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)is research paper generalizes and extends various fixed-point results that demonstrate common fixed-point theorems for
F-Kannan–Suzuki type mappings in TVS-valued cone metric spaces. )e results are supported using interpretative exempli-
fications and applications that include nonlinear fractional as well as two-point periodic ordinary differential equations.

1. Introduction

)e fixed-point theory is at the foundation of nonlinear
analysis, which is a prominent research area of mathematics.
Fixed point theory is, in fact, a simple, powerful, and useful
tool for nonlinear analysis. It also has fruitful applications in
mathematics and in various scientific domains, including
physics, chemistry, computer science, etc. As a result, this
theory has attracted a large number of researchers who are
guiding the theory’s growth in various areas.

In 1922, Banach [1] established a fixed point theorem in
metric space which states that ifX is a complete metric space
and G: X⟶ X is a contraction map, i.e.,
ϱ(Gσ, Gς)≤ κϱ(σ, ς) for all σ, ς ∈ X and κ ∈ [0, 1), then G

has a unique fixed point or Gσ � σ has a unique solution. In
addition to an acceptable contraction condition, the metrical
common fixed-point theorems usually include constraints
on commutativity, continuity, completeness, and appro-
priate containment of ranges of detailed maps. )e goal of
researchers in this field is to weaken one or more of these
conditions. )e use of weak conditions of commutativity is
to improve common fixed point theorems in analysis.
Connell [2] provided an example of a noncomplete metric
space X, but every contraction on it has a fixed point.
Kannan [3] proposed an alternative contractive condition

that was not the same as the Banach contraction condition.
Also, Subrahmanyam [4] proved the converse of Banach
fixed-point theorem using Kannan mapping. Furthermore,
to evaluate a fixed point for a stringent type Kannan con-
traction, the assumption of continuity of the mapping and
the compactness requirement on metric space are necessary.

In 2007, Huang and Zhang [5] generalised the Banach
fixed point theorem by introducing the structure of cone
metric by substituting real numbers with an ordered Banach
space and establishing a convergence criterion for sequences
in a cone metric space. In normal cone metric space, Huang
and Zhang [5] proved some fixed-point theorems for
Kannan type contractive conditions; nevertheless, Rezapour
and Hamlbarani [6] neglected this idea in some results by
Huang. For normal and nonnormal cones in cone metric
spaces, several authors have examined fixed point theorems
and common fixed-point theorems for self-mappings. We
refer to the reader [7–10] and the references therein. By
relaxing the normalcy criteria set by Huang and Zhang [5],
Beg et al. [11], investigated common fixed points for a pair of
maps on topological vector space (TVS) valued cone metric
spaces in 2009. )ey demonstrated that the class of TVS-
valued cone metric spaces is larger than the class of cone
metric spaces, used in [12–16] and the references therein.
Recently, Hu and Gu [17] proved some fixed point theorems
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of λ-contractive mappings in Menger PSM-spaces. For a
class of contractive mappings, Reich and Alexander [18]
generalised fixed points and convergence results. In
Hausdroff TVS, Ram and Lai [19] presented the existence
results on generalised strong operator equilibrium problems.
In TVS-Cone Metric Spaces, Dubey and Mishra [20]
demonstrated some fixed-point results of single-valued
mapping for -distance. Using some facts about topological
vector space, Tas [21] constructed a new notion of a TVS
cone S- metric space. Lee [22] introduces chain recurrent set,
trapping region, attracting set and repelling set for a flow f

on a TVS-cone metric space. By using generalised metric
spaces, Ge and Yang [23] proved a common generalisation
of TVS-cone metric spaces, partial metric spaces and
b-metric spaces, and a unified approach is proposed for
some fixed point results. Later, Suzuki [24] and Rida et al.
[25] gave a generalisation of the Banach contraction prin-
ciple that characterises metric completeness.

Wardowski [26] used a new sort of contraction called
F-contraction to give an intriguing generalisation of the
Banach fixed point theorem. Many scholars have used his
method to build new fixed-point theorems since then. )e
associated results and references can be found in [27–30]
and the references therein. Piri and Kumam [28], extended
Wardowski’s [26] results in 2014 by introducing the notion
of F-Suzuki contraction and obtained some intriguing re-
sults utilising the Secelean [29] concept. In the complete
b-metric spaces, Alsulami et al. [31] demonstrated fixed
points of generalised F-Suzuki type Contractions. Budhia
et al. [32] proved an extension of almost-F and F-Suzuki
contractions with graph and demonstrated some applica-
tions to fractional calculus whereas Chandok et al. [33]
formulated some fixed point results for the generalised
F-Suzuki type contractions in b-metric spaces. Derouiche
and Ramou [34] proved new fixed-point results for
F-contractions of Suzuki Hardy-Rogers type in b-metric
spaces and provided some applications. Beg et al. [11]
proposed a fixed point of orthogonal F-Suzuki contraction
mapping on 0-complete b-metric spaces with some appli-
cations. Mani et al. [35] introduced generalised orthogonal
F-contraction and orthogonal F-Suzuki contraction map-
pings and proved some fixed point theorems for a self-
mapping in orthogonal metric space. Vujakovic and
Radenovic [36] introduced certain fixed point results for
F-contraction of Piri-Kumam-Dung-type mappings in
metric spaces.

In 2019, Goswami et al. [27] introduced F-contractive
type mappings in b-metric spaces and proved some fixed
point results with suitable examples. Recently, Batra et al.
[37] noticed in their subsequent analysis that the definition
introduced by Goswami et al. [27] is not meaningful in
general. )erefore, they provided suitable examples to
support their opinion on this definition. Also, due to these
reasons, Batra et al. [37] presented F-contraction and
Kannan mapping concepts for defining F-Kannan map-
pings, which is, in a true sense, a generalisation of Kannan
mappings.

)is paper aims to extend and generalise the results due
to Batra et al. [37], Filipovic et al. [38], Morales and Rojas [9],

Rahimi et al. [39] and Wangwe and Kumar [40] using a pair
of two self-mappings in F-Kannan–Suzuki type mapping in
TVS-valued cone metric space, where we consider a map to
be sequentially convergent, one to one and continuous. By
doing so, we will extend several other results of the same
setting in the literature. Finally, we will provide some ap-
plications to the nonlinear Riemann–Liouville fractional
differential equation and nonlinear Volterra-integral dif-
ferential equation.

2. Preliminaries

)edefinitions, lemmas, and theorems will help us prove our
main points in the upcoming sections.

In 1968, Kannan [3] developed a new contractive con-
dition and proved the following theorem for self mappings
in complete metric spaces as a result of a generalisation of
the Banach fixed point theorem.

Theorem 1 (see [3]). Let G: X⟶ X be a self mapping on a
complete metric space (X, ϱ) such that

ϱ(Gσ, Gς)≤ κ ϱ(σ, Gσ) + ϱ(ς, Gς)􏼈 􏼉, (1)

for all σ, ς ∈ X and 0≤ κ≤ (1/2). (en, G possesses a unique
fixed point σ∗ ∈ X and for any σ ∈ X the iterate sequence
Gnσ{ } converges to σ∗.

