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Porous material such as metal-natural constructions and their particular partner metal-natural poly-hydra are made up of
inorganic clusters with no saturation and exhibit great capability for utilization in the absorption of gas and ascending opening in
optics and detecting biotechnology and hardware. Cuboctahedral bi-metallic structure is an often-quoted example of metal-
natural polyhedra class. In this study, we have calculated the �rst and second Zagreb index, the augmented Zagreb index, and the
inverse Randic, as well as general Randic index, the symmetric division, and harmonic index. We have also discussed these
topological indices graphically and have found that the value of almost all indices goes higher and higher as the value of n
goes higher.

1. Introduction

It has been observed that the development of large molecules
that are congenial to growth and functionalization is quite
necessary for its present advantage. �e atoms that are
permeable on large scale can act as a favorable start to �ll the
gap in simpler molecules [1, 2]. Two problems in the
function and generation of complex on larger systems must
be considered. �e �rst problem arises when we try to ac-
quire monolithic parts of precious stones, and their full basic
portrayal is hard to �nd. Secondly, in�exible substances
resist the change in their structure making the compound
functionlization of their voids unobservable [3].

Under these problems, along with the work going on
about natural metal structures, the proper application of the
optional structures units, and the proper building of in-
�exible systems with unending porosity, basically, mustering
of such (SBU), poly topic carboxylate liners for solving
problems created a lot of in�exible permeable systems with
open metal ends where functionalization of di�erent ligand

pores were perceived [4, 5]. (DFT)′s method applied to
examine the unit cell of cubactohedral bi-metallic has been
illustrated where the hydrogen bond structure was ad-
vanced, and it was evaluated for potential energy surface
having zero negative eigenvalues of the Hessian. Pd site
displayed negligible co-operation of hydrogen.

�e mixturization and characterization of orderly per-
meable metal-natural poly-hydra growth from bi-metallic
paddle wheel forming unusual building blocks have been
displayed here. If the Pd (II) particles transcendentally
depend on the interiors of cubactohedral con�nes, the bi-
metallic metal units will rely in a Pd(II)M(II) theme. �e
outer (MOPs) can be improved to a large extent with the
advancement if �rst column changes metals. Misusing this
element, we can infer that the gas absorption characteristics
of the unusual materials tentatively use the supposed
evaluation for further examining of absorption. For details,
see [6].

Molecular structure decides the properties of a matter.
�e chemical graph theory depicts the structure in graph
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with verities showing atoms of cubactohedral and edges
relating to chemical bonds. A great deal of effort was shown
by chemical graph theory for displaying the chemical
characteristics of bi-metallic with no use of a wet lab. A
graph G(V, E) with vertex set V(G) and edge set E(G) is
associated and assuming that nearby is a way concerning any
pair of vertices in G. In a substance graph diagram, the
maximum degree of that chemical graph is four. (e idea of
degree in graph theory is thoroughly associated (but not
identical) to the perception of valence in chemistry [7].
Aimed at the particular details on the ground of graph
theory, any ordinary or typical manuscript can be of great
assistance [8, 9]. More than a few algebraic multinomials and
polynomials have valuable submissions and understanding
in chemical chemistry. (e Hosoya polynomial is perchance
the greatest healthy-recognized specimen [10, 11], and it
produces an energetic participation in influential distance-
based topological descriptors. (e new concept of
M-polynomial was established in 2015 and revolutionized
the process of defining and determining bolted and closed
procedures of man lateral to ictal descriptors. (ese de-
scriptors summarily capture a large range of physico-
chemical properties and surface tension [12, 13].

2. Basic Definitions

(eDeutsch in [14] defined theM-polynomial of graph H as
follows:

M(H; a, b) � 􏽘
s≤t

ms,t(H)s
u
t
v
, (1)

where ms,t(H) is the counting of edges vu ∈ E(H) such that
ds, dt􏼈 􏼉 � i, j􏼈 􏼉. (e application of Wiener index has dis-
cussed in [15–17].

