means ∼ I⊆ ∼ J. On the other
hand, let ∼ and ≈ be two Riesz monadic con-
gruence of (E,∃) such that ∼ ⊆ ≈ . For any i ∈ [0]∼,
we have i ∼ 0; then, i ≈ 0 as ∼ ⊆ ≈ . It follows that
i ∈ [0]≈, which means that [0]∼⊆[0]≈. Hence, f and
g are isotone. )erefore, f is the order isomorphism
between the lattice of all Riesz monadic congruence
and the lattice of all Riesz monadic ideal.

Let (E,∃) be a monadic effect algebra and I be a Riesz
monadic ideal. We define the mapping ∃I: E/I⟶ E/I by
∃I([x]) � [∃x] for any x ∈ E. □

Proposition 11. Let (E,∃) be a strong monadic effect algebra
and I be a Riesz monadic ideal of (E,∃). -en, (E/I;∃I) is
also a strong monadic effect algebra.

Proof. Since I is a Riesz monadic ideal, then by )eorem 1,
∼ I is a monadic congruence. We denote (E/ ∼ I) � (E/I).
By )eorem 2, we have already known that E/I is an effect
algebra. Now, we prove ((E/I); ∃I) is a strong monadic effect
algebra.

(E1): since x≤∃x, then there exists y such that x⊥y
and x⊕y � ∃x. It follows that [x]⊥[y] and [x]⊕[y] �

[x⊕y] � [∃x]. )erefore, [x]≤∃I[x].
(E2): if [x]≤ [y], then there exists [a] such that
[x]⊥[a] and [x]⊕[a] � [y]. It follows that there exists
x1, a1, y1 ∈ E such that x1 ∼ Ix, a1 ∼ Ia, y1 ∼ Iy, and
x1⊕a1 � y1, so x1 ≤y1. )en, ∃x1 ≤∃y1. )ere exists
b ∈ E such that ∃x1⊕b � ∃y1. )erefore, ∃I[x]⊕[b] �

[∃x]⊕[b] � [∃x1⊕b] � [∃y1] � ∃I[y]. Hence, ∃I[x]≤
∃I[y].
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(E3)∃I∃I[x] � [∃∃x] � [∃x] � ∃I[x].
(E4): let ∃I[x]⊕∃I[y] be defined. If ∃I[x]⊕∃I[y] � [1],
clearly, ∃I(∃I[x]⊕∃I[y]) � ∃I[x]⊕∃I[y]. Otherwise,
since ∃I[x]⊥∃I[y], then there exists a, b ∈ E such that
∃x ∼ Ia, ∃y ∼ Ib, a⊥b, and ∃I[x]⊕∃I[y] � [a⊕b]. As ∃
is strong and a⊕b≠ 1, we have ∃a⊥∃b. Since ∃x ∼ Ia,
then ∃x ∼ I∃a; it follows that a ∼ I∃a. Similarly, we get
b ∼ I∃b. As ∼ I is a monadic congruence, we have
a⊕b ∼ I∃a⊕∃b. )erefore, ∃I(∃I[x]⊕∃I[y]) � ∃I
([∃x]⊕[∃y]) � ∃I[a⊕b] � ∃I[∃a⊕∃b] � [∃(∃a⊕
∃b)] � [∃a⊕∃b] � ∃I[a]⊕∃I[b] � ∃I[x]⊕∃I[y].

)erefore, ((E/I); ∃I) is a monadic effect algebra.
Moreover, if [x]⊥[y] and [x]⊕[y]≠ [1], then there exists
a, b ∈ E such that x ∼ Ia, y ∼ Ib, and a⊥b. )en, ∃x ∼ I∃a,
∃y ∼ I∃b, and ∃a⊥∃b as ∃ is strong and a⊕b≠ 1. So,
[∃x]⊥[∃y], which implies that ∃I[x]⊥∃I[y]. )erefore,
((E/I); ∃I) is a strong monadic effect algebra. □

Definition 12. Let (E,∃) be a monadic effect algebra. A
proper monadic ideal I of (E,∃) is called a maximal mo-
nadic ideal if it is not strictly contained in any proper
monadic ideal of (E,∃).

Example 10. Let E�{0, a, b, c, d, e, f, 1}, where 0≤ a, b≤ c,
d≤ 1. Define operation ⊕ and ¬ as follows (see Tables 5 and 6):

)en, (E,⊕, ¬, 0, 1) is an effect algebra.Wedefine∃ as follows:
∃0 � 0,∃a � ∃d � d,∃b � b, and∃c � ∃e � ∃f � ∃1 � 1.
We can easily check that ∃ is an existential quantifier onE. Define
I1 � 0, a, d, e{ }; I1 is a maximal ideal, but not a maximal
monadic ideal because ∃e � 1 ∉ I1. Define I2 � 0, b{ }, and we
can check if I2 is a maximal monadic ideal of (E,∃).

