
Research Article
Computational Insights of Bioconvective Third Grade Nanofluid
Flow past a Riga Plate with Triple Stratification and
Swimming Microorganisms

Safak Kayikci

Department of Computer Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey

Correspondence should be addressed to Safak Kayikci; safak.kayikci@ibu.edu.tr

Received 14 June 2022; Revised 14 July 2022; Accepted 16 July 2022; Published 31 August 2022

Academic Editor: Arzu Akbulut

Copyright © 2022 Safak Kayikci. �is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

�e goal of this study is to examine the heat-mass e�ects of a third grade nano�uid �ow through a triply strati�ed medium
containing nanoparticles and gyrostatic microorganisms swimming in the �ow.�e heat and mass �uxes are considered as a non-
Fourier model.�e governingmodels are constructed as a partial di�erential system. Using correct transformations, these systems
are converted to an ordinary di�erential model. Ordinary systems are solved using convergent series solutions. �e e�ects of
physical parameters for �uid velocity, �uid temperature, nanoparticle volume percentage, motile microbe density, skin friction
coe�cients, local Nusselt number, and local Sherwood number are all illustrated in detail. When the values of the bioconvection
Lewis number increase, the entropy rate also rises. �e porosity parameter and modi�ed Hartmann number show the opposite
behaviour in the velocity pro�le.

1. Introduction

Researchers are interested in learning more about how to
increase heat transmission because it is so important in
design and business. �ermal transfer of convectional liq-
uids such as ethylene glycol, water, and oil can be used in a
variety of mechanical assemblies, electrical devices, and heat
dissipates. Despite this, the thermal conductivity of these
base �uids is weak. To counter this �aw, experts from several
sectors are attempting to improve the heat conductivity of
newly cited �uids by incorporating a unique type of
nanosized particle into a new �uid known as “nano�uid,” see
Choi [1]. Nano�uid �ow on a �at surface was examined by
Khan and Pop [2]. �ey see that the mass transfer gradient
reduces for enhancing the thermophoresis parameter.
Barnoon and Toghraie [3] analyze the impact of a non-
Newtonian nano�uid on aporous medium. Natural con-
vective �ow of nano�uid past a heated porous plate was
demonstrated by Ghalambaz et al. [4], and they concluded
that the �uid velocity creases when increasing the ther-
mophoresis parameter. Aziz and Khan [5] demonstrated the

characteristics of natural convective �ow of nano�uids over
a plate. �ey identi�ed that heat transfer reduced by the
impact of Brownian motion parameter. �e nano�uid �ow
over a thin needle was addressed by Ahmad et al. [6]. �ey
proved that the Brownian motion parameter leads to sup-
pressing the nano�uid concentration. Prasannakumara et al.
[7] addressed the consequences of multiple slips of MHD
Je�ery nano�uid past a surface. �ey detected that the
thermal boundary layer thickness thickens when enriching
the thermophoresis parameter.

�e bioconvection phenomenon is a �uid dynamic
mechanism that occurs in macroscopic convective �uid �ow
generated by a �uid density gradient established by collective
swimming of microorganisms. Because of their motility,
these bacteria are classi�ed as chemotactic, oxytactic, or
gyrotactic. Near the top of the �uid layer, these self-pro-
pelled motile bacteria clump together, forming a dense
upper surface that is unstable or unstabilized. Bioconvection
is used in a variety of industrial applications, including
microbial improved oil recovery, sustainable fuel cell
technologies, water treatment facilities, polymer synthesis,
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and so on. (e 2D radiative flow of tangent hyperbolic
nanofluid past a Riga plate with gyrotactic microorganisms
was disclosed byWaqas et al. [8].(ey noted that the density
of motile microorganisms decays when enriching the bio-
convection Lewis number. Uddin et al. [9] portrayed the
consequences of Stefan blowing of bioconvective flow of
nanofluid past a porous medium.(ey see that the density of
motile microorganisms enriches when strengthening the
wall suction parameter. MHD flow of cross nanofluids with
gyrotactic motile microorganisms past wedge was scruti-
nized by Alshomrani et al. [10]. (ey noted that the motile
microorganisms suppress when escalating the Peclet num-
ber. Muhammad et al. [11] developed the mathematical
model for the unsteady MHD flow of Carreau nanofluids
with bioconvection. (ey detected that the density of local
motile number depresses when enhancing the Peclet
parameter.