(e Randic index was introduced by Milan Randic in
1975 and defined as follows [18]:

R−1/2(H) � 􏽘
st∈E(H)

1
����
dsdt

􏽰􏼠 􏼡. (2)

(e generalized Randic index is defined as follows
[19, 20]:

Rα(H) � 􏽘
st∈E(H)

1
dsdt( 􏼁

α􏼠 􏼡. (3)

For details, see [21–23].
M1(H), M2(H), and mM2(H) were introduced by

Gutman and Trinajstic in [24–26] as

M1(H) � 􏽘
st∈E(H)

ds + dt( 􏼁, M2(H)

� 􏽘
st∈E(H)

dsdt( 􏼁,
m

M2(H) � 􏽘
st∈H

1
d(s)d(t)

􏼠 􏼡.

(4)

(e symmetric division index is defined as [27]

SDD(H) � 􏽘
st∈E(H)

min ds, dt( 􏼁(

max ds, dt( 􏼁
+
max ds, dt( 􏼁

min ds, dt( 􏼁
􏼨 􏼩. (5)

(e harmonic index is defined as

H(H) � 􏽘
st∈E(H)

2
ds + dt

􏼠 􏼡. (6)

For details, see [28, 29].
(e inverse sum index is defined as

I(H) � 􏽘
st∈E(H)

dsdt

ds + dt

􏼠 􏼡. (7)

For details, see [18, 30, 31].
In [32, 33], the augmented Zagreb index is defined as

A(H) � 􏽘
st∈E(H)

dsdt

ds + dt − 2
􏼨 􏼩

3

,

Ds � s
z(f(s, t))

zs
, Dt � t

z(f(s, t))

zt
, Ss � 􏽚

f(s, t))

s
ds,

St � 􏽚
f(s, t))

t
dt, J(f(s, t)) � f(s, s), Qα(f(s, t))

� s
α
f(s, t).

(8)

3. Computational Results of Bi-
Metallic Structure

Our fundamental goals of concentrating on M-polynomial
and its connected all parts are to set up a connection between
different effects of M-polynomials and its connected things
on bi-metallic design, see Figure 1.

3.1. Main Results. We split vertices and edges’ degree of
cuboctahedral bi-metallic structure in Table 1 and Table 2.

Theorem 1. Let H be a cuboctahedral bi-metallic. 0en, M-
polynomial of this structure is

M(H, a, b) � 36na
1
b
4

+ 16na
2
b
2

+ 120na
2
b
3

+ 42na
2
b
4

+ 24na
3
b
3

+ 16na
3
b
4
.

(9)

Proof 1. (eM-polynomial is constructed from Figure 1 and
by the use of Table 1 and Table 2 as
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M(H; a, b) � 􏽘
i≤j

mij H; a
i
b

j
􏼐 􏼑,

� 􏽘
1≤ 4

m14(H)a
1
b
4

+ 􏽘
2≤ 2

m22(H)a
2
b
2

+ 􏽘
2≤ 3

m23(H)a
2
b
3

+ 􏽘
2≤ 4

m24(H)a
2
b
4

+ 􏽘
3≤ 3

m33(H)a
3
b
3

+ 􏽘
3≤ 4

m34(H)a
3
b
4
,

� 􏽘
uv∈E 1,4{ }

m14(H)a
1
b
4

+ 􏽘
uv∈E 2,2{ }

m22(H)a
2
b
2

+ 􏽘
uv∈E 2,3{ }

m23(H)a
2
b
3

+ 􏽘
uv∈E 2,4{ }

m24(H)a
2
b
4

+ 􏽘
uv∈E 3,3{ }

m33(H)a
3
b
3

+ 􏽘
uv∈E 3,4{ }

m34(H)a
3
b
4
,

� E 1,4{ }

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌a

1
b
4

+ E 2,2{ }

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌a

2
b
2

+ E 2,3{ }

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌a

2
b
3

+ E 2,4{ }

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌a

2
b
4

+ E 3,3{ }

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌a

3
b
3

+ E 3,4{ }

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌a

3
b
4
,

� 36na
1
b
4

+ 16na
2
b
2

+ 120na
2
b
3

+ 42na
2
b
4

+ 24na
3
b
3

+ 16na
3
b
4
.

