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In this paper, we study algebraic properties of lattice points of the arc on the conics x* — dy* = N especially for d = 1, which is the
Fermat factorization equation that is the main idea of many important factorization methods like the quadratic field sieve, using
arithmetical results of a particular hyperbola parametrization. As a result, we present a generalization of the forms, the cardinal,
and the distribution of its lattice points over the integers. In particular, we prove that if (N — 6) = 0 mod 4, Fermat’s method fails.
Otherwise, in terms of cardinality, it has, respectively, 4, 8,2 (a + 1), (1 — 62pi)2“+1, and 2 H?:l (a; + 1) lattice pointts if N is an odd
prime, N = N, x N, with N, and N, being odd primes, N = N% with N, being prime, N =[]}, p; with p; being distinct primes,
and N = []%, N with N; being odd primes. These results are important since they provide further arithmetical understanding
and information on the integer solutions revealing factors of N. These results could be particularly investigated for the purpose of

improving the underlying integer factorization methods.

1. Introduction

Diophantine equations have been for many decades a very
important subject of research in number theory, and lattice
points on curves have been studied in the literature par-
ticularly by Gauss, and bounds on arcs of conics have also
been studied since then (see [1-6]). However, the necessity
of representing an integer as difference of two squares, i.e.,
for a given N € Z, finding nontrivial couples (x, y) € Z*
such that x? — y? = N, appears in the literature as the main
idea of many factorization methods (see [7, 8]) as suggested
by Fermat (see [9, 10]). While being not hard to observe, its
lattice points are easily computable if one knows the fac-
torization of N, and in contrast, this gets exponentially
harder when it comes to special cases of N, mainly when
N =1L, p;> where p; are large primes, in which case this
problem becomes equivalent to factoring the parameter N.

For this reason, one of fundamental research problems
on conics is to find integral solutions of particular hyperbola
parametrizations mainly x? - y?> = N over the integers,
particularly when N is a large semiprime, in which case if a
computationally efficient algorithm is found, cryptosystems
like RSA [11] would no longer be secured.

Reviewing the literature, some results on various hy-
perbola parametrizations and their applications have been
studied. Particularly in [1], Javier and Jorge used ideals in
quadratic field @(Vd) to find an upper bound for the
number of lattice points on Pell’s equation x*> —dy* = N,
while in [12], Jin et al. used results from the forms of integral
solutions of the hyperbola bx? — abxy + ay* = k to solve the
same equation where d is of the form p? — g > 0. In [13], the
author studied a special case of hyperbola and presented the
forms of its integral points over Z, and in [14], Yeonok
investigated some behaviors of integral points on the hy-
perbola bx? —abxy + ay* = —bk(k € Z,) to the general-
izations of Binet formula and Catalan’s identity, while in
[15], the authors gave an application of group law on affine
conics to cryptography. Still, in the previous works, algebraic
properties and distribution of lattice points and cardinalities
on Fermat’s equation are not presented. More recently, in
[16], Gilda et al. investigated algebraic and arithmetical
properties on the group structure By (x,y) =
{(x,y) € @xQ/y* = x* —4Nx}, mainly isomorphisms,
integral solutions, and a description of a factorization
method with no generalization to the Fermat factorization
equation.


mailto:regis.babindamana@umng.cg
https://orcid.org/0000-0002-8538-890X
https://orcid.org/0000-0001-9213-6930
https://orcid.org/0000-0002-1608-5673
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6360264

In this paper, we use the hyperbola parametrization
introduced in [16] to study algebraic properties of lattice
points and their distribution for Fermat’s factorization
equation for which we find exact upper and lower bounds
and we present the forms and cardinalities with a gener-
alization of results for most of special cases of N, using
results from the particular hyperbola parametrization.

The article is organized as follows:

(i) In Section 1, we give an introduction

(ii) In Section 2, we present the particular hyperbola
parametrization and related arithmetical results

(iii) In Section 3, we present the application of the
hyperbola parametrization to the study of lattice
points on the Fermat equation

(iv) In Section 4, In Section 4, we do a discussion on the
likelihood of finding solutions to the Fermat fac-
torization equation

(v) In Section 5, we finally conclude

Here is a list of the commonly used nomenclature in this
paper:
By (%, ¥)g = {(x,y) € @xQ/y* = x* —4Nx}: alge-
braic set of all rational points on % (x, y).
By (%, )iz ={(x,y) € Zx Z]y* = x* - 4Nx}: alge-
braic set of all integral points on %y (x, y).

By (% Yizan = {(%,9) € Zoyy X Zs9ly* = x* — 4Nx}:
algebraic set of integral points on %y (x,y) whose
x—coordinates are greater or equal to 4N.

Xn,—n,5 an injective homomorphism from
By, (x,y) to By, (x, y).

Card (%By (x, y)): the cardinal of By (x, y).

Div(N,): set of divisors of N .

T, (n): the set of all prime divisors of n.

Hy ={(x,y) € Z*/x* — y* = N}: the Fermat factor-
ization equation.

d;j: the Kronecker symbol.

2. BN Hyperbola Parametrization

A conic is an algebraic set satisfying an equation of the form
2 2 -
o x” + 20Xy + A, Y + 205X + 20,y + a5 = 0, (o, 4y, 3, 0y,

> 1 = cosh (¢)
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as) € R® where (&, a,,a;)# (0,0,0). Setting & the pa-
rametrization defined by (x, y) € Q x Q/y* = x* — 4Nx, in
the projective space P?(Q), we have %, (X,Y,Z)=
[(X:Y: 2) e P2(Q)/(Y?/Z?) = (X*/1Z%) - 4N (X/2)}&

By (X,Y,Z)={(X:Y: Z) € (P*(Q) Y?) = X* —4NXZ}.

At infinity, setting Z = 0 and considering X,Y >0, we
obtain  Y2=X?  and the equivalence class
(X:Y: Z)~ (X: X:0)~ X(1: 1: 0), and hence one of the
points at infinity is P, = (1: 1: 0).

From now on, VN € Z_, By (x, y) denotes By (x, y)
over the field Q %y (x, y)‘p4N denotes %y (x, y) over
Zoyn % Zs and By (x,y), denotes By (x,y) over the
integers, ie, By (x,y) ={(x,y) € Qx Q/y* = x* - 4Nx};
and By (x, ), = {(x, ) € Zyyy X Z,/y* = x* — 4Nx}
and By (x,y),, = {(x, y) € Z*/y* = x* - 4Nx}.

Proposition 1. Consider the application

+: By (%, ¥) x By (%, ¥) — By (x, y)(P,Q—P + Q.

(1)

P+Q is defined VP =(x,y,), Q= (x;y,) ¢
By (x, ), by
[ 1

Xpra T 5N [(xp _ZN)<xq _ZN) +ypyq] +2N,
1
| Vrra T 5N [7p(xq = 2N) + yy(x, - 2N)],
(2)

( 1 2 2
xzp =ﬁ[(xp—2N) +yP] +2N,

2= 3 (4, - 2N)),

Then, (By (x,y),+) is an abelian group with neutral
element O = (4N, 0).

Proof. Let us consider the affine space Q7 (x, ).

%y is a hyperbola of equation XY =1, where
X = (x—y—-2N/2N),Y = (x+ y —2N/2N), i.e.,, (x — 2N/
2N)? - (y/2N)* = 1, with N € Z_,. Set

= since cosh®(f) — sinh? (¢) = 1,

{ x — 2N = 2N cosh (t) 2N

y = 2N sinh () o sinh (t)
2N

t, +t, € {t € Z/cosh® (t) - sinh’ (¢) = 1} where{

(3)

cosh(t; +t,) = cosh(t;)cosh (t,) + sinh (¢, )sinh (t,),

sinh (¢, + t,) = sinh(t,)cosh (t,) + cosh (¢, )sinh (t,).
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Given two
(xp y,) € By (x, ),

points P= (xp,yp) andQ =

*p
X, = N 1 = cosh(t,),

Set

y .
Y, = ﬁ = sinh(t,),

x,
X, = ﬁ -1 = cosh(t,),

y .
Y, = ﬁ = sinh(¢,),

We easily verify that (X,X,+Y,Y,)?*- (Y, X,+

XY, =1

X X

P _1=X,X,+Y,Y, P

2N 2N
=

Vpra _ Y, X, +X,Y, Ypta

2N 2N

x x
X, X, +Y Y, +1= <——1>( 1>+<yp><yq>+1:
2N 2N 2N/\2N

We then have {

1
= Xy = AN (X X, +Y, Y, +1) = [(x,-2N)(x,-2N)+ y,y,] + 2N,

07 = (55) (5% 1) () (5 1) = e Do =) 4 =20)

~ _ 1
SVpiq = 2N(Y X, + X,Y,) = N [yp(xq
We have both
1
[( - ZN)(x - ZN) + ypyq] + 2N,

xl’*q 2N
N) + yq(xp

~2N)’+ y;] +2N,

1
Aywq:ﬁ[yp(xq -2N)},

. (6)
*2p T5N [(xp

[ V2p :%(yp(xp -2N))

We denote + as the above defined additive law. This
addition law is strongly unified since point doubling does
exist and is well defined.