Due to its numerous industrial and engineering uses,
such as cooling nuclear reactors, power generation, cooling
of electronic equipment, energy production, and many
others, the process of heat transfer has gotten a lot of at-
tention from modern scholars. Fourier [12] was the first to
present the heat transfer law. However, this law has the
disadvantage of producing a parabolic energy equation. To
address this flaw, Cattaneo [13] rewrote the Fourier
equation by including the relaxation time heat flux com-
ponent. In addition, Christov [14] tweaked the Cattaneo
model by incorporating thermal relaxation time and used
the Oldroyd upper convective model. (e heat transport
analysis of 2D flow cross nanofluid Cattaneo–Christov
theory was investigated by Salahuddin et al. [15], and they
proved that concentration relaxation leads to downfall of
the nanofluid concentration. Farooq et al. [16] examined
the impact of MHD flow of radiative nanofluids with
Cattaneo–Christov theory. (ey revealed that the fluid
temperature diminishes when raising the thermal relaxa-
tion parameter. (ermally radiative flow of hybrid nano-
liquids with Cattaneo–Christov heat flux theory was
implemented by Waqas et al. [17].

Despite the fact that nanofluids have been widely in-
vestigated, the third grade nanofluid flow over a stretching
sheet with entropy optimization was examined by Loga-
nathan et al. [18]. (is study is extended with the effects of
including the mixed convective flow of third grade nano-
fluids over a Riga plate with triple stratification and
swimming microorganisms. (e thermal radiative flow of
third grade nanofluids containing microorganisms owing to
the movement of the Riga plate is shown in this study to
achieve this goal.

(i) (e modified Fourier’s law is used to frame energy
and nanoparticle concentration equations

(ii) (e homotopy analysis method is used to compute
the non-linear equations analytically

(iii) (e results of the simulations might have unique
implications in the fields of thermal processes, heat
transfer industry, energy systems, nuclear systems,
and so on

2. Problem Development

For an incompressible fluid model with body forces, the
continuity and motion equations are

div v
∗

� 0,

ρ
dv

dt
� divT + ρb + J + B,

(1)

where ρ is the “fluid density,” v∗ is the “velocity field,” b is
the “body forces,” J is the “electric current,” and T is the
“third–grade incompressible fluids Cauchy stress tensor” [19].

T � −pI + μH1 + A
∗
1H2 + A

∗
2H

2
1 + c1H3

+ c2 H1, H2 + H2H1( 􏼁 + c3 trH
2
1􏼐 􏼑H1,

(2)

where μ, (H1, H2, H3) and A∗1 , ci –“viscosity coefficient”,
“kinematics tensors” and “material modulis”

H1 � L + (L)
T
,

Hn �
d
dt

Hn−1 + Hn−1L + (L)
T
Hn−1, n � 2, 3,

L � ∇v∗,

(3)

d/dt is expressed as the material time derivative

d( )

dt
�

z( )

zt
+ v
∗

· ∇( ). (4)

(e relationship between the Clausius–Duhem in-
equality and the thermodynamically compatible fluid is
described by Fosdick and Rajagopal. [20].
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Figure 1: h-curves for (hf, hθ, hϕ, and hχ).
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Pakdemirli [21] took into consideration the Boussinesq
and normal boundary layer approximations.

(e representation of steady flow of third grade nano-
fluids containing motile microorganisms is assumed. (e
surface is linearly stretched via velocity uw � ax, in positive
x direction in its own path. Moreover, the flow is considered
along the sheet while v is perpendicular, and B0 magnetic

field is taken vertical to the flow direction. (e wall tem-
perature Tw, wall concentration Cw, and motile microor-
ganisms’ wall concentration Nw are defined. Figure 1
portrays the flow geometry of the problem. (e governing
equations are extended from Loganathan et al. [18] as
follows:

zu

zx
+

zv

zy
� 0,

u
zu

zx
+ v

zu

zy
� ]