Equation (1) is equivalent to

ϱ(Gσ, Gς)≤
κ
2
ϱ(σ, Gσ) + ϱ(ς, Gς)􏼈 􏼉, (2)

for some κ ∈ (0, 1).

Definition 1 (see [11]). Let (E, τ) be always a topological
space and P a subset of E. )en, P is called a cone if the
following hold:

(i) P is a nonempty, closed and P≠ 0{ };

(ii) λσ + μς ∈ P for all σ, ς ∈ P and nonnegative real
number λ, μ;

(iii) P∩ (− P) � 0{ }.

For given cone P⊆E. If the interior of P(intP), is
nonempty we say thatP is solid. IfP is solid cone, thenP is
a component ofP, and in this case we use the notation σ≪ ς
to indicate that ς − σ ∈ intP. Note that if σ≪ ς and ς≤ υ,
then σ≪ υ for all σ, ς, υ ∈ intP.

)e following axioms satisfy TVS-valued cone complete
metric space.

Definition 2 (see [11]). Let X be a nonempty set and the
mapping ϱ: X × X⟶ E, satisfies the following:

(i) 0≤ ϱ(σ, ς), for all σ, ς ∈ X and ϱ(σ, ς) � 0 if and
only if σ � ς;

(ii) ϱ(σ, ς) � ϱ(ς, σ), for all σ, ς ∈ X;

(iii) ϱ(σ, ς)≤ ϱ(σ, υ) + ϱ(υ, ς), for all σ, ς, υ ∈ X.
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)en, ϱ is called a cone metric onX, and (X, ϱ) is called
topological vector space valued cone metric space.

Example 1 (see [12, 9, 41]). Let E � (C[0,1],R
2),

P � (σ, ς) ∈ E|σ, ς≥ 0{ } ⊂ R2, X � R and ϱ: X × X⟶ E

such that ϱ(σ, ς) � |σ − ς|ψ(t), where ψ(t) � et. )en,
(X,Σ) is a TVS-valued cone metric space.

)e following definition is due to Beg et al. [11] in TVS-
valued cone metric space.

Definition 3 (see [8]). Let (X, ϱ) be a topological vector
space valued conemetric space, and let x ∈ X and σn􏼈 􏼉n≥ 1 be
a sequence in X. )en,

(i) σn􏼈 􏼉n≥ 1 converges to X whenever for every c ∈ E
with 0≪ c there is a natural number N such that
ϱ(σn, σ)≪ c for all n≥N. We denote this by

lim
n⟶∞

σn � σ⇔σn⟶ σ. (3)

(ii) σn􏼈 􏼉n≥ 1 is Cauchy sequence whenever for every
c ∈ E with 0≪ c, there is a natural number N such
that ϱ(σn, σm)≪ c for all n, m≥N.

(iii) (X, ϱ) is called topological vector space valued cone
metric space if every Cauchy sequence is
convergent.

Definition 4 (see [42]). Let X be a topological space. If (σn)

is a sequence of points ofX, and if n1 < n2 < . . . < ni < . . . is
an increasing sequence of positive integers, then the se-
quence (ςi) defined by setting ςi � σni

is called a subsequence
of the sequence (σn). )e space X is said to be sequentially
compact if every sequence of points of X has a convergent
subsequence.

Definition 5 (see [43]). Let (X, d) be a metric space. A
mappingG: X⟶ X is said to be sequentially convergent if
we have, for every sequence ςn􏼈 􏼉, if Gςn􏼈 􏼉 is convergence then
ςn􏼈 􏼉 also is convergence. G is said to be subsequentially
convergent if we have, for every sequence ςn􏼈 􏼉, if Gςn􏼈 􏼉 is
convergence then ςn􏼈 􏼉 has a convergent subsequence.

)e extended version of sequentially convergent map-
pings in TVS-valued cone metric space is given as follows.

Definition 6 (see [9]). Let (X, ϱ) be a conemetric space,P is
a solid cone and G: X⟶ X. )en

(i) G is said to be continuous if

lim
n⟶∞

σn � σ⇒ lim
n⟶∞

Gσn � Gσ, (4)

for all σn ∈ X,
(ii) G is said to be sequentially convergent if we have, for

every sequence (ςn), if Gςn is convergent, then ςn

also is convergent,

(iii) G is said to be subsequentially convergent if we
have, for every sequence (ςn) and Gςn is convergent,
implies ςn has a convergent subsequence.

In 2011, Filipovic et al. [38] generalised)eorem 3.1 and
)eorem 3.5 from [9] by using the sequentially convergent
mappings in cone metric space and considered P to be a
solid cone. )ey proved results on two self mappings as
follows.

Definition 7 (see [38]). Let (X, ϱ) be a cone metric space
and T, f: X⟶ X two mappings. A mapping f is said to
be T- Hardy-Rogers contraction if there exists ai ≥ 0, i �

1, . . . , 5 with 􏽐
5
i�1 ai ≤ 1 such that for all σ, ς ∈ X.

ϱ(Tfσ, Tfς)≤ a1ϱ(Tσ, Tς) + a2ϱ(Tσ, Tfσ) + a3ϱ(Tς, Tfς)

+ a4ϱ(Tσ, Tfς) + a5ϱ(Tς, Tfσ).
(5)

Theorem 2 (see [38]). Let (X, ϱ) be a complete cone metric
space and P a solid cone, in addition let T: X⟶ X be a
one-to-one, continuous mappings and f: X⟶ X a
T-hardy-Rogers contraction. (en,

(i) For every σ0 ∈ X the sequence Tfnσ0 is Cauchy.
(ii) (ere is vσ0 ∈ X such that limn⟶∞Tfnσ0 � vσ0.

(iii) T is sequentially convergent, then (fnσ0) has a
convergent, subsequence.

(iv) (ere is a unique uσ0 ∈ X such that fuσ0 � uσ0.

(v) If T is sequentially convergent, then for each σ0 ∈ X
the iterate sequence (fnσ0) converges to uσ0.

Theorem 3 (see [38]). Let (X, ϱ) be a complete cone metric
space and P a solid cone, in addition let T: X⟶ X be a
one-to-one, continuous mappings and f: X⟶ X such that
F(f)≠∅ and that

ϱ Tfσ, Tf
2σ􏼐 􏼑≼λϱ(Tσ, Tfσ), (6)

holds for some λ ∈ (0, 1) and for all σ ∈ X, σ ≠fσ. (en f

has property P.

Remark 1 (see [44]). Let F(T) denote the fixed point set of a
map T. A map T has property P if F(T) � F(Tn) for each
n ∈ N. We shall say that a pair of maps T and f has property
Q if F(T)∩F(f) � F(Tn)∩F(fn) for each n ∈ N.

Secelean [29] proved the following lemma.