Proposition 12. Let I be a monadic ideal of a monadic effect
algebra (E,∃). If for any x ∈ E, we have ∃x ∈ I or ∃x ∈ I;
then, I is a maximal monadic ideal of (E,∃).

Proof. Suppose for any x ∈ E, we have ∃x ∈ I or ∃x ∈ I.
Assume I is not a maximal monadic ideal of (E,∃). )en,
there exists a proper monadic ideal I strictly containing I, so
there also exists a ∈ J, but a∈I. Hence, ∃a∈I; according to
our assumption, ∃a∈I. )erefore, ∃a∈I. On the other hand,
as a ∈ J and J is a monadic ideal, we have ∃a ∈ J, so
∃a⊕∃a � 1 ∈ J. )is contradicts the fact that J is a proper
monadic ideal. )erefore, I is a maximal monadic ideal of
(E,∃). □

Definition 13. A monadic effect algebra (E,∃) is called
monadic simple if it has exactly two monadic ideals: 0{ } and
E.

Example 11. Let (E,∃) be the monadic effect algebra given
by Example 9. We can easily check that (E,∃) is monadic
simple.

Example 12. For any n ∈ N, let (E,∃n) be the monadic effect
algebra given by Example 2. We can check (E,∃n) is a simple
monadic effect algebra.

Proof. 0{ } is the only monadic ideal in each (E,∃n). □

Theorem 8. Let (E,∃) be a strong monadic effect algebra.
-en, the following conditions are equivalent:

(1) (E,∃) is monadic simple
(2) ∃E is simple

Proof

(1)⇒(2): let I be an ideal of ∃E and I≠ 0{ }. We will
show that I � ∃E. Consider J � x ∈ E|x≤ i{ , for some
i ∈ I}. If x, y ∈ J, then there exists i, j ∈ I such that
x⊕y≤ i⊕j ∈ I, so x⊕y ∈ J. If y≤ x and x ∈ J, then there
exists i ∈ I such that y≤x≤ i, so y ∈ J. Moreover, if
x ∈ J, then there exists i ∈ I such that x≤ i, so ∃x≤∃i �

i and ∃x ∈ J. )erefore, J is a monadic ideal of (E,∃).
Since I⊆J, I≠ 0{ }, and (E,∃) is monadic simple, we have
J � E, so 1 ∈ J; by the definition of J, we have 1 ∈ I.
)erefore, we have I � ∃E which implies ∃E is simple.
(2)⇒(1): let I be a monadic ideal of (E,∃). )en, we
have I∩∃E as an ideal of ∃E; since ∃E is simple, we get
I1∩∃E � 0{ }, or I∩∃E � ∃E. If I∩∃E � ∃E, then
∃E⊆I, so 1 ∈ I. )en, we deduce that I � E. If
I∩∃E � 0{ }, take x ∈ I. ∃x ∈ I∩∃E � 0{ }, so for any
x ∈ I, we have ∃x � 0, but x≤∃x, so for any x ∈ I, we
have x � 0, so I � 0{ }. )erefore, (E,∃) is monadic
simple. □

Remark 4. When (E,∃) is a strong monadic effect algebra,
there exists a more concise proof for the above theorem.
Since ∃ is strong, by )eorem 6, we know there exists a
lattice isomorphism between the lattice of all monadic ideals
of (E,∃) and the lattice of all ideals of ∃E, which implies that
the number of the elements in the sets MI(E) and I(∃E) is

Table 5

⊕ 0 a b c d e f 1
0 0 a b c d e f 1
a a d c 1 — — — —
b b c — — 1 — — —
c c 1 — — — — — —
d d — 1 — — — — —
e e — — — — — 1 —
f f — — — — 1 — —
1 1 — — — — — — —

Table 6

¬
0 1
a c
b d
c a
d b
e f
f e
1 0
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equal. )erefore, when ∃ is strong, (E,∃) is monadic simple
if and only if ∃E is simple.

)e result of)eorem 8 shows that we can use the partial
structure ∃E to characterize the total structure E. Also, ∃E
has the same structure as (E,∃), which reveals the signifi-
cance of the image set ∃E.

Definition 14. A monadic effect algebra (E,∃) is said to be
monadic subdirectly irreducible if for all of the nontrivial
monadic congruence relations of (E,∃), there exists the least
one.

Let (E,∃) be monadic subdirectly irreducible effect al-
gebra and ∼ be the least nontrivial monadic congruence of
(E,∃). )en, by )eorem 6, there is a Riesz monadic ideal I

of (E,∃) such that ∼ I � ∼ , which means I is the least Riesz
monadic ideal of (E,∃) such that I≠ 0{ }. )us, we can
conclude that (E,∃) is monadic subdirectly irreducible if
among the nontrivial Riesz monadic ideals of (E,∃), there
exists the least one.

Proposition 13. Let (E,∃) be a subdirectly irreducible
monadic effect algebra and I1, I2 ∈ RMI(E). If I1 ∩ I2 � 0{ },
then I1 � 0{ } or I2 � 0{ }.