(10)

□
Theorem 2. Let H be a cuboctahedral bi-metallic.0en, first
Zagreb index is

M1(H) � 1352n. (11)

Figure 1: Cuboctahedral bi-metallic.

Table 1: Vertex partition of cuboctahedral bi-metallic structure.

Vertices Total no. of vertices
V (H) 196n

E (H) 254n

Table 2: Edge partition of cuboctahedral bi-metallic structure.

Deg of end nodes Total no. of edges
ds � 1, dt � 4 36n

ds � 2, dt � 2 16n

ds � 2, dt � 3 120n

ds � 2, dt � 4 42n

ds � 3, dt � 3 24n

ds � 3, dt � 4 16n
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Proof 2. (eM-polynomial is constructed from Figure 1 and
by the use of Table 1 and Table 2 as

zf

za
�

z

za
36na

1
b
4

+ 16na
2
b
2

+ 120na
2
b
3

+ 42na
2
b
4

+ 24na
3
b
3

+ 16na
3
b
4

􏽮 􏽯,

a
zf

za
� 36na

1
b
4

+ 32na
2
b
2

+ 240na
2
b
3

+ 84na
2
b
4

+ 72na
3
b
3

+ 48na
3
b
4
; Dbf(a, b) � b

zf

zb
,

zf

zb
�

z

zb
36na

1
b
4

+ 16na
2
b
2

+ 120na
2
b
3

+ 42na
2
b
4

+ 24na
3
b
3

+ 16na
3
b
4

􏽮 􏽯,

b
zf

zb
� 144na

1
b
4

+ 32na
2
b
2

+ 360na
2
b
3

+ 168na
2
b
4

+ 72na
3
b
3

+ 64na
3
b
4
,

M1(H) � Da + Db( 􏼁(f(a, b)|(a�b�1) � 1352n.

(12)

□
Theorem 3. Let H be a cuboctahedral bi-metallic.0en,
second Zagreb index is

M2(H) � 1672n. (13)

Proof 3. (eM-polynomial is constructed from Figure 1 and
by the use of Table 1 and Table 2 as

M(H, a, b) � 36na
1
b
4

+ 16na
2
b
2

+ 120na
2
b
3

+ 42na
2
b
4

+ 24na
3
b
3

+ 16na
3
b
4
,

Daf(a, b) � 36na
1
b
4

+ 32na
2
b
2

+ 240na
2
b
3

+ 84na
2
b
4

+ 72na
3
b
3

+ 48na
3
b
4
,

DbDaf(a, b) � 144na
1
b
4

+ 64na
2
b
2

+ 720na
2
b
3

+ 336na
2
b
4

+ 216na
3
b
3

+ 192na
3
b
4
,

M2(H) � DbDaf(a, b)|(a�b�1) � 144n + 64n + 720n + 336n + 216n + 192n,

M2(H) � 1672n.

(14)

□
Theorem 4. Let H be a cuboctahedral bi-metallic.0en, the
modified Second Zagreb Index is

m
M2(H) �

169
4

n. (15)

Proof 4. (eM-polynomial is constructed from Figure 1 and
by the use of Table 1 and Table 2 as

f(x, b)

x
� 36nx

0
b
4

+ 16nx
1
b
2

+ 120nx
1
b
3

+ 42nx
1
b
4

+ 24nx
2
b
3

+ 16nx
2
b
4
,

Sa(a, b) � 36na
1
b
4

+ 8na
2
b
2

+ 60na
2
b
3

+ 21na
2
b
4

+ 8na
3
b
3

+
16
3

na
3
b
4
,

Sb Sa(a, b)( 􏼁 � b 􏽚
b

0

Sa(a, x)

x
dx;

m
M2(H) � SbSaf(a, b)|(a�b�1) � 9n + 4n + 20n +

21
4

n +
8
3

n +
4
3

n,

m
M2(H) �

169
4

n.