Lemma 1 (see [29]). Let F: R+⟶ R be an increasing
function and xn􏼈 􏼉 be a sequence of positive real numbers.
(en the following holds:

(a) If limn⟶∞F(αn) � − ∞, then limn⟶∞αn � 0,

(b) If infF � − ∞ and limn⟶∞αn � 0, then
limn⟶∞F(αn) � − ∞,

Let F be the set of all functions defined as F: R+⟶ R,
which satisfies the following conditions:
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(F1) F is strictly increasing i.e., for all α, β ∈ R+ such
that α< β⇒F(α)<F(β)

(F2″) there is a sequence αn􏼈 􏼉n∈N of positive real
numbers such that limn⟶∞F(αn) � − ∞ or infF � − ∞
(F3″) F is continuous on (0,∞)

)e following function F: R+⟶ R belongs to F:

(i) F1(z) � ln z

(ii) F2(z) � − (1/z)

(iii) F3(z) � − (1/z) + z

Definition 8 (see [28]). Let (X, ϱ) be a metric space. A
mapping G: X⟶ X is said to be an F-Suzuki contraction
if there exists τ > 0, such that for all σ, ς ∈ X with Gσ ≠Gς
1
2
ϱ(σ, Gσ)< ϱ(σ, ς)⇒τ + F(ϱ(Gσ, Gς))≤F(ϱ(σ, ς)), (7)

where F ∈ F.

In 2014, Piri and Kumam [28] established a general-
isation of Banach contraction principle, which is as follows:

Theorem 4 (see [28]). Let (X, ϱ) be a complete metric space
and G: X⟶ X be a F-Suzuki contraction. (en G has a
unique fixed point σ∗ ∈ X and for every σ0 ∈ X a sequence
Gnσ0􏼈 􏼉n∈N is convergent to σ∗.

Remark 2 (see [28]). We denote byF the set of all functions
satisfying F-suzuki type contraction condition due to
[28, 29] and let denote byF the set of all functions satisfying
F-contraction condition by Wardowski [26], then

(i) F⊈F
(ii) F⊈F
(iii) F∩F≠∅

For more details on F-Suzuki contraction mapping, one
can see [31–33] and the references therein.

Motivated by Batra et al. [37], we use the following
notations: Let X be a nonempty set and (X, ϱ) denotes the
metric space with metric ϱ. Let the cardinality of a set A is
denoted by card A{ } and FixG is set of all fixed points of a
mapping G.

Batra et al. [37] gave a new generalisation family of
contraction called F-Kannan mapping and introduced the
following definition:

Definition 9 (see [37]). Let F be a mapping satisfying
(F1) − (F3). A mapping G: X⟶ X is said to be an
F-Kannan mapping if the following holds:

(K1)

Gσ ≠Gς⇒Gσ ≠ σ orGς≠ ς. (8)

(K2) ∃Υ> 0 such that

Υ + F(ϱ(Gσ, Gς))≤F
ϱ(σ, Gσ) + ϱ(ς, Gς)

2
􏼢 􏼣, (9)

for all σ, ς ∈ X, with Gσ ≠Gς.

)e remark presented below is due to Batra et al. [37].

Remark 3 (see [37]). By properties of F, it follows that every
F-Kannan mapping T on a metric space (X, ϱ), satisfies
following condition:

ϱ(Gσ, Gς)≤
ϱ(σ, Gσ) + ϱ(ς, Gς)

2
, (10)

for every σ, ς ∈ X.

Furthermore, it is concluded that Card FixG{ }≤ 1. Let G

be a self map of a metric space (X, ϱ). G is said to be a Picard
operator (PO) if G has unique fixed point σ∗ and
limn⟶∞Gnσ � σ∗ for all σ ∈ X.

)en the family of all functions F: R+⟶ R satisfying
the condition (F1) − (F3) is denoted by F.

We recall the following examples from Batra et al. [37] of
such functions F: R+⟶ R which satisfies (F1) − (F3):

Example 2 (see [37]). Let F1: R
+⟶ R be defined as

F1(z) � ln(z). )en clearly, (F1) − (F3) are satisfied by
F1(z). In fact (F3) holds for every k ∈ (0, 1)

ϱ(Gσ, Gς)≤ e
− Υ ϱ(σ, Gσ) + ϱ(ς, Gς)

2
􏼢 􏼣, (11)

for all σ, ς ∈ X with Gσ ≠Gς.
)us, ifG: X⟶ X is a Kannanmapping with constant

κ ∈ (0, 1) satisfying

ϱ(Gσ, Gς)≤ κ
ϱ(σ, Gσ) + ϱ(ς, Gς)

2
􏼢 􏼣, (12)

for every σ, ς ∈ X, then it also satisfies (8) and (11) with
Υ � ln(1/κ). In fact, whenever Gσ ≠Gς, then from (12), we
get Gσ ≠ σ or Gς≠ ς.

)e following lemma introduced by Batra et al. [37].

Lemma 2 (see [37]). Let (X, ϱ) be a metric space and
G: X⟶ X be a F-Kannan mapping. (en,
ϱ(Gnσ, Gn+1σ)⟶ 0 as n⟶∞ for all σ ∈ X.

Batra et al. [37] introduced a F-Kannan mapping using
the properties by Subrahmanyam [4] which is an extension
of Goswami et al. [27] and Wardowski [26] results. )ey
proved the following result.

Theorem 5 (see [37]). Let (X, ϱ) be a complete metric space
and suppose G: X⟶ X is a F-Kannan mapping, then G is
a Picard operator (PO).
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Using the following definitions, we introduce some
fundamental properties for a fixed point and common fixed
point theorems.

Definition 10 (see [45]). Let (G, f) be a pair of self-map-
pings on a metric space (X, ϱ). )en coincidence point of
the pair (G, f) is a point σ ∈ X such that (Gσ) � (fσ) � σ∗,
then σ∗ is called coincidence point of the pair (G, f). If
σ∗ � σ, then σ is said to be a common fixed point of f and G.

Definition 11 (see [46]). Let G, f be self-mappings of a
nonempty set X. A point σ ∈ X is coincidence point of G

and f if t � Gσ � fσ. )e set of coincidence point of G and
f is denoted by C(G, f).

Definition 12 (see [46, 47]). Let (T, f) be a pair of self-
mappings on a metric space (X, ϱ). )en, the pair (T, f) is
said to be as follows:

(i) Commuting if, for all σ ∈ X, G(fσ) � f(Gσ),
(ii) Weakly commuting if, for all ϱ(G(fσ), f(Gσ))

≤ ϱ(Gσ, fσ),
(iii) Compatible if limn⟶∞ϱ(Gfσn, fGσn) � 0, when-

ever σn is a sequence in X such that
limn⟶∞Gσn � limn⟶∞fσn � t,

(iv) Weakly compatible if, for all G(fσ) � f(Gσ), for
every coincidence point σ ∈ X.