Proof. Suppose I1 ≠ 0{ } and I2 ≠ 0{ }, then I1 and
I2 ∈ I ∈ RMI(E)|I≠ 0{ }{ }, so ∩ I ∈ RMI(E)|I≠ 0{ }{ }⊆
I1 ∩ I2 � 0{ }. )erefore, ∩ I ∈ RMI(E)|I≠ 0{ }{ } � 0{ }, which
contradicts to the fact that (E,∃) is subdirectly irreducible.
)erefore, I1 � 0{ } or I2 � 0{ }. □

Proposition 14. Let (E,∃) be amonadic effect algebra.-en,
the following conditions are equivalent:

(1) (E,∃) is a subdirectly irreducible monadic effect
algebra

(2) ∩ (x]∃|x ∈ E, x> 0 ≠ 0{ }, where (x]∃ is the mo-
nadic ideal generated by x

Proof

(1)⇒(2): let (E,∃) be a subdirectly irreducible mo-
nadic effect algebra. We have ∩ I ∈{

RMI(E)|I≠ 0{ }≠ 0{ }; then, ∩ (x]∃|x ∈ E, x> 0}≠ 0{ }.
(2)⇒(1): let ∩ (x]∃|x ∈ E, x> 0 ≠ 0{ }, then there exists
a ∈∩ (x]∃|x ∈ E, x> 0 . Now, we prove that, for any
I ∈ RMI(E), if I≠ 0{ }, we have a ∈ I. In fact, if I≠ 0{ },
then there exist x ∈ I andx> 0; by assuming, we have
a ∈ (x]∃, so a ∈ I. Hence, a ∈∩ I ∈ RMI(E)|I ≠ 0{ }{ }.
)erefore, ∩ I ∈ RMI(E)|I≠{ 0{ }}≠ 0{ }, which implies
(E,∃) is a subdirectly irreduciblemonadic effect algebra. □

Theorem 9. Let (E,∃) be a monadic effect algebra and ∀ be
faithful. -en, the following conditions are equivalent:

(1) (E,∃) is monadic subdirectly irreducible

(2) ∃E is a subdirectly irreducible subalgebra of E

Proof

(1)⇒(2): let (E,∃)be a subdirectly irreducible mo-
nadic effect algebra. )en, RMI(E) − 0{ } has a min-
imal element I. We have already known ∃E is a
subalgebra of E. Now, we will prove that I∩∃E is the
minimal ideal of ∃E such that I∩∃E≠ 0{ }. First,
I∩∃E � 0{ }; since ∀I⊆I∩∃E � 0{ }, then we have ∀x �

0 for any x ∈ I. )erefore, I⊆ker(∀) � 0{ }, and so
I � 0{ }, which is a contradiction. Hence, I∩∃E≠ 0{ }.
Next, we show that I∩∃E is the minimal ideal of ∃E.
Assume that J is an ideal of ∃E, so, clearly, (J] is a
monadic ideal of (E,∃) generated by J. By the
minimality of I, we know that I⊆(J], so
I∩∃E⊆(J]∩∃E � J. )erefore, I∩∃E is the minimal
ideal of ∃E such that I∩∃E≠ 0{ }. )erefore, ∃E is a
subdirectly irreducible subalgebra of E.
(2)⇒(1): let ∃E be a subdirectly irreducible subalgebra
of E. )en, there is a minimal ideal I of ∃E such that
I≠ 0{ }. So, (I] is a monadic ideal of (E,∃) such that
(I]≠ 0{ }. Now, we prove that (I] is the minimal mo-
nadic ideal of (E,∃). Assume J is another nontrivial
monadic ideal of (E,∃); then, we have J∩∃E which is
an ideal of ∃E. By the minimality of I, we have
I⊆J∩∃E, so (I]⊆(J∩∃E] � J. Hence, (I] is the min-
imal monadic ideal of (E,∃). )erefore, (E,∃) is a
subdirectly irreducible monadic effect algebra. □

5. Conclusions

As effect algebras are partial algebraic structures, from a⊥b,
we cannot get ∃a⊥∃b (naturally holds in total algebraic
structure), which caused some difficulties for us to prove
some propositions on monadic effect algebras. So, we in-
troduce strong existential quantifiers as follows: if for any
x, y ∈ E, x⊥y, and x⊕y≠ 1, imply ∃x⊥∃y. Also, we require
x⊕y≠ 1 because if for any x, y ∈ E, x⊥y implies ∃x⊥∃y, we
can prove ∃ � idE. Another difference between monadic
effect algebras and some monadic total algebras is that the
class of monadic effect algebras just forms a quasivariety, but
the class of monadic MV-algebras, monadic BL-algebras,
and monadic residuated lattices forms a variety, respectively.
Moreover, effect algebra is a model of unsharp measurement
in quantum mechanical system. )erefore, using the exis-
tential quantifiers and the universal quantifiers to study the
unsharp measurement in quantummechanical system is our
next work.
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