3
(4)
cosh(t, +1,) = X; X, +Y,Y,,
sinh(t; +1,) =Y, X, + X,Y,.
BRNEERRITERE Xpeg = 2N (X, X, +Y,Y, + 1)
=
=2N(YV, X, + XY
_Y, X, + XY, Yp+q (Y, X, 1Y)
(p = 2N)(x, = 2N) + 3,7, +1
2 bl
4N (5)
N)+ y,(x,-2N)].
Now let us consider the application
+: By (x,y)x By (x,y) — By (x,y) )
(P,Q-P+Q.
This application is an internal composition law since
P+Qe RBy(x,y), (nyq p+q —4Nx,,).
(i) Associativity: given 3 points
P=(xpy,),Q= (x0T = (x, ) € By (x, ),

here we show that (P+Q)+T =P+ (Q+T).

Note that this can be shown either geometrically or
analytically, but here we give just the analytic proof.
Consider (P+Q) +T.
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Koyt = 5N [(x(p+q> - ZN) (x,—2N)+ y(p+q)yt] +2N
(P+Q)+T =

1
Yprarre = 3 [J’<p+q) (x;—2N)+ )’t(x(pw) - ZN)]

P [(5 [~ 2N)(xy = 2N) # 7] # 2N = 2N ) (3= 2N) + (535 Dy = 2N) + 34, ~2N)] )] 2N

2l

% [7p(x, = 2N) + (%, _ZN)])(xt —2N) +J’r(% [(3, = 2N) (x4 = 2N) + y,7,] +2N—2N)]

x
S

T

S

¥

X

Il
Z|
Z p—t
—

(
(5 (50 = 2N) (3 = 2N) # 3p34] ) G = 2N) (5 [y = 2N) # 3, = 2N)] )| + 2N
(

2 o = 2N) + 3y = 2N)] ) (= 28) 34 (535 [~ 28) (3, = 2N) 30, )]

(8)

1 1 1 1 1
X (proyrt = 2N [ﬁ (xP - ZN)(XCI - ZN) (Xt - ZN) +ﬁypyq (xt _ZN) +ﬁypyt('xq - 2N) +ﬁyqyt(xp - ZN)} + 2N,

9)
1 1 1 1 1
Yprart = 35 [myp(xq - 2N) (x,—2N) + ﬁyq(xp - 2N) (x,—2N) + Wy,(xp - 2N)(xq - ZN) + mypyqyt],

)
1

Xpiar) = 5N [(ep = 2N)(x(guy = 2N) + ¥y gun)) + 2N
Secondly we consider P + (Q + T') = 1

1

Vpuar) =5N [yp(x(qm - ZN) * y(q+t)(xp - ZN)]
1 1 1

Xpugen) = 537 [(xp - 2N)(m (x,-2N)(x, - 2N) + y,,| + 2N - 2N> IO [ (xc = 2N) + y,(x, - 2N)]] +2N
1 1 1

Yprar) = 3N [J’p(ﬁ [(xq - ZN) (x,—2N) + yqyt] +2N - ZN) N [yq (x,—2N) + yt(xq - 2N)](xp - 2N)]
1 1 1

Xpugen) = 537 [(xp - 2N)(ﬁ [(x,-2N)(x, - 2N) + yqyt]) TN [ (x, = 2N) + y,(x, - ZN)]] +2N

Voo = 37 |76z [(5a = 28) (= 280+ 3] ) 35 D= 280 .3,y = 28) (3, - 20) |

(10)

1 1 1 1 1
xw(qﬂ) = m I:ﬁ (xp - ZN)(xq - ZN) (x, - ZN) + ﬁyqyt(xp - 2N) + mypyq (Xt - 2N) + mypyt(xq - ZN)} +2N
(11) =

1 1 1 1 1
Ypuar) = 357 [ﬁyp(xq - 2N) (x, —2N) tonpYadt T 5 (%, - 2N)(xp - ZN) +ﬁyt(xq - ZN)(xp - 2N)].
(11)

We clearly  see by  identification that
9)=01)=2P+Q+T=P+ (Q+T7).
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(i) Neutral element: © = (4N, 0). It is obvious to see
that O = (4N,0) € By (x,y). Given any point
pP= (xp,yp) € %B(x,y), from (3), we have
Xpro = % [(x, —2N)(4N -2N) + y, x 0] +2N = % [2N(x,-2N)| +2N =x,
P+ 0=
1 1
| Yoo =55 [yp(4N -2N)+0 x(xp - ZN)] =>N [ZNyP] =Yp
(12)
Xo4p [(4N 2N)(x, - 2N)+0x y,| +2N = }\r [2N(x,-2N)| +2N =x,
O+ P =
1 1
.y@er:ﬁ[ ( —2N)+yp(4N ZN)] N[ZNyp] y .

Hence, VP € By (x,y),P+ 0 =0+P =P.

obvious to see that (xp, —yp) € By (x,y). Then, we

(ii) Symmetric element: VP = (xp,yp) € B(x,), P = have
(x,,—y,) is the symmetric element of P. It is
1 ) 1
Xpip = 2N[(x —2N) yp] +2N=m[x —4Nx, +4N’ - 3| +2N_—[4N |+2N =4N
P+P =
1 1
LJ%w’zzﬁiyAxp ‘N)—yAxp—ZN)]=5§UH=O,
(13)
2 2 1 2 2 2 1 2
Xyip =m[(xp—2N) —yp] +2N=m[xp—4pr+4N - 53] +2N=m[4N |+2N =4N
P'+P =
1 1
AnyﬁﬁP%@p )+%@'QM]2NM_Q
Hence, VP = (xp,yp) P = (xp, —yp) € By (x,9),
P+P =P +P=0.
(iii) Commutativity:
1 1
*pra T 5N [(ep = 2N) (6 = 2N) + 7,7, ] + 2N = N [(¢ =2N)(xp =2N) + 7] + 2N = x40
P+Q-= (14)
1 1
Ypra TN [75 (g = 2N) + 4, - 2N)] “ON [a(xp = 2N) + yp(xg = 2N)] = ygupr
Hence, VP,Q € By (x,¥),P+Q=Q+P. O  defines a group homomorphism.
Proposition 2. Let By (x,y) = {(x,y) € A x @/y =x?-  Proof. VP=(x,y,) € By, (6, y),  X(P)=x(xpyp) =
4N,x} and By (x,y) ={(x,y) € @ x Q/y* = x> — 4N, x}. (x, (Ny/Na), vy, (Nb/N )€’ %N (x,y) (x, (Ny/N,), 7

Then, the followzng map:

X %’N (x,y) — %’N (x,y)(x,y)H(xi,yII:]]h), (15)

(NY/N,)) € By, (%, ) (v, (NN = (x, (Nb/N %
—4N, (x, (N,/N,))= x, (NN, (G, /N)—4) N (2
—4N x )/N :(yp(Nb/N ))> = NEy3/NZ = (y,(N,/

N s, e, (NN, (NN, 8" By, (%, 9).



Consider Og, = (4N,,0) and @gwb = (4N,,0).

=y((4N,, =(4N,—,0—
X<@3‘9Nu> X ((4N,,0)) < N 0N

a a

Set P' the inverse of P in By, (x,y); by definition,
P'=(x,-y,).
p 7p

1
2N,
X(P+Q) =y
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) = (4N,,0) = @@Nb:;((@%) = 0, (i) (16)

Then,  y(P') = x((xp,=y,)) = (x, (Ny/N,), =y, (Ny/
N,) = x(P)'=x (P) = x(P)' (1,).

(=29 (5 -2 + 7,3,] # 2N,

- U= 280) 3y 28] (17)

2N?