3. Main Results

To prove this section’s main results, we commerce by
obtaining a more general version of Definition 8 and 9 using
a pair of two self mappings in F-Kannan–Suzuki type
mapping setting. We denotes (X, ϱ) as a TVS-valued cone
metric space.

Definition 13. Let F be a mapping satisfying (F1) − (F3). A
pair of two self mapping G, f: X⟶ X is said to be an
F-Kannan–Suzuki type mapping if the following holds:

(FKS1)

Gfσ ≠Gfς⇒Gfσ ≠ σ orGfς≠ ς. (13)

(FKS2) there exists ϑ> 0 such that

1
2
ϱ(σ, Gσ)< ϱ(σ, σ)

⇒ϑ + F(ϱ(Gfσ, Gfς))≤F
ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς)

2
􏼢 􏼣,

(14)

for all σ, ς ∈ X, with Gfσ ≠Gfς and F ∈ F.

Following remark is motivated by the work of Batra et al.
[37] given as follows.

Remark 4. By properties of F, it follows that every
F-Kannan–Suzuki type mapping G on a TVS-valued cone
metric space (X, ϱ), satisfies the following condition:

ϱ(Gfσ, Gfς))≤
ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς)

2
, (15)

for every σ, ς ∈ X.

We give the following examples in the context of a pair of
two self mappings:

Example 3. Let F1: R
+⟶ R be defined as F1(z) � ln(z).

)en clearly, (F1) − (F3) are satisfied by F1(z). In fact (F3)

holds for every κ ∈ (0, 1). Moreover, condition (14) takes the
form:

ϱ(Gfσ, Gfς)) ≤ e
− ϑ ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς)

2
􏼢 􏼣, (16)

for all σ, ς ∈ X with Gfσ ≠Gfς.
)us, if G, f: X⟶ X is a Kannan mapping with

constant κ ∈ (0, 1) satisfying

ϱ(Gfσ, Gfς))≤ κ
ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς)

2
􏼢 􏼣. (17)

for every σ, ς ∈ X. )en it also satisfies (16) and (14) with
ϑ � ln(1/κ).

Example 4. Let F2: R
+⟶ R be defined as F2(z) �

− (1/z), z> 0. )en, (F1) − (F3) are satisfied by F2(z).
Condition (14) takes the form:

ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς)
2

≤
ϱ(Gfσ, Gfς)

1 − ϑϱ(Gfσ, Gfς)
, (18)

for all σ, ς ∈ X with Gfσ ≠Gfς.

Example 5. Let F3: R
+⟶ R be defined as F3(z) �

− (1/z), z> 0. )en, (F1) − (F3) are satisfied by F3(z).
Condition (14) takes the form:

ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς)
2

≤
ϱ(Gfσ, Gfς) [(ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς))/2]

2
− 1􏼐 􏼑

ϱ(Gfσ, Gfς) + ϑ ϱ(Gfσ, Gfς)2 − 1􏼐 􏼑
,

(19)

for all σ, ς ∈ X with Gfσ ≠Gfς.

We prove the following lemma which is an extension of
Lemma 2.

Lemma 3. Let (X, ϱ) be a complete TVS-valued cone metric
space and G, f: X⟶ X be an F-Kannan–Suzuki type
mapping. (en,

ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑⟶ 0 as n⟶∞, (20)

for all σ ∈ X.
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Proof. Suppose that σ0 is an arbitrary point inX. If Gfnx0 �

Gfn+1σ0 for some n ∈ N, then sequence σn􏼈 􏼉n∈N converges in
X, and hence the sequence ϱ(Gfnσ0, Gfn+1σ0)⟶
0 as n⟶∞ for all σ ∈ X.

Assume that Gfnσ0 ≠Gfn+1σ0 for any n ∈ N. )en, by
(14) with ϑ> 0, we get
1
2
ϱ σ0, Gσ0( 􏼁< ϱ σ0, Gσ0( 􏼁

⇒ϑ + F ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑􏼐 􏼑

≤F
ϱ Gf

n− 1σ0, Gf
nσ0􏼐 􏼑 + ϱ Gf

nσ0, Gf
n+1σ0􏼐 􏼑

2
⎡⎣ ⎤⎦.

(21)

By Remark 4, we obtain

ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑≤
ϱ Gf

n− 1σ0, Gf
nσ0􏼐 􏼑 + ϱ Gf

nσ0, Gf
n+1σ0􏼐 􏼑

2
.

(22)

Using (22) in (21), as results yields to

ϑ + F ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑􏼐 􏼑≤F ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑􏼐 􏼑. (23)

Letting n⟶∞ in (23), we get

ϑ + 0≤ 0,

ϑ≤ 0,
(24)

which is a contradiction. Hence, ϱ(Gfnσ0, Gfn+1σ0)⟶ 0
as n⟶∞. □

Motivated by Batra et al. [37] and Filipovic et al. [38], we
give a proof of an extended version of)eorem 2, 4, and 5 in
F-Kannan–Suzuki type mappings with a pair of two self-
mappings in complete TVS-valued cone metric space.

Theorem 6. Let (X, ϱ) be a complete TVS-valued cone
metric space andP a solid cone, in addition let G: X⟶ X

be a one-to-one, continuous mappings and f: X⟶ X a
G-F-Kannan–Suzuki type contraction. (en,

(i) For every σ0 ∈ X the sequence Gfnσ0 is convergent
(ii) (ere is v∗ ∈ X such that limn⟶∞Gfnσ0 � v∗

(iii) G is sequentially convergent, then (fnσ0) has a
convergent, subsequence

(iv) (ere is a unique u∗ ∈ X such that fu∗ � u∗

(v) If G is sequentially convergent, then for each σ0 ∈ X

the iterate sequence (fnσ0) converges to u∗

Proof. By (i), we prove that Gfnσ0􏼈 􏼉 is a Cauchy sequence.
Let σ0 ∈ X be arbitrary. If Gfnσ0 � Gfn+1σ0 for some n ∈ N,
then sequence σn􏼈 􏼉n∈N converges in X and hence the se-
quence ϱ(Gfnσ0, Gfn+1σ0)⟶ 0 as n⟶∞ for all σ ∈ X.
Suppose that Gfnσ0 ≠Gfn+1σ0 for any n ∈ N. )en, by (14),
Lemma 3 with ϑ> 0, we get

1
2
ϱ σn, Gσn( 􏼁< ϱ σn, Gσn( 􏼁⇒

ϑ + F ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑􏼐 􏼑≤F
ϱ Gf

n− 1σ0, Gf
nσ0􏼐 􏼑 + ϱ Gf

nσ0, Gf
n+1σ0􏼐 􏼑

2
⎡⎣ ⎤⎦.

(25)

From Remark 4, we have

ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑≤
ϱ Gf

n− 1σ0, Gf
n
x0􏼐 􏼑 + ϱ Gf

nσ0, Gf
n+1σ0􏼐 􏼑

2
,

2ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑≤ ϱ Gf
n− 1σ0, Gf

nσ0􏼐 􏼑 + ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑,

ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑≤ ϱ Gf
n− 1σ0, Gf

nσ0􏼐 􏼑.