z
2
u

zy
2 +

A
∗
1
ρ

u
z
3
u

zy
2
zx

+ v
z
3
u

zy
3 +

zu

zx

z
2
u

zy
2 + 3

zu

zy

z
2
u

zxzy
􏼠 􏼡 + 2

A
∗
2
ρ

zu

zy

z
2
u

zxzy

+ 6
β∗1
ρ

zu

zy
􏼠 􏼡

2
z
2
u

zy
2 −

]
kp

u −
Cb

x
��
kp

􏽱 u
2

+
1
ρf

1 − C∞( 􏼁ρfβg T − T∞( 􏼁

− ρp − ρf􏼐 􏼑g C − C∞( 􏼁 − N − N∞( 􏼁gc ρm − ρf􏼐 􏼑 +
πJ0M0

8ρ
exp −

π
a1

y􏼠 􏼡

· u
zT

zx
+ v

zT

zy
+ λT u

2z
2
T

zx
2 + v

2z
2
T

zy
2 + u

zu

zx

zT

zx
+ v

zu

zy

zT

zx
􏼠 􏼡 + 2uv

zT
2

zxzy
􏼠 􏼡

+ u
zv

zx

zT

zy
+ v

zv

zy

zT

zy
􏼠 􏼡 �

k

ρcp

z
2
T

zy
2 −

1
ρcp

16σ∗

3k
∗

z

zy
T
3zT

zy
􏼠 􏼡 +

Q0

ρcp

T − T∞( 􏼁 + τ DB

zC

zy

zT

zy
+

DT

T∞

zT

zy
􏼠 􏼡

2
⎡⎣ ⎤⎦,

u
zC

zx
+ v

zC

zy
� DB

z
2
C

zy
2 +

DT

T∞

z
2
T

zy
2 + λC u

2z
2
C

zx
2 + v

2z
2
C

zy
2 + u

zu

zx

zC

zx
+ v

zu

zy

zC

zx
􏼠 􏼡 + 2uv

zC
2

zxzy
􏼠 􏼡

+ u
zv

zx

zC

zy
+ v

zv

zy

zC

zy
􏼠 􏼡 − kc C − C∞( 􏼁,

u
zN

zx
+ v

zN

zy
− Dm

z
2
N

zy
2􏼠 􏼡 � −

bWc

CW − C∞( 􏼁

z

zy
N

zC

zy
􏼠 􏼡􏼢 􏼣.

(6)

With the boundary points

u � uw � ax,

v � 0,

T � Tw � T0 + b1x,

C � CW � C0 + d1x,

N � Nw � N0 + e1x aty � 0,

u⟶ 0,

T � T∞ � T0 + b2x,

C � C∞

N � N∞ � N0 + e2x asy⟶∞.

(7)

Here, b1, b2, d1, d2, e1, and e2 are the dimensional con-
stants, and T0 and C0 are the “reference temperature and
concentrations,” respectively. u and v are the “velocity
components” in x andy directions, ρ is the “fluid density,” υ
is the “fluid kinematics viscosity,” kp is the “permeability of
the porous medium,” Cb is the “drag coefficient,” J0 is the
“current density applied to the electrodes,” M0 is the
“magnetic property of the permanent magnets,” a1 is the
“magnets positioned in the interval separating the elec-
trodes,” σ∗ is the “Stefen-Boltzmann constant,” Cp is the
“specific heat capacity of the fluid,” and k is the “thermal
conductivity.”

Transformations are declared as follows:
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η � y
a

]
􏼒 􏼓

1/2
,

ψ � (a])
1/2
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u �
zψ
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,
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,
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,

ϕ(η) �
C − C∞
Cw − C0
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(8)

(e nonlinear governing equations are
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2
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(9)
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Figure 2: Velocity profile for different values of α1, α2, Ha, Pm, Pe, Nr, Rb, and S1.
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(e boundary conditions are specified in the following
manner:

f(0) � 0,

f′(0) � 1,

θ(0) � 1 − S1,

ϕ(0) � 1 − S2,

χ(0) � 1 − S3,

f′(∞) � 0,

θ(∞) � 0,

ϕ(∞) � 0,

χ(∞) � 0, (10)

(e nondimensional variables are
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Figure 3: Temperature profile for different values of Ha, Rb, S1, λ, Fr, and Pm.
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k
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Figure 4: Nanoparticle concentration profile for different values of Ha, Rb, S1, λ, Fr, and Pm.
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Application of physical entitles are