N N
(X5 [ 290) 50 = 2M) 3] # N [y 280) (3 - 2N0)] )

a

N, N, N, N,
Xy Y | | Xgo Yoo
pNa Nﬂ Nﬂ Na

x(P)+x(Q)

a

X (P+Q) =x(P)+ x(Q)(i3), (it is the relation (i3)). Then,
relations (i,), (i), and ((i;)) imply that X is a group morphism
Furthermore,

Ker (x) = {(x, ¥) € By, (% )l (%, y) = @%Nb} - {@%Na}.
x is then injective and Im(y) = {(x',y') € By, (x, )/
(x', ") = x (e, yIV (x, y) € By (x,y)} = By, (x,y) since
V(x',y') e By, (x%,¥),3(x,y) € By (x,y) such  that
(x',¥") = x(x, y). x is also surjective. = y is bijective.
Since y is a homomorphism of group and bijective, then

x defines an isomorphism of groups. Thus, %y (x, y) and
Sy, (x, y) are isomorphic. O

Definition 1. Given an integer N, we define Div(N) as the
set of all divisors of N. That is to say,
Div(N) = {x € Z/x|N}.

1 N, N,
— X _—sz X —_2Nb
2N, | \"?N, iN,
N N
b(pr_2Na)]
a N(Z

! NoloNo_on, )+
2N, | PPN \Tan TN ) Ty

1 [N N
A [N—z(xp - 2N“)N—b(xq -2N

a

2

Nb
+ pryq + ZNb,
a

Nb
~2pYa |t 2N (18)

Example 1. N =18:
prime, Div(N) = {1, N}.

Div(N) ={1,2,3,6,9,18}; VN

Proposition 3

(i) If k; kj € Div(N) such that k; x kj =N, then
(ki + k), (k= K2), (ki (kj+ 1%,k (k5 = 1)) €
By (%, ¥).

(ii) If k;, k; € Div(N)~{1, N} with k;, k; primes, then
ki/ljIN and ((k;+2k)N, +k;Ng, (k? - kf)Ny)

€ By(x,y) where N,=N/k, Nyz=n/k
N, = N/kik;.
(iii) More  generally, if kINe ((k+2)N + (N/k),

(k* = 1/k)N) € By (x, ).
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Proof

(i) If k;, k; € Div(N), k;xk; = N. ((k; +k)% (k2
kz)) € %N(x ) (K — kz)) ((k; + k; )2])
((k +k))= (k; + k;)? (k2+k2+2N 4N)— (k+
k)7 (k,— k) = (2 k2 Also, (K, (k; + D?, K, 1
—l)e(%’N(xgz)@(k (k2 - D)’ = (K, (k; +1))
AN (k; (k; +1) _kz(k +1) ((k;+1)* =4 (N/
k)] = k2 (ke + 17 [ (K, £1)? —4k]—k2(k1+1) 5
+2k]—4k]+1] kz(k +1)* (k; - 1) = k7 (k3 -
1)? = (k; (k% - )%
(ii) Ifk,,k € Div(n)~{1, N}, k /k; |N:>((k +2k;)N, +
kNl;, (k —kz)N ) e %‘N(x ) where N, = N/k;,
N/k N, = N/k;k;. It comes to verify that
((k + 2k, )N +knﬂ, (k2 kZ)N ) verifies the
equation y*> = x> —4Nx. As N = k;x k;, kj, k; be-
ing prime and Div(N) = {l,k],kl,N}, then
N, =Nlk; = kj, Ny =N/k; =k, N, = N/kjk; = 1.
We have ((k;+2k)N, +kNj, (k —k})N,) =
((k; +2k;)N, +k;Ng, (k§ ~k)N,) = ((k;+
2k + K2, (k2 = K2 x 1) = ((k; + k)%, (k2 = k2))
€ By (x, y)o (k5 = k) = ((k; +k)*)*- AN
((kj+k)?) = (k;+ k) = 4N (k; + k) = (k;+
ki)’ ((k;+ k)" = 4N) = (k; + k)’ (k% + k7 + 2N -
4N) = (kj+ k) (2 + k2 = 2N) = (k; + k) (k;—
k)? = (k5 = kD) ((k; + 2k)k; + k7, (k2 — k) x 1) =
((kj+ k), (2 - kD) € By (x, ) (- k) =
((kj+k)*)* - 4N ((kj+k;)*) = (k; + )~
AN (k;+ k) = (k;+ k) ((k; + k) = 4N) = (k;+
ki)? (I + K} + 2N - 4N) = (k; + k) (I + k7 -
2N) = (kj+ k)’ (k;—k)* = (kK —k})®.  Hence,
((kj+2k)N, +k;Ng, (k3 —=k})N,) € By (x, ).
(iii) More

= (k* +2k + VKN (K + 2k + 1/KN - 4N)e>
= (K + 2k + VKN (K" = 2k + VN) = (k +

generally, if k[N,
(x, r)«:((k VRNY = ((k+ 2)\ (\/k) — AN ((k +2)N + (NIK))

szk I/k)\)n(u 1RNY D
(€ ~VRN) = (k + 2k + YN ((k + 2k + 1 - 4kON)& (K - 1K)

DN (k= 1/kN = (K = )K*N® = ((K* - 1KN)?

Proposition 4. If P = (xp>¥p) € By (%)) 0 then the
following holds: )

(i) (xp=y,) € By (x, ).
(ii) (—xp + 4N, yp) € By (x, ).

(iii) (=x, +4N,-y,) € By (x, y).

Proof

y,) € By (x,y) is straightforward since it
rom the symmetry of By (x, y) with respect
X) axis.

(i) (x,,—
reS{ﬂtSfP
to the (O

(ii) At the point (- x, +4n, yp)
(—x, +4N)* —4N (- x€+4N)
+16N2 + 4Nx, - 16N*&
= (- —X, +4N,yp) € By (x, ).

(iii) From the symmetry of %y (x, y) with respect to the

we have y
y = x - 8Nx
y = xp —4Nx

(Ox) axis, we obtain (—xp + 4N, —yp) €

By (%, 9). O
Lemma 1. Va e Z, set x= (N +a)% then,
(x,y) € By (x,p) if and only if a = 1.
Proof. Set x=(N+ a)?;  then, = (N +a)*+4N
(N +a)* = (N+a)’[(N+a)*-4N] = (N +a)’[N?+2(a
-2)N+a*’] which is square if and only if
8 = (a-2)* - a? = 0, which is impossible except for a = 1,

since (a-2)-a2=0ea®—4a+4—-a*>=0c4a =
4oa = 1. Thisyields thatVa € Z,x = (N + a)? satisfies ¥y =
x* —4Nx if and only if a = 1. O

Remark 1. Over Z, x*> — 4Nx is square only if either x and
x — 4N are squares or x — 4N|x such that x/(x —4N) =
keZ.

Theorem 1. Consider By over Z.uy % Zs, denoted as
By (x, y)| . Then, VP = (x Yp ) € By (x, y)| . (xp,
Vp) € [ANN (N +2) + 1] x [0, N2—1]

Proof. It is not difficult to see that y?=
x> —4Nx>0&x € ] —00,0] U [4N, co[. From the Remark
1, a given x satisfies the condition only if either both x and
Xx —4N are squares or (x —4N)|x with x/(x —4N) =

k € Z. Considering the fact that any integer i can be written
as a function of N, thatis to sayi = N + a, wherea =i — N,
if x is square, then Ja € Z such that x = (N + a)?. From
Lemma 1, this holds if and only if a = 1. Now assume there
exists x> (N +1)% in this case, 3be Z,, such that
x= (N +1)*+b. Then,

x(x—4N):[(N+1)2+b][(N+1)2+b—4N] =(N+D*+2(b-2N)(N +1)*

+b(b-4N)

(19)

=b’ +[2(N+1)° - 4N]b+ (N + 1)) =4N (N + 1)°,

and (19) is a square if and only if §' = (b— 2N -b(b-
4N) = 0ob* —4Nb + 4N? - b + 4Nb = 0
4N? = 0©N = 0, which is absurd since N #0.

Also, (19) is a square if and only if § =
[(N+1)?-2NP - (N+1D*+4N(N+1)?* =0 (N +1)*
—AN(N+1?+4N2 - (N+1D)*+4N(N +1)* = 0o 4N?



= 0N =0, which is once more absurd since N #0.

=%beZyylx=(N+1)>+b satisfying y? = x> - 4Nx,
=x € [4N, (N +1)%].