(26)

Using (26) in (25), as results yields to
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ϑ + F ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑􏼐 􏼑≤F
ϱ Gf

n− 1σ0, Gf
nσ0􏼐 􏼑 + ϱ Gf

nσ0, Gf
n+1σ0􏼐 􏼑

2
⎡⎣ ⎤⎦,

ϑ + F ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑􏼐 􏼑≤F
2ϱ Gf

n− 1σ0, Gf
nσ0􏼐 􏼑

2
⎡⎣ ⎤⎦,

ϑ + F ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑􏼐 􏼑≤F ϱ Gf
n− 1σ0, Gf

nσ0􏼐 􏼑􏽨 􏽩.

(27)

Letting n⟶∞ in (27), we get

ϑ + 0≤ 0,

ϑ≤ 0,
(28)

which is a contradiction. Hence, ϱ(Gfnσ0, Gfn+1σ0)⟶ 0
as n⟶∞. )us, Gfnσ0􏼈 􏼉 converges.

Since G is sequentially convergent, using (v), we prove
that the iterate of a sequence fnσ0 converge to a fixed u ∈ X.
To see this, suppose σ0 ∈ X be an arbitrary point in X. Let
the sequence σn􏼈 􏼉n≥ 1 be defined by σn+1 � fσn � fn+1σ0 �

ffnσ0 and σn � fσn− 1 � fnσ0 � ffn− 1σ0, for n≥ 1 ∈ N.
)us, we have

ϱ σn, σn+1( 􏼁≤ ϱ fσn− 1, fσn( 􏼁 � ϱ f
nσ0, f

n+1σ0􏼐 􏼑

� ϱ ff
n− 1σ0, ff

nσ0􏼐 􏼑.
(29)

equivalent to

ϱ Gσn, Gσn+1( 􏼁≤ ϱ Gfσn− 1, Gfσn( 􏼁

� ϱ Gf
nσ0, Gf

n+1σ0􏼐 􏼑

� ϱ Gff
n− 1σ0, Tff

nσ0􏼐 􏼑.

(30)

Let σ � fn− 1σ0 and ς � fnσ0, using inequality (14), we
obtain

1
2
ϱ σn, Gσn( 􏼁< ϱ σn, Gσn( 􏼁

⇒ϑ + F(ϱ Gff
n− 1σ0, Gff

nσ0􏼐 􏼑≤F
ϱ Gf

n− 1σ0, Gff
n− 1σ0􏼐 􏼑 + ϱ Gf

nσ0, Gff
nσ0( 􏼁

2
⎡⎣ ⎤⎦,

F ϱ Gσn, Gσn+1( 􏼁( 􏼁≤F
ϱ Gσn− 1, Gσn( 􏼁 + ϱ Gσn, Gσn+1( 􏼁

2
􏼢 􏼣 − ϑ.

(31)

Using Remark 4 and the increasing property of F, we
deduce

ϱ Gff
n− 1σ0, Gff

nσ0􏼐 􏼑≤
ϱ Gf

n− 1σ0, Gff
n− 1σ0􏼐 􏼑 + ϱ Gf

nσ0, Gff
nσ0( 􏼁

2
,

ϱ Gσn, Gσn+1( 􏼁<
ϱ Gσn− 1, Gσn( 􏼁 + ϱ Gσn, Gσn+1( 􏼁

2
,

(32)

and hence,

2ϱ Gσn, Gσn+1( 􏼁 − ϱ Gσn, Gσn+1( 􏼁< ϱ Gσn− 1, Gσn( 􏼁,

ϱ Gσn, Gσn+1( 􏼁< ϱ Gσn− 1, Gσn( 􏼁.
(33)

By (F1), this implies that

F ϱ Gσn, Gσn+1( 􏼁( 􏼁<F ϱ Gσn− 1, Gσn( 􏼁( 􏼁. (34)

Consequently, we get

ϑ + F ϱ Gσn, Gσn+1( 􏼁( 􏼁≤F ϱ Gσn− 1, Gσn( 􏼁( 􏼁, (35)

so

F ϱ Gσn, Gσn+1( 􏼁( 􏼁≤F ϱ Gσn− 1, Gσn( 􏼁( 􏼁 − ϑ. (36)

By induction and (36), we deduce

F ϱ Gσn+1, Gσn+2( 􏼁( 􏼁≤F ϱ Gσn− 1, Gσn( 􏼁( 􏼁 − 2ϑ,

F ϱ Gσn+2, Gσn+3( 􏼁( 􏼁≤F ϱ Gσn− 1, Gσn( 􏼁( 􏼁 − 3ϑ,

⇒F ϱ Gσn, Gσn+1( 􏼁( 􏼁≤F ϱ Gσn− 1, Gσn( 􏼁( 􏼁 − nϑ.

(37)

Letting n⟶∞ in (37), we find that
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lim
n⟶∞

F ϱ Gσn, Gσn+1( 􏼁( 􏼁 � − ∞. (38)

Consequently, using Lemma 1 and property (F2″) of F

results in

lim
n⟶∞
ϱ Gσn, Gσn+1( 􏼁 � 0. (39)

)us, there exists n ∈ N such that

ϱ Gσn, Gσn+1( 􏼁< ϱ Gσn, G
2σn􏼐 􏼑< cϱ σn, Gσn( 􏼁< ϱ σn, Gσn( 􏼁,

(40)

which is a contradiction. Hence, we have

lim
n⟶∞
ϱ σn, Gσn( 􏼁 � 0. (41)

)erefore, we have ϱ(Gσn, Gσn+1)⟶ 0 as n⟶∞.
Denote αn � ϱ(Gσn, Gσn+1) � 0, for all n≥ 1 and n ∈ N, for
F-Kannan–Suzuki type mappings.

By (39), we prove that Gσn􏼈 􏼉 is a Cauchy sequence since
(X, ϱ) is complete. Consider n, m ∈ N such that m> n.
Assume on the contrary that there exists c> 0 and sequences
p(n)􏼈 􏼉

∞
n≥1 and q(n)􏼈 􏼉

∞
n≥1 such that

p(n)> q(n)> n, ϱ Gσp(n), Gσq(n)􏼐 􏼑

≥ c, ϱ Gσp(n)− 1, Gσq(n)􏼐 􏼑≤ c,∀n ∈ N.
(42)

Using (iii) of Definition 2, we get

ϱ Gσp(n), Gσq(n)􏼐 􏼑≤ ϱ Gσp(n), Gσp(n)− 1􏼐 􏼑

+ ϱ Gσp(n)− 1, Gσq(n)􏼐 􏼑

≤ ϱ Gσp(n), Gσp(n)− 1􏼐 􏼑 + c.