CfRe
− 0.5

� f″(0) + α1f′(0)f″′(0) + βRe f″(0)􏼂 􏼃
3
,
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− 0.5
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4
3
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(12)

3. Modelling of Entropy Generation

For the third grade nanoliquid, the entropy generation rate is
as follows:
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Equation (13) was changed by using the boundary layer
approximation.
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(e typical entropy generation rate S″
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0 is given by
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Figure 5: Microorganism profile for different values of Pe,Ω, Nr, andLb.
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As a consequence, the dimensionless entropy generation
number may be calculated by using the following formula:
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As a result, the total entropy generation number has the
corresponding dimensionless form:

EG � Re 1 +
4
3

Rd􏼒 􏼓θ′2 + Re
Br

Ω
f″

2
+ Re

ζ
Ω

􏼠 􏼡

2

λϕ′2

+ Re
ζ
Ω
λϕ′θ′ + Reλ

ζ
Π

􏼠 􏼡

2

χ′ + Reλ
ζ
Π

􏼠 􏼡χ′θ′.
(17)

Expression of the Bejan number is

Be �
NT + NC + Nm

EG

. (18)

4. Homotopy Solutions

(e governing equations are solved analytically by applying
the HAM scheme [18, 22–32]. In this regard, initially, we fix
the initial approximation

f0(η) � 1 − e
− η

􏼂 􏼃,

θ0(η) � 1 − S1( 􏼁e
− η

􏼂 􏼃,

ϕ0(η) � 1 − S2( 􏼁e
− η

􏼂 􏼃,

χ0(η) � 1 − S3( 􏼁e
− η

􏼂 􏼃.

(19)

(e linear operator is

L
∧

f �
d
∧ 3

f

dη3
−
df

dη
,

L
∧
θ �

d
∧ 2

θ
dη2

− θ,

L
∧
ϕ �

d
∧ 2

ϕ
dη2

− ϕ,

L
∧
χ �

d
∧ 2

χ
dη2

− χ,

(20)

with the property

L
∧

f Ψ1 + Ψ2e
η

+ Ψ3e
− η

􏼂 􏼃 � 0,

L
∧
θ Ψ4e

η
+ Ψ5e

− η
􏼂 􏼃 � 0,

L
∧
ϕ Ψ6e

η
+ Ψ7e

− η
􏼂 􏼃 � 0,

L
∧
χ Ψ8e

η
+ Ψ9e

− η
􏼂 􏼃 � 0.

(21)
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Figure 6: Entropy generation profile for different values of Ha, Rd, Γ1, and Lb.
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Here, Ψi[i � 1 − 9] are the arbitrary constants.
After utilizing the jth order HAM, we get

fj(η) � f
∗
j (η) + Ψ1 + Ψ2e

η
+ Ψ3e

−η
,

θj(η) � θ∗j (η) + Ψ4e
η

+ Ψ5e
− η

,

ϕj(η) � ϕ∗j (η) + Ψ6e
η

+ Ψ7e
− η

,

χj(η) � χ∗j (η) + Ψ8e
η

+ Ψ9e
− η

.

(22)

Here, f∗j (η), θ∗j (η), ϕ∗j (η), and χ∗j (η) are the particular
solutions.

(e HAM includes the auxiliary parameters
(hf, hθ, hϕ, and hχ), and these are the responsible for solu-
tion convergence.

5. Convergence Analysis

(e convergence values are of hf, hθ, hϕ, and hχ , are
plotted in Figure 1. (e range of convergence is
−0.4≤ hf ≤ −0.1, −0.5≤ hθ, hϕ ≤ − 0.1, −0.5≤ hϕ ≤ 0.0, and
−0.55≤ hχ ≤ −0.2. Table 1 observes f″(0), θ′(0), ϕ′(0),
and χ′(0) for the 15th order of estimation. (e conver-
gence range of the current solution is hf � 0.35 and
hθ � hϕ � hχ � −0.30.

6. Results and Discussion

(is section focused on the effects of divergent physical
factors on fluid velocity, fluid temperature, nanoparticle
volume fraction, motile microbe density, skin friction co-
efficients, local Nusselt number, and local Sherwood num-
ber. Table 1 provides the validation of the present analysis
with previously published results [18, 22]. From this com-
parison, we found that the current computation is an op-
timum one.