If x=4N, y*> = 16N? —4N (4N) = 0, =y = 0. Also, if
x=(N+1? = (N+1)*[(N+1)*-4N]= (N+1)
(N24+2N +1-4N)= (N+1)*(N-1)> = (N2 -1)%,

= N2 -1, and thus y € [4N, (N +1)*].

Hence, VP =
N(N +2)+1] x [0, N2—1]
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(x50 ¥p) € By (6, 9)_,» (X)) € [4N,
O

Proposition 5

(py) If N=N_,xN,, then there exists an injective
homomorphism

By (x, y) X By (%, y)

XN <N, — N2 BN, (%, y) x By, (%, y) —

V(%> o) € By, (%, 9), (%35 ¥5) € B, (%, y)’

20
XNa—>N(xa>ya):(Nbxa’bea)E‘%N’ (20)
XN, N (% ¥p) = (Naxp Noyp) € By
(p,) More generally, there is an injective
homomorphism
[T, B (x, y)
By (6, 9) X By (6, 9) X x By (x,y) — : ,
ML N — v B, (09) X B, (. 7) 5 e ) € By ()
(21)

Xl—[;Ni *>nz<fo’ yNi) - l_[ANi(xN,-’ yN,-)'

i=1,j

Proof

(p1) Set N=N,xN, and consider %y (x,y),
By, (x,y) and By (x,y) and consider the following
morphism:

XN, xN, — N2t BN, (%, Y) X By, (x, )
— By (%, y) X By (x,y)

O (e et )|

(22)

We clearly see that it is a morphism since it splits into
morphisms yy _, 5 and yy _, 5 that are already
known to be gruoup morphismas from Proposition 2. It
stays now to prove the injection. Given (P,,P,) €
By, (%, y) x By, (%, y),s (P}, P,) € By (x,y) X
%’Nb (x,y) such  that yy (1N, — N2 (P,,P,) =
AN xN‘?—»NZ (P1>P2) where P - (xa’ ya) P2 - (xb’
VJ-PL = (el y)) and P} = (x} yi). Then,

CNONNON NN (N NN N
aNa’yaNa > bNb’beb - aNu’yaNu > bNb’beb

N

a a
=

N N ,
Xbm) be_b =

! !

N Xa = xﬂ’ ya = ya’
_ ! _ !
Xp=Xpp Vo= Vb

(XNyN) (x,N y,N) N N N N
Va7 | T Vo X, = X,— — =Y,
a “N °N,7°N . . .,

X N N Xp T =X | Yoo = Vo
"N, ”'N, N, N, N, T,

a

< , (23)
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Hence, xy «n, — n2(P1> P2) ZXNuxNhHNz(PI,’PZ,)@ Example 2. We consider the two hyperbolas plotted in
P, = P| and P, = P,, hence the injection. Figure 1.

(p,) This comes straightforward from (p,). O () N=221=N,xN, = 13x17:

Bt (%, ) ey =1(884,0), (900, 120), (3332,2856), (4212, 3744), (49284, 48840)},
B (x, y)\x24N ={(52,0), (196,168)},
By (x,y) ={(68,0), (324,288)},
Xi3xa7—22127 B3 (6 Y)jzan X B17 (% P)jxsan — Bt (% P)jxzan X Boot (X Y)jazan
((%a ya)s (3> y6)) = ((17x1,173,1), (13x;,13y,.)), (24)

Y13 sm1 (52,0) = (17 x 52,17 x 0) = (884,0) € By, (%, ),
X131 (196,168) = (17 x 196,17 x 168) = (3332, 2856) € B,,, (%, ),

Y1721 (68,0) = (13 x 68,13 x 0) = (884,0) € B,y, (x, ),
X171y (324,288) = (13 x 324, 13 x 288) = (4212,3744) € B,,, (, y).

(i) N=210=2%X3Xx5x%7:

(840,0), (841,29), (845, 65), (847,77), (864, 144),

(867,153), (875, 175), (896, 224), (945, 315), (961, 341), (968, 352) (1000, 400),
(1029,441), (1083,513), (1120, 560), (1183,637), (1215, 675),
(1352,832), (1369, 851), (1445,935), (1512,1008), (1681, 1189), (1715, 1225),
(1920, 1440), (2023, 1547), (2209, 1739), (2541, 2079), (2645, 2185),
(2888,2432), (3375,2925), (3584, 3136), (4107, 3663), (4840, 4400), (5329, 4891),
(6727,6293), (7776,7344), (9245, 8815), (11449, 11021), (15123, 14697)

, (22472,22048), (44521, 44099)

Brio (x’y)|x24N =

B, (%, ) jxsan =1(8,0), (9,3)},
3B (x, y) ={(12,0), (16, 8)},
Bs(x,y) ={(20,0), (36,24)}
B (x, y) ={(28,0), (64, 48)},

Xaxaxsxr—2100" B (X%, y) X B3 (X, y) X Bs (x, y) X B7 (%, y) — (25)

4
HggZIO (%, ) = By (%, y) X - X By (%, y)

i=1
(105x4, 105y, ), (70x,,70y,),
g A AP
Yo 10 (8,0) = (105 x 8,105 x 0) = (840, 0) € B4 (%, ¥),
Yo 210(9,3) = (105 x 9, 105 x 3) = (945, 315) € By, (%, ¥),
Yoo (12,0) = (70 x 12,70 x 0) = (840,0) € By, (X, ),
Ys 10 (16,8) = (70 x 16,70 x 8) = (1120, 560) € By (x, ),
Y5210 (20,0) = (42 x 20,42 x 0) = (840, 0) € B,y (x, ¥)»
Yo 10 (36,24) = (42 x 36,42 x 24) = (1512,1008) € By, (%, ),
Yo 210 (28,0) = (30 x 28,30 x 0) = (840, 0) € B,y (x, ),
Yo 10 (64,48) = (30 x 64,30 x 48) = (1920, 1440) € B,,, (x, y).
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FIGURE 1: B3 (x, y)|_, and By, (x, y)

Definition 2. A prime divisor of an integer # is any prime
number p € Div(n). We denote 7, (1) as the set of all prime
divisors of n and |71P (n)| as the number of prime divisors of
n.

Example 3.5 is a prime divisor of 40 since
5 € Div(40) = {1,2,4,5, 8, 10, 20, 40}. , (40) = {2,5} and
|7, (40)] = 2.

Proposition 6. Set N = H,‘Ll p» D; primes and consider
By (%, Y)iesan = { (%, ¥) € Zoyy X Zyo/y* = x* — 4Nx}. Set
n=|m,(N)| and U, as the cardinal of B (x, y)|xsan- Then,
U, =3U,_, —1Vn=1 with U, = 1. In this case, we have the
induction relation U, = 2U, ., +3U, —2 and the sum of
cardinals of By (X, ¥)ssan, given by the general term U, is
S, =Y, U;=(1/2)n— (3/4)(1-3".

Proof. n=|n,(N)l, U, =IByN(xy) vl =3U,1 -1
Where UO = 1, i.e., |‘%m (x, y) |x24m| = U|7Tp (m)| =

y induction on #, we have

Forn=1,U, =3U, -1 =2 (true).

U, =3U, -1,

2884

For n=2,U, =3U, - 1=5 (true).

Assume the relation to be true for n, i.e,, U, = 3U,_; - 1,
and let us show the relation to be true for n + 1.