(43)

From (39) and the above inequality, we have

lim
n⟶∞
ϱ Gσp(n), Gσq(n)􏼐 􏼑 � c. (44)

From (F3″), (44), and (14), we get

ϑ + F ϱ Gσp(n), Gσq(n)􏼐 􏼑􏼐 􏼑

≤F
ϱ Gσp(n)− 1, Gσp(n)􏼐 􏼑 + ϱ Gσp(n), Gσq(n)􏼐 􏼑

2
⎡⎣ ⎤⎦.

(45)

Equivalently,

ϑ + F(c)≤F(c),

ϑ≤ 0,
(46)

which is a contradiction. So, Gσn � Gσm for every m≥ n in
X. Hence, Gσn􏼈 􏼉 is a Cauchy sequence in X. )e com-
pleteness of X ensures the existence of u∗ ∈ X such that

ϱ Gu
∗
, u
∗

( 􏼁 � lim
n,m⟶∞
ϱ Gσn, Gσm( 􏼁 � 0

� lim
n⟶∞
ϱ Gσn, u

∗
( 􏼁 � 0.

(47)

By (47) and Definition 6, it follows that Gσn+1⟶ u∗ as
n⟶∞. By sequential continuity of f and G, we have

u
∗

� lim
n⟶∞

f
nσ0 � lim

n⟶∞
σn � lim

n⟶∞
σn+1

� lim
n⟶∞

fσn � fu
∗
.u
∗

� lim
n⟶∞

Gf
nσ0 � lim

n⟶∞
Gσn � lim

n⟶∞
Gσn+1

� lim
u⟶∞

G
2σn � Gu

∗
.

(48)

Since X is a complete metric space, there exists u∗ ∈ X
such that

lim
n⟶∞

Gσn � Gu
∗

� u
∗
. (49)

Now, we prove that u∗ is a fixed point of G. )us, by (iii)
of Definition 2 and ϱ(u∗, Gu∗)≥ 0, we have

ϱ u
∗
, Gu
∗

( 􏼁≤ ϱ u
∗
, Gσn+1( 􏼁 + ϱ Gσn+1, Gu

∗
( 􏼁. (50)

By Remark 4, it implies that

ϱ Gσn+1, Gu
∗

( 􏼁≤
ϱ Gσn, Gσn+1( 􏼁 + ϱ Gσn+1, Gu

∗
( 􏼁

2
. (51)

Applying (51) in (50), we obtain

ϱ u
∗
, Gu
∗

( 􏼁≤ ϱ u
∗
, Gσn+1( 􏼁 +

ϱ Gσn, Gσn+1( 􏼁 + ϱ Gσn+1, Gu
∗

( 􏼁

2
.

(52)

Letting n⟶∞ and using in above inequality, we get

ϱ u
∗
, Gu
∗

( 􏼁≤ ϱ u
∗
, Gu
∗

( 􏼁

+
ϱ u
∗
, Gu
∗

( 􏼁 + ϱ Gu
∗
, Gu
∗

( 􏼁

2
,

ϱ u
∗
, Gu
∗

( 􏼁≤ ϱ u
∗
, Gu
∗

( 􏼁 +
ϱ u
∗
, Gu
∗

( 􏼁

2
,

ϱ u
∗
, Gu
∗

( 􏼁≤
2ϱ u
∗
, Gu
∗

( 􏼁 + ϱ u
∗
, Gu
∗

( 􏼁

2
,

2ϱ u
∗
, Gu
∗

( 􏼁≤ 2ϱ u
∗
, Gu
∗

( 􏼁 + ϱ u
∗
, Gu
∗

( 􏼁,

2ϱ u
∗
, Gu
∗

( 􏼁 − 2ϱ u
∗
, Gu
∗

( 􏼁≤ ϱ u
∗
, Gu
∗

( 􏼁,

0≤ ϱ u
∗
, Gu
∗

( 􏼁,

(53)

which is a contradiction. Hence, Gu∗ � u∗.
Next, we prove that u∗ is a unique fixed point of G.

Assume on contrary that there exists v∗ ∈ int(P) such that
u∗ ≠ v∗ or Gu∗ ≠Gv∗. Let Gσn⟶ v∗ and v∗ is a fixed point
of G. Using Remark 4 and (14), it follows that u∗ � v∗ or
Gu∗ � Gv∗ which is a contradiction. )us, u∗ is a unique
fixed point of G.

Moreover, G is a subsequentially convergent, fnσ0􏼈 􏼉 has
a convergent subsequence, there exists σ∗ ∈ X and
fnk x0􏼈 􏼉

∞
k�1 such that

lim
k⟶∞

f
nk x0 � v

∗
. (54)

Due to the continuity of G, it implies that

lim
k⟶∞

Gf
nkσ0 � Gv

∗
. (55)
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By (49), we conclude that

Gv
∗

� u
∗
. (56)

Using Remark 4 and λ � (1/2), we get

ϱ Gff
nk− 1σ0, Tff

nkσ0( 􏼁≤ λ(ϱ Gf
nk− 1σ0, Gff

nk− 1σ0􏼐 􏼑 + ϱ Gf
nkσ0, Gff

nkσ0( 􏼁,

≤ λ(ϱ Gf
nk− 1σ0, Gff

nk− 1σ0􏼐 􏼑 + ϱ Gff
nk− 1σ0, Gff

nkσ0( 􏼁,

≤ λϱ Gf
nk− 1σ0, Gff

nk− 1σ0􏼐 􏼑 + λϱ Gff
nk− 1σ0, Gff

nkσ0( 􏼁,

(1 − λ)ϱ Gff
nk− 1σ0, Gff

nkσ0( 􏼁≤ λϱ Gf
nk− 1σ0, Gff

nk− 1σ0􏼐 􏼑,

ϱ Gff
nk− 1σ0, Gff

nkσ0( 􏼁≤
λ

1 − λ
ϱ Gf

nk− 1σ0, Gff
nk− 1σ0􏼐 􏼑.

(57)

)us, using (iii) of Definition 2, we have

ϱ Gfv
∗
, Gv
∗

( 􏼁≤ ϱ Gfv
∗
, Gf

nk+1σ0􏼐 􏼑 + ϱ Gf
nk+1σ0, Gv

∗
􏼐 􏼑.

(58)

By Remark 4,

ϱ Gfv
∗
, Gf

nk+1σ0􏼐 􏼑 � ϱ Gfv
∗
, Gff

nkσ0( 􏼁

≤ λ ϱ Gv
∗
, Gfv
∗

( 􏼁 + ϱ Gff
nk− 1σ0, Gff

nkσ0( 􏼁􏼂 􏼃.