(16)

□
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Theorem 5. Let H be a cuboctahedral bi-metallic.0en, the
general Randic index is

Rα(H) � n 2α 52 + 16(3)
α
(2)

α
( 􏼁 + 3α 120(2)

α
+ 66(3)

α
( 􏼁( 􏼁.

(17)

Proof 5. (eM-polynomial is constructed from Figure 1 and
by the use of Table 1 and Table 2 as

M(H; a, b) � 36na
1
b
4

+ 16na
2
b
2

+ 120na
2
b
3

+ 42na
2
b
4

+ 24na
3
b
3

+ 16na
3
b
4
,

Rα(H) � D
α
aD

α
bf(a, b)|(a�b�1); Rα(H) � D

α
aD

α
bf(a, b)|(a�b�1),

D
α
bf(a, b) � 36(4)

α
na

1
b
4

+ 16(2)
α
na

2
b
2

+ 120(3)
α
na

2
b
3

+ 42(4)
α
na

2
b
4

+ 24(3)
α
na

3
b
3

+ 16(4)
α
na

3
b
4
,

D
α
aD

α
bf(a, b) � 36(4)

α
na

1
b
4

+ 16(2)
2α

na
2
b
2

+ 120(2)
α
(3)

α
na

2
b
3

+ 42(2)
3α

na
2
b
4

+ 24(3)
2α

na
3
b
3

+ 16(3)
α
(4)

α
na

3
b
4
,

� 36(2)
2α

n + 16(2)
2α

n + 120(2)
α
(3)

α
n + 42(2)

3α
n + 24(3)

2α
n + 16(3)

α
(4)

α
n,

Rα(H) � n 2α 52 + 16(3)
α
(2)

α
( 􏼁 + 3α 120(2)

α
+ 66(3)

α
( 􏼁( 􏼁.

(18)

□
Theorem 6. Let H be a cuboctahedral bi-metallic.0en,
inverse Randic index is

RRα(H) � n(2)
1− 2α 26 + 29(3)

− α
( 􏼁 + n(3)

− α 15(2)
3− α

+ 24􏼐 􏼑.

(19)

Proof 6. (eM-polynomial is constructed from Figure 1 and
by the use of Table 1 and Table 2 as

M(H; a, b) � 36na
1
b
4

+ 16na
2
b
2

+ 120na
2
b
3

+ 42na
2
b
4

+ 24na
3
b
3

+ 16na
3
b
4
,

RRα(H) � S
α
aS

α
bf(a, b)|(a�b�1); Sb � b 􏽚

b

0

f(a, x)

x
dx

� 9na
1
b
4

+ 8na
2
b
2

+ 40na
2
b
3

+
21
2

na
2
b
4

+ 8na
3
b
3

+ 4na
3
b
4
,

S
α
b(a, b) �

36
(4)

α nab
4

+
16

(2)
α na

2
b
2

+
120
(3)

α na
2
b
3

+
42

(4)
α na

2
b
4

+
24

(3)
α na

3
b
3

+
16

(4)
α na

3
b
4
,

S
α
b(x, b)

x
�

36
(4)

α nb
4

+
16

(2)
α nxb

2
+
120
(3)

α nxb
3

+
42

(4)
α nx

2
b
4

+
24

(3)
α nx

2
b
3

+
16

(4)
α nx

2
b
4
,

S
α
aS

α
b(a, b) � a 􏽚

a

0

S
α
b(x, b)

x
dx �

36
(4)

α nab
4

+
16

(2)
2α na

2
b
2

+
120

(2)
α
(3)

α na
2
b
3

+
42

(3)
α
(4)

α na
2
b
4

+
24

(3)
2α na

3
b
3

+
16

(3)
α
(4)

α na
3
b
4
; RRα(H) � S

α
aS

α
bf(a, b)|(a�b�1),

RRα(H) �
36

(2)
2α n +

16
(2)

2α n +
120

(2)
α
(3)

α n +
42

(3)
α
(2)

2α n +
24

(3)
2α n +

16
(3)

α
(2)

2α n,

RRα(H) � n(2)
1− 2α 26 + 29(3)

− α
( 􏼁 + n(3)

− α 15(2)
3− α

+ 24􏼐 􏼑.