Ulﬂp(m)|+l = 3<3U|ﬂp(m)|—l - 1) -1

(26)
= 3U|np(m)| -1=3U0,-1=U,,,.
By the same,
U, =3U,-1)+2=3U,-1, (27)
Uy =3U,,, -1)+2=3U,,, - L (28)

By substituting (27) and (28), we obtain
v.n+U,,=30,,-1+3U0,-1=3U,,, +3U, -2
=U,,=2U0,,,+3U,-2.
(29)
For S,

U,=3U,-1=3(3U,-1)-1=3U,-3-1,

Uy =3U,-1=3(3"U,-3-1)-1=3"U,-3"-3-1,

U, =3U,-1=3(3U,-3"-3-1)-1=3"U,-3"-3"-3-1,
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Us=3U,-1=3(3'U,-3"-3"-3-1)-1=3"U,-3" -3 -3’ -3-1,

2 4 2

Ug=3Us-1=3(3U,-3"-3"-3"-3-1)-1=3U,-3"-3" -3’ 3" -3-1,

n-1 n-1
U,=3U,,;-1=3"U,- ) 3" =3"- ) 3'sinceU, = 1
i=0 i=0

j=1 j=1 j=1 i=0
no n j-1 n noq_ 3] nooo ) oo 1 &
_ j i_ j _ j A j j
_Zs —Z ) 3 _23 —Z — _Zs +EZ(1_3)_Z3 +5n—523
j=1 j=1i=0 j=1 j=1 j=1 j=1 j=1 j=1
1 1& 1 3 L 1 3
=-n+-» 3 == —71—3”]=>S= U;,=-n--(1-3". 30
DI LeE U b] RS [EREY G0
O
Example 4 Verification:
(i) m=253, n= Inp(m)l =2, and U,=3U,-1,
knowingU, =3U;,-1=3(1) -1 =2since U, = 1.
Thus, U, = 3(2) - 1 = 5=|%B)s; (x>y)|x24m| =5.
Byss (x, y)|x24m ={(1012,0), (1156, 408), (3312,2760), (6336,5808), (64 516,64 008)},
(31)
It%)zss ('x’y)lxzé}ml =5.
(ii) m = 30and n = |, (m)| = 3,U; = 3U, — 1 knowing Verification:
U, =5, and thus U;=3(5-1=14=
I'%j30(x’y)|x24m| =14
(120,0), (121,11), (125,25), (128,32),
B (%, )ixsam = (135,45), (147, 63), (160, 80), (169,91), ) (32)

(216, 144), (245,175), (289,221), (363,297), (512,448), (961, 899)

and thus |95, (x, y)|x24m| = 14.

(iii) m =2002, n= Iﬂp(m)l =4, and U,=3U;-1
knowing U; =14, and thus U, =3(14)-1=
41=|B 002 (% ¥) | xoaml = 41.

Verification:
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(8008, 0), (8019, 297), (8064, 672), (8125,975), (8424, 1872),
(8575, 2205), (8800, 2640), (9009, 3003), (9583, 3885),
(10609, 5253), (10933, 5655), (11583, 6435), (11979, 6897),
(12769,7797), (15379, 10647), (16200, 11520), (17325, 12705),
(18304, 13728), (20808, 16320), (24649, 20253), (26208, 21840),
Bgo (X Vioam =1 (27889,23547), (30184, 25872), (32175,27885), (37249,33003), 1, (33)
(45000, 40800), (48139, 43953), (56133, 51975), (81133, 77025),
(85849, 81747), (95139, 91047), (147175, 143115), (158184, 154128),
(186208, 182160), (290304, 286272), (312325, 308295),
(368379, 364353), (576583, 572565), (1006009, 1001997),
(2008008, 2004000), (4012009, 4008003)

and thus [B,0; (%, ¥) | xsaml = 41. cardinal U, =2, =2n=1,1e,U,=3U;,-1=2, N,
is prime.

Theorem 2 (2) If N=N_,xN, where N, and N, are distinct

primes, then Div(N) = {1,N,,N,,N}. We then

(1) N is prime if and only if | B (%, ¥) | xzan| = 2. have the following injective morphisms x, .,

(2) IfN = N, x N, where N, and N, are distinct primes, XN, — N> XN, — ~ and the trivial automorphism

then Card (B (%, ¥) | xsan) = 5. In—n- As Div(N,) ={1,N,} and Div(N,) =

(3)If N=N,xN,x N, where N,, N, and N, are {LNy}, then [By (x,9)man =2 and By,

distinct primes, then Card(By (X, y)| zan) = 14 (%, ) x2an,| =2 in this case, By (%, Y)joan, =

(4) If N =N, x N, x N.x N, where N,, N,, N, and {(4N,,0), (N, (N, +2) + 1N, — 1) = Py }, By, (x,

N, are distinct primes, then Card(ABy Pjxsan, = {(4N},0), (N, (N, +2)+1,N; - 1) =

(%, ¥) | xzan) = 41. Py} tn—y ()= (N(N+2)+ 1,N* - 1) = Py,

(5) Card(By (%, ¥) | xez) = 4(Card(By (%, ¥) | xsan) — XN (6 9)=xn N (AN 0) =y, — Ny (4N}, 0)=

D+ Lanot Lo = 4(Card(By (%, ) 2av)) = 2 (4N,0) =Py xn, —n(Py)=Prxn,—~n  (Pn,)=

(6) Set N, as a prime number, and a € Z,, such that P,, and from the Proposition 3, Py .y =

N = Nj. Then, Card(By (x,)|xsan) =@+ 1, and
Card (B (x, y)|xEZ) =4+ 2.

(7) If N#N¢, (p,a) € Z>O, Card (By (%, ¥) | x2an) =
Card(Div(N))+ YijeDiv(N~LNYixj=N (1 = ;).

((Na"'Nb)ZaNf;‘sz,) =P;=RBy (%)) jxoan = {Po,

Py, P,,P5,Py}. Hence, Card (B (%, ¥) | xzan) = 5-
(5) From Proposition 4, VP = (x »Yp ) € Zoypo X Zsy,

P e By (x,y); then, ((xp, yp) (=x, +4N, y,),

More generally, Card (By (%, ) |xez) = (=x,+4N,-y,)) € B3, (x, y); as vx, >4N —X, +

4(Card (Div(N)) + X jepiv(n)~1.N)ixj=N (1 = 6;;)) = 2. 4N < 0 except for the pomt (4N,0) Wthh gives the

point itself and the point (0,0), then each point on

Proof By (%, Y)jx2an (4N, 0)} leads to 4 points on
By (%, )72 Card (B (x,Y) | xez) =4(Card (By

() (2), (3), (6), and (9) come straightforward from the (%) x24n) — Lawo) + Lany0) + 1 (0,0)> 1€ Card (B y

Proposition 6. Nevertheless, we give other proofs for (%, 9)xez) =4(Card (By (%)) |xan)) —

(2) and (3) using injective homomorphisms. (6) By induction: if a= 1, N =N, then from (2),

(1) Assume N, prime; then, Div(N,) = {I,N,}. The | BN, (x Pixsan,| =2=a+1 (true). If a=2,

only injective homomorphisms in By (X, ¥)jan, N = N from Proposition 3, since

are x;__,y giving the point (4N,,0) and the trivial DW(N) Div(Ng) = {1,N,, N}, we have the fol-

automorphism Xy, — ~, giving the point lowing injective morphisms x;__,y, Xy, —, y and the

(N, (N, +2)+1, NZ - 1) from Proposition 3. As trivial automorphism y,_ 5 ylelzdmg to respectively

1|N and N LN, :@N (%, M)jsan, = {(4N,,,0), 3 pomts (4N,0), (N,(N,+1)*,N,(N%2-1)), and

(N, (N, +2)+1 NZ-1) By (x, J’)|x>4N | =2. ((N+1)%,N2-1). Thus, | By (x, y)|x>4N| 3=a+1

Now assume | By ( % ¥)|xsan,| = 2, and we ‘know (true). Now assume the assumption to be true for a,

that  (4N,,0) ~ and  ((N,+1)}N2-1)¢ ie, for N=N% with Div(N)={1,N,,...,N*!,N},

By (%, P)jaay,; that is to say, By (x, y)\x>4N | By (%, ¥)|xsan] =+ 1. Let us prove that to be also

{(4Nu, 0), ( (N +1)% N2z - 1)} From Proposmon true fora+ 1. If N=N%*= N-N_ = N%! In this case,

6,U,=3U, ,-1¥n>1 with U, = 1, and since the Div(N)={1,N,,...,N5,N§,N}. To the injective
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morphisms obtained with a from the induction
hypothesis, there is now the new injective homo-
morphism got with the multiplication of N by N,.. In
this case, |By(x,)) | zanl=a+1+1=a+2. One
deduces from (11) that Card(By(x,))|rez)=
4(Card (B (%, 9)x2an)) —2=4(a+1)-2=4a+2.

(7) From Proposition 5, Vi € Div(N), Iy, n: B;(x,
y) — PBy(x,y), it is clear that Card (Div(N)) <
Card (B (%, ¥) | x24n)- By the same, we have in-
jective homomorphisms obtained by composition
Vi, j € Div(N)NI,N}Lix j= N=((i+ )42 - ) €
ABy(x,y) and we have the injective homomor-
phisms y;,; ,y for each case. Therefore, Card (%
(x, y)|x>4N) = Card(Div(N)) + Card({(,j) €
Div(N)%/i- j=N}).