(59)

Using (57) and (59) in (58), we obtain

ϱ Gfv
∗
, Gv
∗

( 􏼁≤ λ ϱ Gv
∗
, Gfv
∗

( 􏼁 + ϱ Gff
nk− 1σ0, Gff

nkσ0( 􏼁􏼂 􏼃 + ϱ Gf
nk+1σ0, Gv

∗
􏼐 􏼑,

≤ λ ϱ Gv
∗
, Gfv
∗

( 􏼁 +
λ

1 − λ
ϱ Gf

nk − 1σ0, Gff
nk− 1σ0􏼐 􏼑􏼢 􏼣 + ϱ Gf

nk+1σ0, Gv
∗

􏼐 􏼑

≤ λϱ Gv
∗
, Gfv
∗

( 􏼁 + λ
λ

1 − λ
􏼠 􏼡

nk − 1

ϱ Gf
nk− 1σ0, Gff

nk− 1σ0􏼐 􏼑 + ϱ Gf
nk+1σ0, Gv

∗
􏼐 􏼑,

≤
λ

1 − λ
λ

1 − λ
􏼠 􏼡

nk − 1

ϱ Gf
nk− 1σ0, Gff

nk− 1σ0􏼐 􏼑 +
1

1 − λ
ϱ Gf

nk+1σ0, Gv
∗

􏼐 􏼑,

≤
λ

1 − λ
􏼠 􏼡

nk

ϱ Gf
nk − 1σ0, Gff

nk − 1σ0􏼐 􏼑 +
1

1 − λ
ϱ Gf

nk+1σ0, Gf
nkσ0􏼐 􏼑.

(60)

Suppose that

λ
1 − λ

􏼠 􏼡

nk

ϱ Gf
nk− 1σ0, Gff

nk− 1σ0􏼐 􏼑 �
c

2
. (61)

λ
1 − λ
ϱ Gf

nk− 1σ0, Gff
nk− 1σ0􏼐 􏼑 �

c

2
. (62)

Letting k⟶∞ and using Definition 3, (61), and (62) in
(60), we obtain

ϱ Gfv
∗
, Gv
∗

( 􏼁≤
c

2
+

c

2
, (63)

which follows

ϱ Gfv
∗
, Gv
∗

( 􏼁≤ c. (64)

SinceG is one to one and continuous,fv∗ � v∗. So, f has
a fixed point. As Gfnσ0 is sequentially convergent, we
conclude that Gfnσ0􏼈 􏼉 converges to the fixed point of f. □

Next, we prove our second main results by extending
)eorem 3 using an F-Kannan–Suzuki type mapping in
TVS-valued cone metric space.

Theorem 7. Let (X, ϱ) be a complete TVS-valued cone
metric space andP a solid cone. In addition, let G: X⟶ X

be a one-to-one, continuous and sequentially mappings and
f: X⟶ X such that F(f)≠∅, ϑ> 0 and that

1
2
ϱ(σ, Gσ)< ϱ(σ, ς)

⇒ϑ + F ϱ Gfσ, Gf
2σ􏼐 􏼑􏼐 􏼑≤F(ϱ(Gσ, Gfσ)),

(65)
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holds for some λ ∈ (0, 1) and for all σ ∈ X, σ ≠fσ. (en f

has property Q.

Proof. By Remark 1, let u ∈ F(Gn)∩F(fn) for some n ∈ N.
If u � fu, that is u is a unique fixed point of G and f. Hence,

the proof completed. On contrary, we suppose u≠fu. Let
σ � u � fn− 1u and ς � fu � ffn− 1u such that fn− 1 ≠ffn− 1

and using (65), we get

1
2
ϱ(u, Gu)< ϱ(u, fu),

ϱ(u, Gu)< 2ϱ(u, fu),

⇒ϑ + F ϱ Gff
n− 1

u, Gf
2
f

n− 1
u􏼐 􏼑􏽨 􏽩≤F ϱ Gf

n− 1
u, Gff

n− 1
u􏼐 􏼑􏽨 􏽩,

ϑ + F ϱ Gff
n− 1

u, Gff
n
u􏼐 􏼑􏽨 􏽩≤F ϱ Gf

n− 1
u, TGf

n
u􏼐 􏼑􏽨 􏽩.

(66)

Consequently, we get

F ϱ Gff
n− 1

u, Gff
n
u􏼐 􏼑􏽨 􏽩≤F ϱ Gf

n− 1
u, Gf

n
u􏼐 􏼑􏽨 􏽩 − ϑ. (67)

Repeating the same argument several times, we finally
obtain

F ϱ Gff
n− 1

u, Gff
n
u􏼐 􏼑􏽨 􏽩≤F ϱ Gf

n− 1
u, Gf

n
u􏼐 􏼑􏽨 􏽩 − nϑ.

(68)

By following similar procedure as the proof of )eorem
6, we can conclude that ϱ(Gu, Gfu) � c, i.e., Gu � Gfu.
Since G is one to one and sequentially convergent, then
u � fu, which is a contradiction. Hence,
u ∈ F(Gn)∩F(fn). □

We give an example where generalised Kannan mapping
will not be applicable. However, F- Kannan Suzuki type
mapping is applicable.

Example 6. Consider the sequence X � 0, 1{ }∪ (1/2),{

(1/3), (1/4), . . .} and d be an Euclidean metric on X. )en
(X, ϱ) is a TVS-valued cone complete metric space. Let the
mapping f: X⟶ X be determined as follows:

f(0) � 0,

f(1/i) �
1

i + 1
,

(69)

for n≥ 2. Let there exist λ ∈ [0, (1/2)), so that, for all σ, ς ∈ X

condition (1) is satisfied although is not true for every λ> 0.
)at is a contradiction; hence, Kannan’s theorem cannot be
applicable.

)e mapping G: X⟶ X be determined as

G(0) � 0,

G(1/i) �
1
2i

.

(70)

For all i≥ 2, G is continuous, one to one, and sub-
sequentially convergent.

We consider a sequence σi􏼈 􏼉 in X and assume that X is
sequentially compact in complete TVS-valued cone metric
space. By assumption X is sequentially compact with ϵ � 1
we can cover the spaceXwith finitely many balls of radius 1;
then one of them contains many σi􏼈 􏼉 for i≥ 2; i.e., there is a
ball B1 of radius 1 so that there is a subsequence of σi􏼈 􏼉

whose members all belongs to B1. We denote this subse-
quence by σi􏼈 􏼉; thus, all σi􏼈 􏼉 belongs to B1.

Similar by sequentially compactness conditions with
ϵ � (1/2), we can find a subsequence σi2

􏽮 􏽯 of σi1
􏽮 􏽯 and a ball

B2 of radius 1/2 so that all σi2
􏽮 􏽯 belongs to B2. Continuing

this way, we obtain for any k≥ 2 a subsequence σik
􏽮 􏽯 of

σik− 1􏽮 􏽯 and a ball Bk of radius 2− k so that all σik
􏽮 􏽯 belongs to

Bk.
Now, let i, j ∈ N, j> i. )en, we show that (f, G) is a

F-Kannan–Suzuki type mapping in TVS-valued cone metric
space with respect to F2(z) � − (1/z) and ϑ≥ 0. By using
(FKS2) and F2(z), we have

1
2
ϱ(σ, Gσ)< ϱ(σ, ς)

⇒
ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς)

2
≤
ϱ(Gfσ, Gfς)

1 − ϑϱ(Gfσ, Gfς)
.