In this section, we focused on the variations of fluid
velocity, fluid temperature, nanoparticle volume fraction,
motile microorganism density, skin friction coefficients,
local Nusselt number, and local Sherwood number for di-
vergent physical parameters. Figures 2(a)–2(d)) provide the
impact of α1, α2, Ha, Pm, Pe, Nr, Rb, and S1 on the velocity
profile. It is detected that the fluid velocity enriches when
escalating the quantity of α1, α2, Ha, andPe, and it downfalls
when enhancing the quantity of Pm, Nr, Rb, and S1. Physi-
cally, the modified Hartmann number leads to strengthening
the external electric field, and this causes to increase the fluid
velocity. (e temperature variations of Ha, Rb, S1, λ, Fr, and
Pm are presented in Figures 3(a)–3(c)). It is seen that the
fluid temperature escalates when raising the quantity of
Rb, Fr, andPm, and the opposite behaviour was attained
when varying the values of Ha, S1, and λ. Figures 4(a) and
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Figure 7: Bejan number profile for different values of Fr, S1, Γ2, and Pe.
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4(b)) portray the consequences of Rb, S2, Γ2, and λ on the
concentration profile. It is concluded that the fluid con-
centration increases when rising the quantity of Rb, and it
reduces when strengthening the values of S2, Γ2, and λ. (e
microorganism profile for various values of
Pe,Ω, Nr, and Lb is illustrated in Figures 5(a) and 5(b) and
found that the microorganism profile suppresses when
enhancing the Pe,Ω, andLb quantities, and it escalates when
escalating the values of Nr.

Figures 6(a)–6(d) display the consequences of
Ha, Rd, Γ1, and Lb on the entropy generation profile. It is
seen that the entropy generation diminishes near the plate
and upturns away from the plate for varying the Ha and Γ1
values, and the opposite behavior occurs for enhancing the

Rd values. In addition, the Lb leads to enrich the entropy
generation. (e changes of the Bejan number for different
values of Fr, S1, Γ2, and Pe are presented in Figures 7(a)–7(d)
and seen that the Bejan number upturns near the plate and
downfalls away from the plate for changing the Γ2 and s

values. (e quite opposite trend attains for varying the Fr

values. (e S1 values lead to reduce the Bejan number.
Fig. 8(a) reveals the collective effect of Ha and λ on

[Nu]_ x with other parameters are kept fixed heat transfer rate
[Nu]_ x is abridged with growing amounts of both Ha and λ.
Figure 8(b) explores the graphical assessment of Sherwood
number Shx against the variations in Cr and Γ2 with other
parameters are retained fixed. (e Sherwood number Shx is
improved with the enhancement in Cr and Γ2. Figure 8(c)
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Figure 8: (a) “Nusselt number” for Ha and λ, (b) “Sherwood number” for Γ2 andCr, and (c) “Microorganism density number” forΩ andRb.
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describes the graphical evaluation of the microorganism
density number Nnx against the variations in Rb and Ω with
other parameters as taken fixed. (e microorganism density
number Nnx is improved with the enhancement in Rb andΩ.

7. Conclusions

In this article, we analyse the performance of heat-mass
effects of third grade nanofluid flow through a triply
stratified medium with swimming of nanoparticles, and
gyrostatic microorganisms are swum into this flow.(e non-
Fourier heat and mass flux’s theory were used to frame the
energy and nanoparticle concentration equations. (e re-
duced models were analytically solved by applying the HAM
scheme. (e major outcomes are summarized as follows:

(i) (e fluid velocity enhances when raising the
modified Hartmann number, and it suppresses for a
larger quantity of the thermal relaxation parameter.

(ii) (e fluid temperature rises when enhancing the
Forchheimer number and downfalls when in-
creasing the bioconvection parameter.

(iii) (e fluid concentration decays when strengthening
the solutal relaxation time and stratification
parameters.

(iv) (emicroorganism profile reduces when improving
the quantity of Pe,Ω, andLb, and it escalates when
escalating the values of Nr.

(v) (e entropy rate is enhanced for higher values of the
heat thermal relaxation parameter and bio-
convection Lewis number.

(vi) (e Bejan number diminishes for the solutal
thermal relaxation parameter, thermal stratification,
and bioconvection Peclet number.
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