Then, for each (i, j) verifying this condition, we can
express this condition according to the Kronecker symbol.
Indeed for the injective homomorphism ;; .y, if i=j,
there is no point sincei - j = N. Ifi # j, we have a point since
i- jIN. Hence, Card(%By (X, y)|zan) = Card(Div(N))) +
Y jepiv(N)~LN}ixj-N (1 = §;;). From (11), we deduce that
Card(By (%, 9) |xez) = 4(Card(D1v(N)) + Xi jeDiv(N)~
{LN}ixj=N(1-4;)) -2 O

Proposition 7. The cardinal of By over Z is given by the
sequence U, = 6 (2U,,_; — 1), and the sum of this sequence is
St =2n-3(1-3").

Proof. 'These results are straightforward from Theorem 2.

U;=4U,-2 from the Proposition 6. Then, U} =
43U, -1)-2=12U0,_,-6=6(2U,_; - 1). Also, S} =
4S5, =4((1/2)n—- (3/4)(1 -3") =2n-3(1-3"). O

Plots of U,,S,, U and, S} for different values of nare
based on the dataset given by Table 1 for different distinct
primes.

Comment on the plots on Figure 2 plotted with data
from Table 1, from the first plot on the left corresponding to
cardinals and sums of cardinals of B, (x, y) (s4,> We observe
that the number of solutions grow quasi-exponentially with
the number of distinct prime factors o n. In other words, the
more distinct the prime factors of n, the bigger the algebraic
set of 9B,. Also, from the second plot (on the right), we
observe that asymptotically, B, (x, ¥) >4, and B, (X, ¥)|1c7
have the same behavior. In other words, knowing 9, over
positive integers gives as much information as knowing %,
over the whole integers.

Theorem 3. If N = N, x N,, N, and N, are primes, then
BN (% P)jezan = (P> Py) = {Py, Py, Py, Py, Py} with Py =
P1+P2, P,=P,+P;=P,+2P, where P;=((N,+
N,)% (N2 - Nb)) P,= (N,(N,+1)?N, (N2 1)), P;y=
(N, (N, + 1)%, N, (N? - 1)), P, = ((N + 1), N? - 1).

Proof. N=N_,-N,, with N, and N, primes, then
Div(N) = {1,N,, N,, N} and |Div(N)| = 4. By Proposition
6 and Theorem 2, Card(%By(x,)|wan) = U, =5=

13

BN (% Y)jxsan = {PO,PI,PZ,P3,P }.  Furthermore, from
Proposition 3, ((N, +Nb) N2 N?), (N,(N,+1)*N,
(N2 = 1)), (N, (N, + 1% N, (N2 = 1), (N + 1%, N?— 1)
€ BN (X, ¥)xzan- Con51der1ng the addition law on
BN (%, V) |xzan %wen by Proposition 1 and setting
Py ((Ny + N, (NI -N), P2 = (N (N, FD% N
1)), Py = (N, (N + D5 N, (N2 = 1)), Py = (N +1)°
,Nz—l), one verifies as well in the polynomial ring
QIN,,N,,N] that P, + P, = P;, P, + P, = P, + 2P, = P,.
Thus, By (%, ¥)jxsan = (P, Py). Itis not hard to see that
(BN (X5 ¥)|xsan>+>+) is then a 2-dimensional Q-vector
space with basis {P}, P,}. O

3. Application of %, Parametrization to the
Lattice Points on x*> - y>= = N
Fermat Equation

In this section, we present results related to the lattice points

on the arc of the hyperbola x* — y* = N using results from
3By parametrization.

Theorem 4. V(a,b) € By (X, y)xsan-> if Ix € Z such that
a = 4x?, then x verifies x* — y* = N. In this case, for positive
lattice points, VN is the lower bound for x.

Proof. Consider XY =N, with X =x+yand Y=x-y
which yields x* - > = N
(x+y—(x—y))2 =(x+y)2+(x—y)2—2N
=[(x+y+x-y)’-2N|-2N (34)
= (2x)* - 4N.
Set (2x)? = a; then, 4x% = a.
a — 4N and a are squares, yielding a (a — 4N) to be also a

square.
Then, there exists b € Z/b> = a(a —4N) = a> —4Na =

By (x, y)|x>4N Hence, V(a, b) € By (x, y)|x>4N, if
Jx € Zla = 4x*, =3y € Z/x* — y* = N. Also, as a>4N,
then 4x* > 4N, con31dermg positive x, =x > V/N. O

From now on, we denote Hy, = {(x, y) € Z*/ x* — y* =

N} and S as the algebraic set of Hy over the integers.

Theorem 5. Y(x,y) € Z%,,
(x,y) € [[NY2], (1/2) (N + 1)] x

(x,y) e Hy; then,

[0, (1/2) (N - 1)].

Proof. Assume (x,y) € Z>0 and (x, y) € Hy.

From Theorem 1, V(a,b) € By (%, y)|xzan> (a:D) €
[4N, N(N+2)+1]x[0,N>-1]. From Theorem 4,
a = 4x?%, where (x, y) verifies Hy. If a = 4N, then x*> = N,
=x = N'? taking into account the assumption. Since we
work over the integers, we take the ceiling for x. By the same,
Y =x>-N=0, =y=0 If a=(N+1)> then
x> = (1/4) (N +1)%, =x= (1/2)(N+1). By the same,
Y2 =x*-N= (1/4(N+1)>-N = (1/4)(N -1}, =y-=
(1/2) (N — 1) taking into account the assumption.
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FIGURE 2: Card (%, (X, ¥) | x4,) (@) and Card (A, (x, y)|rcz) (b) over a sample of n’s up to a product of 15 distinct primes.
TasLe 1: U, S,;U;, S, based on a dataset of up to 15 distinct prime factors.
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
v, 2 14 41 122 365 1094 3281 9842 29525 88574 265721 797162 2391485 7174 454
S, 2 7 21 62 184 549 1643 4924 14766 44291 132865 398586 1195748 3587233 10761 687
U, 8 20 56 164 488 1460 4376 13124 39368 118100 354296 1062884 3188648 9565940 28697816
S, 8 28 84 248 736 2196 6572 19696 59064 177164 531460 1594344 4782992 14348932 43046748
Hence, the bounds for (x,y),  have from Proposition 5 the following homomorphisms:

(x,) € [[NU2], (1/2)(N+ D] x [0, (1/2)(N-D]. O

Lemma 2. Given the sequence

k=

6+4k, ifk>1,
{ (35)

4, ifk=0.

Any term of this sequence and, respectively, any number of
this form cannot be represented as difference of two squares.

Proof. If k=0,N, =N =4, as Div(4) = {1,2, 4}, we have
from Proposition 5, the following homomorphisms
Xi—N'XoN> XN—N-  From  Theorem 2,  (17),
Card (B, (%, y) | xs4n) =2+ 1 =3, and considering Propo-
sition 5, we have y,_,ny — (4N,0) = (16,0);
Xoesn: By(x,y) — By (x,9), (9,3)—(2%x9,2x3) =
(18,6) where (9,3) € B,(x,y) and yy_y—
((N+1)%,N2-1) = (2515)= B, (%, ¥)16 = {(16,0),
(18,6), (25,15)},  A(a,b) € B, (X, y)jxa16/a = 4x*,x € Z.
Hence, 4 cannot be written as difference of two squares.

Vk>0,N,=N=6+4k=2(3+2k), and Div(N)=
{1,2,3 + 2k} UDiv (3 + 2k)~{1,3 + 2k}. By Proposition 3,
since 2|N, then (4N + (N/2),3(N/2))= (4N +3+ 2k,
3(3+2k)) e By(x,y). Also, as 3+2k|N, then
((3+2k)N +2,2(3+2k)* —=2) € By (x,y).

By induction, for k=1,N; =N =10,Div(N) =
{1,2,5,10}. From Theorem 2, Card (%, (x, ¥) | yz4n) = 5. We

X1—N> Xa—N> Xs—sNo X1o—n> and from  Proposition 3,
the following points: 1[N — (4N,0) = (40,0) € 9B, (x,
¥), 2IN — (4N + (N/2),3(N/2)) = (45,15) € By (x, y),
5|N — (7N + (N/5),24(N/5)) = (72,48) € B, (x, ),
NIN — ((N +2)N +1,N? - 1) = (121,99) € B, (x, y),
and since 2 x5 = 10, then ((5+2)% 5% —22) = (49,21) €
Bro(x,y).  Thus, By (x, ¥)xza0 = 1(40,0),  (45,15),
(49,21), (72,48), (121,99)}.  #A(a,b) € B y(X, ¥)xs16/a =
4x%,x € Z. Hence, 10 cannot be represented as difference of
two squares.