(20)

□
Theorem 7. Let H be a cuboctahedral bi-metallic.0en,
symmetric division index is

SSD(H) �
1862
3

n. (21)

Proof 7. (eM-polynomial is constructed from Figure 1 and
by the use of Table 1 and Table 2 as
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M(H; a, b) � 36na
1
b
4

+ 16na
2
b
2

+ 120na
2
b
3

+ 42na
2
b
4

+ 24na
3
b
3

+ 16na
3
b
4
,

SSD(H) � SbDa + SaDb( 􏼁f(a, b)|(a�b�1),

SbDaf(a, b) � 9na
1
b
4

+
32
3

na
2
b
2

+ 80na
2
b
3

+ 21na
2
b
4

+ 24na
3
b
3

+ 12na
3
b
4
,

SaDbf(a, b) � 144na
1
b
4

+ 32na
2
b
2

+ 360na
2
b
3

+ 168na
2
b
4

+ 72na
3
b
3

+ 64na
3
b
4
; SbDa + SaDb( 􏼁f(a, b)

� 144na
1
b
4

+ 16na
2
b
2

+ 180na
2
b
3

+ 84na
2
b
4

+ 24na
3
b
3

+ 16na
3
b
4
,

SSD(H) � SbDa + SaDb( 􏼁f(a, b)|(a�b�1) � 9n +
32
3

n + 80n + 21n + 24n + 12n

+ 144n + 16n + 180n + 84n + 24n + 16n.; SSD(H) �
1862
3

n.

(22)

□
Theorem 8. Let H be a cuboctahedral bi-metallic.0en, the
harmonic index is

H(H) �
830
3

n. (23)

Proof 8. (eM-polynomial is constructed from Figure 1 and
by the use of Table 1 and Table 2 as

M(H; a; b) � 36na
1
b
4

+ 16na
2
b
2

+ 120na
2
b
3

+ 42na
2
b
4

+ 24na
3
b
3

+ 16na
3
b
4
,

H(H) � 2Sajf(a, b)|a�1; Sa(a, b) � 36na
1
b
4

+ 8na
2
b
2

+ 60na
2
b
3

+ 21na
2
b
4

+ 8na
3
b
3

+
16
3

na
3
b
4
,

2jSa(a, b) � 72na
5

+ 16na
4

+ 120na
5

+ 42na
6

+ 16na
6

+
32
3

na
7
,

2Sajf(a, b)|a�1 � 72n + 16n + 120n + 42n + 16n +
32
3

n,

H(H) �
830
3

n.

(24)

□
Theorem 9. Let H be a cuboctahedral bi-metallic.0en, the
inverse sum index is

I(H) �
10788
35

n. (25)

Proof 9. (eM-polynomial is constructed from Figure 1 and
by the use of Table 1 and Table 2 as
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M(H; a; b) � 36na
1
b
4

+ 16na
2
b
2

+ 120na
2
b
3

+ 42na
2
b
4

+ 24na
3
b
3

+ 16na
3
b
4
,

I(H) � SajDaDbf(a, b)|a�1; DaDbf(a, b)

� 144na
1
b
4

+ 64na
2
b
2

+ 720na
2
b
3

+ 336na
2
b
4

+ 216na
3
b
3

+ 192na
3
b
4
,

jDaDbf(a, b) � 144na
5

+ 64na
4

+ 720na
5

+ 336na
6

+ 216na
6

+ 192na
7
; SajDaDbf(a, b)

�
144
5

na
5

+ 16na
4

+ 144na
5

+ 56na
6

+ 36na
6

+
192
7

na
7
; SajDaDbf(a, b)|a�1,

I(H) �
144
5

n + 16n + 144n + 56n + 36n +
192
7

n,

I(H) �
10788
35

n.