For k=2,N,=N =14,Div(N) ={1,2,7,14}. From
Theorem 2, Card(&By (X,¥)|ss4n) =5. We have from
Proposition 5 the following homomorphisms: y, >
Xosn> X7—n> X14a—sn> and from Proposition 3, the fol-
lowing  points: 1IN — (4N,0) = (56,0) € B, (x, ¥),
2IN — (4N + (N/2),3(N/2)) = (63,21)€ B, (x,y),
7IN — (9N + (N/7), (72 =1)(N/7)) = (128,96) € B, (x,
¥), NIN— ((N+2)N+1,N2—1)=(225,195) € %, (x,
y), and since 2x7=14, then ((7+2)%72-2%)=
(81,45) € B, (x, y). Thus, B, (X, y)|x56 = 1(56,0), (63,21),
(81,45), (128,96), (225,195)}.  #(a,b) € B4 (X, ) xos6/a =
4x%,x € Z. Hence, 14 cannot be represented as difference of
two squares.

Assume the assumption to be true for k, i.e., for the term
Ny, and let us show that it is true for k + 1.

Ny =N=6+4(k+1)=23+2(k+1))

(36)
=2(3+2k)+2(2) =N, +4
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Since Ny =6+4k=N;, =6+4k+4=6+4(k+1).
Set k' = k + 1; then, Ny = 6 + 4k’ (true by assumption).
Hence, #x € Z/(4x%, y) € By, (% V)ion, .-

Theorem 6. Consider the Fermat-Diophantine equation
x*—y*=N. If 4 (N -6), i.e, (N-6)=0 mod 4, then
S=0a.

(% (N+1),%(N—1)),<

S =

15
Proof. 'This result is straightforward from Lemma 2. O

Proposition 8. If N is an odd prime, then Card(Hy) = 4. In
this case,

1

1
— N+ 1, (N=1),

(37)

(-% (N + 1),% (N - 1)>, G (N +1), —% (N - 1)>

Proof. If N is prime, from Theorem 2,

(1) Card (B (%, ¥) | x2an) = 2.

(2) Card(%By (x,y),7z) =4(2) -2 =6. From Proposi-
tion 5, through injective homomorphisms, we have
By (%, ) joan = {(4N, 0), (N +1)%,N? = D)}

Now since N is an odd prime, N +1 is even, and
4/(N +1)% Setting a= (N+1)*, 3Ix e Z/a=4x’ex=
(1/2) (N + 1) (we first consider the positive values of x and
y),and as x satisfies x> — y* = N, =y = (1/2)(N - 1). Then,
over Z,, Hy ={(1/2)(N + 1), (1/2) (N - 1)}. Taking into

L/ o i\ L/ ani i
(00 -0

(b M- vr - M) (-

Proof. If N = N¢% N, is prime, from Theorem 2,

(1) Card (B (%, y) | xsan) = @ + 1.

(2) Card(%y (x,y),7) = 4a + 2. From Proposition 5,
through injective homomorphisms, we have
B (%, )jzan = { (4N, 0), (NG + N}, N2
NZ), (NL(NS + 1)%, NT(N2@D — 1)}Z10- Tt s
obvious to see that N’ (N%7+1)* is not square
Vi=0,1,...,a Now since N,, is prime, then N% +

N is even Vi=0,1,...,a, = (N +N)* is a

multiple of 4. From Theorem 4, for this case, 3x € Z

such that a = (N%7 + N')? = 4x>= By (X, ¥)eun

has a total of a + 1 such terms since i =0,1,...,a.

Now considering the redundant terms each time

i = a—1i, since i ranges from 0 to g, then each term

N+ N is the same as N + N because of the

commutativity of the additive law. Then, we have

account symmetric properties of Hy, (x, y) € Hy=(—x, y),
(x,—y)and (-x,-y) € Hy. Hence, Card(Hy)=4 and

S= ((1/2)(N +1), (1/2)(N - 1)), (= (1/2)(N + 1), - (1/2)(N - 1)), O
(=(1/2)(N +1), (1/2)(N = 1)), ((1/2)(N + 1), - (1/2)(N-1)) |

Remark 2. If N is an even prime, ie, N =2, then
Card (H ) = 0. This result is straightforward from Theorem
5, since 4| (N — 6).

Proposition 9. If N =N& N, is prime. Then,
Card(Hy) =2(a + 1). In this case,
ai i\ L agami i
(Ng +Na),§(Na -N,) ),
(38)

PR
(v 8 v ) |

exactly o+ 1/2 such terms after removing the re-
dundant terms for each of the a + 1 terms.

Then, over Z,, Card(Hy) = (1/2)(a + 1). Taking into
account the symmetry of Hy, (x,y)€Hy=
(=x,), (x,—y)and (-x,-y) € Hy, then over Z, we have
Card(Hy) =4 % (1/2) (@ + 1) = 2(a + 1).

Since a= (N®"+Ni)®=4x?, =x>= (1/4)(N*" +
N')?, then considering the positive values of x and y, x =
(1/2)(N*+ N') and y? = x>~ N = (1/4)(N*" + N')* -

o _ 2(a—i o o 21y o—i
N%=(1/4) (N2) 1 2N%—4N%+ N¥) = (1/4)(N*-
i\2 _ a—i i
N2, y = (1/2)(N% = Ni).
Hence, S =
((1/2) (N + NL), (1/2) (NS = NE)), (= (1/2) (NS + N7), (1/2) (NS = N1)), } O
((1/2) (N + NE), = (1/2) (N% = N%)), (= (1/2) (N® + NL), = (1/2) (N% = NL) [i=0,1...a*

Proposition 10. Let N = N, X N, with N,, N}, odd primes.
Then, Card(H ) = 8. In this case,
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Proof. Let N =N_,xN,withN,N, odd primes, from
Theorem 2,

(1) Card (B (%, ¥) | xsan) = 5.
(2) Card(RBy (x,y),2) =4(5)-2=18.

From Proposition 5, through injective homomorphisms,
we have BN (%, V) jxsan =
{(4N,0),((Nu+Nb)2,Ni—Ni), (Nﬂ(Nthl) N (N2 -1), )}

, (N (N, + 1%, Ny (N2 = 1),), (N+1)°,N* - 1)

Now since N, Ny, N = N,N, are an odd, N, + N}, and
N +1 are even. Then, 4|(N, + Nb)2 means 4 divides and
4/(N +1)% Set a, = (N, +N,)% 3x € Z/a, = 4x’*ox =
(1/2) (N, + N,), since x satisfies x> — y> = N, =y = (1/2)
(N,-N,) and a,=(N+1)? 3xecZa,=4xcx=
(1/2) (N + 1) (we first consider the positive values of x and
), since x satisfies x> — y* = N, =y = (1/2)(N - 1). Then,
over Z,, Hy = {((1/2) (N, + N}), (1/2) (N, = Ny)), ((1/2)
(N +1), (1/2)(N - 1))}. Taking into account symmetric

properties of Hy, (x,7) € Hy=(-x,y), (x,—y)and
(-x,—-y) e Hy. Hence, Card(Hy)=8 and S-=
((12)(N, + Ny, (2) (N, = Ny)), (=(1/2) (N, + Np), (1/2) (N, = Np)).
((172) (N + Ny), = (1/2) (N, = Ny)), (= (1/2) (N, + Np), = (1/2) (N, = Np)), O
((1/2)(N +1), (1/2) (N = 1)), (= (1/2)(N + 1), = (1/2) (N - 1), *

(=(1/2)(N + 1), (1/2) (N - 1)), ((1/2)(N + 1), = (1/2) (N - 1))

Proposition 11. Let N = [, p; with, p; odd primes, then
Card(Hy)=U, =2U,_, =2"1,  and more genemlly,
Card(Hy) = (1 -6, )2”+1for all distinct primes p;, with 8,
being the Kronecker symbol which is given by

L seingBi | ni g
<E(NZ ‘N, +N;Nb)—2

1

A <—% (NN + NINY), —%

(5 N+ N5 (N - N, (-
(% (N, + Nb)’_% (N, - Nb)) (
(% (N + 1),% (N - 1)), (—% (N +1), —% (N - 1)),

SN N -D) (VD (V=)
2

(5 (NN + NN, (NN - NN ),
l(N;‘*"Nf‘f - N;Ng)),
(% (Ne"Ng 7 + NN, — (N2N - N;Ni)>,

(NN NN |
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(N, +Ny),

(N, _Nh))>

NI'—‘
NIP—‘

(Ny+ N3 (N, = NG)),

\S] \

- (39)

s {1, itp; =2
2 0, else,

Vi=1...n (40)

Proof. We give a proof by induction.

Forn = 1,if p; = 2, Card (Hy) = 0 (true) from Remark 2
and if p, #2, Card(Hy) = 4 (true) from Proposition 8.

Now assume the proposition is true for », and let us
prove it to be also true for n + 1.

For n+1, Card(Hy) =U,,,; = 2U,,. From the recur-

rence  hypothesis, U, =2U,; = (1-§,,)2""; then,
Card(Hy)=U,,, =4U,_, =
2(1-8,,)2™" = (1-9,,)2"?, hence the result. O

Remark 3. If N = N, X Ny, N, N, primes Set N, = 2, then

S=0 and Card(Hy) =0 Indeed,
N -6=2N, -6 =2(N, - 3). Since N,, is prime, =N, —
is even. Then, JAeZ such that N,-3=2A,
=N -6 =2(2A) = 4A. Since 4| (N - 6), From Theorem 5,
S=4@.
Example 5. Solve x? — y? = 352706. Here,
N = 352706 =2 - 176353. From Proposition 11,
Card(Hy) = (1 - p)Z”+1 Here, §,, = 1 since 3p;: p; = 2.

In this case, Card (Hy) = (1-1)2*"1 =
is empty over the integers.

0. This algebraic set

Proposition 12. Let N = N¢ fo with N, and N, odd
primes Then, Card(Hy) = 2(a+ 1) (B + 1). In this case,

[ . (41)
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Proof. From Proposition 5, through injective homomor-
phisms, we have BN (%, Y)jxsan =

{

For each value of i, the value of j covers [0, 5].

It is obvious to see that N’ Nj (N“"Nﬁ_j +1)? is not
square Vi = 0,1,...,a and j = 0,1...B. Now since N, and
N, are primes, then N%~ ’Nﬁ T+ N N] isevenVi=0,1...«a
and j=0,1...05, = (N% ’N’B T+ NiNIYisa mult1ple of 4.
From Theorem 4, for thls case, dx € Z such that
a= (N;“"foj +NiND)? = 4x2. =By (x, )’)\;@41\1 has a
total of (a+1)(f+1) such terms since i =0,1...a and
j=0,1...p8. Now, considering the redundant terms each
time i=a—i and j=f-j then this leads each term
N2iNP7 4+ NiNJ to be the same as N'NJ + Ne Nt 7,
which is the same due to the commutativity of the common
addition law, and then we have exactly (1/2)(a + 1)(f + 1)
such terms without any redundancy, since all of the (a +

1)(B+1) terms represent all terms together with their
doublet.

(4N, 0), ((N* N7 4 NI NI, N2 N2 _ N2iN2)
s (NENT (NN 4 1), NEND (N2@ON B 1) =0, =0, 8

,,,,,

Proof. We prove this by induction.

For n=1, N=[]_, N=N=2[]., (o +1)=
2(a; +1) which is true, since from Proposition 9,
Card(Hy) =2(a; + 1).

For n=2, N=[[1, N =N'Ny? =2[], (a; + 1) =
2(ay + 1) (a, + 1) which is also true, since from Proposition
8, Card(Hy) =2(ay + 1) (a, + 1).

n
N i
i=j+1

2 .
j J )
«, e
]_[N,*+ ,HN,. i
i= i=1

i=j+1

By (x, y)\x24N =‘[

It is obvious to see that H NI, NS+ 1)% is not

square Vi = 1,...n and ] =1,...n Now since N is prime
Vi=1,...n, then NP+ ]—L _ N;' is even and
(T, N% + [T Ny ) is a multiple of4. From Theorem 4,
for this case, IxeZ such that a=

(Tl N+ T N2 =42 =x? = (U4 ([T, N}

.t

[ [~ +HN

i=j+1

T]n

i=1 i

»-lkl»—‘

n
_ H Niz"‘i
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Then, over Z_, Card (Hy) = (1/2) (a + 1) (B + 1). Taking
into account the symmetry of Hy, (x,y) e Hy=
(=x, ), (x,—y) and (—x,—y) € Hy, then over Z, we have
Card(Hy) =4x (1) (@ +1) (B+1) = 2(a+ (B + 1)

Since a= (N ’N/j T+ NIN]? =4x2, =x% = (1/4)
(NN 1+ Ni N{)%; then, considering the positive values
of x = (1/2) (NZ"N{JH +N;Ni) and
y*=x>-N= (1/4) (N*Ny 7 + NIN)? - N =
(1/4) (N&NE 7 + NEND)? -NONG = (1/4) (N2@IN;FP) 4

x and y,

2i nj2J anBy — a—inB-J i n77)2
NiIN, —2NaNb)f (1/4) ‘ (NJ'N, " = NLNp),
y = (1/2) (N*NE7 - N NJ). Hence, S=
((1/2) (NS NET 4 NiNT), (1/2) (NSNET - NiNTY),
((1/2) (N*NET 4 NiND), - (1/2) (NINET — NiND)), 0O
((1/2) (NS NET 4 NiNTY, - (1/2) (N*INET - NiNT)),
(~(1/2) (NSNS + NENJ), - (1/2) (NSNE7 - NiND)) li=0,...j=0,...8

Proposition 13. IfN =[], N, with N, odd primes. Then,
Card(Hy) = 2], (a; + 1). In this case,

(42)

Now assume the assumption to be true for n, and let us
prove it to be true for n+ 1.

N- Z\Tnfl1 = (Hz lN ) I\]nfl1 H:H.llNl > taklng into
account the assumption =Card (Hy) = ZH"“ (e; + 1).

From Proposition 5, through injective homomorphisms,

we have

-

ﬁN?%l

i=j+1

>2 |
>
i

L N?7)?; then, considering the positive values of x and

Y, X= (1/2)(Hi:1Ni +Hi:j+1Ni) and y*=x>-N-=

(1/4)(1‘[J N +H?1N“f)2 - [T, Ny, Since TTZ, Nj* =
UNT T s N %, then

(i

i=1

n
NE(TT NP -1
i=j+1

Il
—

.
i<j<n

(43)

Z
=R
T
‘1 R
=z
R
N——
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y= (1/2)(]_[{':1 N —TTL.,; Ni"). Taking into account
the symmetry of Hy, (x, yﬁ € Hy=(-x,y), (x,—y) and
(=x,—y) € Hy; then, over Z, we have

We have exposed the forms of the Fermat equation
x* — y* = N, dependently on the different forms of N, for
which we have proved the cardinal over the integers to be 0,
4, and 8, of the form 2], (a; + 1) or (1 - 82Pi)2”+1.

Over Z,,, x* — y* = N has only one nontrivial solution
for a RSA modulus N.

N —

i=j+1

4. Discussion

Proposition  14. V(x,y) € [[N'?], (V2)(N + D] x [0,
(1/2) (N-1)], (x,y)€Hy with the probability
P=11%, (& +1)/ N+1-2[N"].

Proof. Set N=[]~, N{*, with N; odd primes. From Prop-
osition 13, over Z.,,, Card (Hy) = (1/2) [ ], («; + 1) and from
Theorem 5, the length of the x interval is /= N+1/2 -
[NY2]=N+1-2[VN]/2. =P=(Card(Hy)|z5¢/l) =
((U2DTIL, (g +1)/N+1-2[VNT/2) =([1~, (&;+1)/N +
1-2[VN). O

5. Conclusion

In this paper, we have presented algebraic results on lattice
points of the arc on the conics x* — dy? = N for d = 1, which
is the Fermat factorization equation for which cardinals, forms
of the algebraic set and exact upper and lower bounds are given
using a particular hyperbola parametrization. These results
provide further information on the structure of the algebraic
set of this equation by exposing particularly the following.

(i) The general forms of lattice points.
(ii) The cardinals and the exact number of solutions.
(iii) The distribution of its lattice points over the

integers.

As a future work, we shall apply these results in the
square sieving methods of factorization (mainly the qua-
dratic sieve) and evaluate any resulting impact and
performance.

Data Availability

The algorithms were developed in Python, and the source codes
are available from the corresponding author upon request.
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