(26)

□
Theorem 10. Let H be a cuboctahedral bi-metallic.0en, the
augmented Zagreb index is

A(H) � 2003.89n. (27)

Proof 10. (e M-polynomial is constructed from Figure 1
and by the use of Table 1 and Table 2 as

M(H; a, b) � 36na
1
b
4

+ 16na
2
b
2

+ 120na
2
b
3

+ 42na
2
b
4

+ 24na
3
b
3

+ 16na
3
b
4
,

A(H) � S
3
aQ−2jD

3
aD

3
bf(a, b)|a�1,

D
α
aD

α
bf(a, b) � 36(4)

α
na

1
b
4

+ 16(2)
2α

na
2
b
2

+ 120(2)
α
(3)

α
na

2
b
3

+ 42(2)
3α

na
2
b
4

+ 24(3)
2α

na
3
b
3
,

+16(3)
α
(4)

α
na

3
b
4
; D

3
aD

3
bf(a, b) � 36(4)

3
na

1
b
4

+ 16(2)
6
na

2
b
2

+ 120(2)
3
(3)

3
na

2
b
3

+ 42(2)
9
na

2
b
4

+ 24(3)
6
na

3
b
3

+ 16(3)
3
(4)

3
na

3
b
4

� 2304na
1
b
4

+ 1024na
2
b
2

+ 25920na
2
b
3

+ 21504na
2
b
4

+ 17496na
3
b
3

+ 27648na
3
b
4
,

JD
3
aD

3
bf(a, b) � 2304na

5
+ 1024na

4
+ 25920na

5
+ 21504na

6
+ 17496na

6
+ 27648na

7
,

Q−2jD
3
aD

3
bf(a, b) � 2304na

3
+ 1024na

2
+ 25920na

3
+ 21504na

4
+ 17496na

4
+ 27648na,

5

S
3
aQ−2jD

3
aD

3
bf(a, b) �

2304
27

na
3

+ 128na
2

+ 960na
3

+ 336na
4

+
17496
64

na
4

+
27648
125

na
5
,

S
3
aQ−2jD

3
aD

3
bf(a, b)|a�1 �

2304
27

n + 128n + 960n + 336n +
17496
64

n +
27648
125

n,

A(H) � 2003.89n.

(28)

□
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4. Graphical Results and Their Discussion

(e present section consists of graphical discussion on the
results of topological indices which have constructed on the
M-polynomial of cuboctahedral bi-metallic structure. From
Figure 2, it can be observed that the value of first and second
Zagreb index increases with the increase of n with a constant
ratio, while the value of modified Zagreb index remains

almost constant as the value of n increases or decreases. Also,
from Figure 3, it can be seen directly that, for different values
of α, the behavior of general Randic index and inverse
Randic index decreases with the increase in the value of n.
α � 3; the change in the values of indices is more as com-
pared with the value for α � 2.

(e graphical representation of these results can also be
observed in Figures 2–6.
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Figure 2: (a) M1(H) for n � 1, (b) M2(H) for n � 1, and (c) mM2(H) for n � 1.
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Figure 4: (a) Rα(H) for n � 1, α � 1, (b) RRα(H) for n � 1, α � 1, and (c) SDD(H) for n � 1.
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5. Conclusion

(e use of topological indices is very important to know the
behavior of a graph or network. (e research of networks
through topological indices is important for understanding
the basic topology of structure. (e method of M-polyno-
mial degree-based indices is applied to examine the unit cell
of cubactohedral bi-mettallic which has been illustrated
where the hydrogen bond structure was advanced, and it was
evaluated for potential energy surface having zero negative
eigenvalues of the Hessian, and this value usually increases
with the increase of n.
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