(71)

To see this, we now calculate ϱ(fσ, Gς) for
σ � 1/i, ς � 1/j, i≥ 1.

ϱ(Gσ, Gfσ) � ϱ(T(1/i), Gf(1/i))

≤
1
2i

−
1

21/(i+1)

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
e

t
.

(72)

ϱ(Gfσ, Gfς) � ϱ(Gf(1/i), Gf(1/j))

≤ 21/(i+1)
− 21/(j+1)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌e
t
.

(73)

ϱ(Gς, Gfς) � ϱ(G(1/j), Gf(1/j))

≤ 21/j − 21/(j+1)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌e
t
.

(74)

Applying (72), (73), and (74) in (71) becomes
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1
2
ϱ(σ, Gσ)< ϱ(σ, ς),

1
2
ϱ(1/i, G(1/i))< ϱ(1/i, 1/j),

ϱ(1/i, G(1/j)) < 2ϱ(1/i, 1/j),

1
i

−
1
2j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
e

t < 2
1
i

−
1
j

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
e

t
,

2i
− i

2i
.i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
e

t < 2
j − i

ij

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
e

t
,

⇒
ϱ(G(1/i), Gf(1/i)) + ϱ(G(1/j), Gf(1/j))

2
≤
ϱ(Gf(1/i), Gf(1/j))

1 − ϑϱ(Gf(1/i), Gf(1/j))
,

⇒
1/2i

􏼐 􏼑 − 1/21/(i+1)
􏼐 􏼑

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌e
t

+ 21/j − 21/(j+1)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌e
t

2
≤

21/(i+1)
− 21/(j+1)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌e
t

1 − ϑ 21/(i+1)
− 21/(j+1)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌e
t
.

(75)

)us the inequality (71) and all conditions imposed in
)eorem 6 are satisfied. Hence, G and f has unique fixed
point that is v∗ � 0 in P⊆E{ } ∈ X, where P is a solid cone.

4. Some Applications

Two applications of the theorem stated in the previous part
will be presented in this section.

4.1. Existence of a Solution for Nonlinear Riemann–Liouville
Type Fractional Differential Equation. As a convolution
mapping, the nonlinear fractional differential equation is
equally and identically utilized in several applications in the
domains of science, engineering, and mathematics.

(i) In image processing: convolutional filtering is used
in many essential algorithms in digital image
processing, such as edge detection and related
procedures. An out-of-focus photograph is created
by convolutioning a crisp image with a lens
function in optics. )is is referred to as bokeh in
photography. For example, applying blurring to a
picture in image processing software.

(ii) In digital data processing: Savitzky–Golay
smoothing filters are used for analyzing spectro-
scopic data in analytical chemistry. )is can boost
the signal-to-noise ratio while reducing spectral
distortion along with a convolution in statistics
that is weighted in moving average.

(iii) In acoustics: reverberation is the convolution of
the original sound with echoes from objects sur-
rounding the sound source. Convolution is a
technique for mapping the impulse response of a
physical room to a digital audio stream in digital
signal processing. )e imposition of a spectral or
rhythmic structure on a sound is known as

convolution in electronic music. )is envelope or
structure is frequently derived from a different
sound. Filtering one signal via the other is called
convolution of two signals.

(iv) In electrical engineering: the output of a linear
time-invariant (LTI) system is obtained by the
convolution of one function (the input signal)
with a second function (the impulse response). At
any one time, the output is the sum of all previous
input function values, with the most recent values
often having the most influence (expressed as a
multiplicative factor). )is component is pro-
vided by the impulse response function as a
function of the time since each input value
happened.

(v) In physics: a convolution operation can be found
whenever there is a linear system with a “super-
position principle.” For example, in spectroscopy,
line widening owing to the Doppler effect produces
a Gaussian spectral line form on its own, whereas
collision broadening produces a Lorentzian line
shape. )e Line form is a convolution of Gaussian
and Lorentzian, which is a Voigt function, when
both effects are active. )e measured fluorescence
in time-resolved fluorescence spectroscopy is a
sum of exponential decays from each delta pulse,
and the excitation signal may be considered as a
chain of delta pulses.

(vi) In computational fluid dynamics: the convolution
process is used in the large eddy simulation (LES)
turbulence model to reduce the range of length
scales required in computing, lowering the com-
putational cost.

(vii) In probability theory: the convolution of the dis-
tributions of two independent random variables is
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the probability distribution of the sum of their
distributions.

(viii) In kernel density estimation: a distribution is es-
timated from sample points by convolution with a
kernel, such as an isotropic Gaussian.

(ix) In radiotherapy: in the handling of planning sys-
tems, the convolution-superposition algorithm is
used in the majority of recent computation codes.

)e above applications of a convolution show that the
fractional derivative as convolution has multiple purposes. It
can represent memory, like in the instance of elasticity
theory. It may be understood as a filter, with the Caputo and
Caputo–Fabrizio types in particular being viewed as a filter
of the local derivative with power and exponent functions
(one can see in [48]).

)e purpose of this section is to provide an application of
)eorem 6 to find a common solution of a nonlinear
fractional differential equation, where we can apply
F-Kannan–Suzuki type mappings in complete TVS-valued
cone metric spaces.

Here, we investigates the Riemann–Liouville derivative
fractional integral of order α> 0. )is form of fractional
derivative for a continuous function g: [0,∞)⟶ R

denoted by Dα
af, is given by

D
α
0+( 􏼁g(t) �

d

dt
􏼠 􏼡

n− 1

I
α
0+( 􏼁g(t)

�
1
Γ(n − α)

d

dt
􏼠 􏼡

n

􏽚
t

0
(t − s)

n− α− 1
g(s)ds,

(76)

where [α] denotes the integer part of the real number α and
n � [α] + 1, provided that the right hand side is pointwise
defined on (0,∞). (see [49–54]). Also, the Rie-
mann–Liouville fractional integral of order α is given by

I
α
0( 􏼁g(t) �

1
Γ(α)

􏽚
t

a
(t − s)

α− 1
g(s)ds, (77)

for α> 0. )e notation [α] stands for largest integer not
greater than α. If α � m ∈ N, then (Dm

0+)g(t) � gm(t), for
t> 0 and if α � 0, then (D0

0+)g(t) � g(t) for t> 0.

)e following nonlinear fractional differential equation
with integral boundary valued conditions is inspired by
Kilbas et al. [55], Cabada and Hamdi [56], and Cabada and
Wang [50].

D
α
0+σ(t) + g(t, σ(t)) � 0, 0< t< 1,

σ(0) � σ′(0),

σ′(1) � λ􏽚
1

0
σ(s)ds, 0< λ< 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(78)

where Dα
0+ denotes the Riemann–Liouville fractional de-

rivative of order α and g: [0, 1]⟶ X is a continuous
function.

We recall the following lemmas from Bai, and Lü [57].

Lemma 4. Let α> 0. If we assume σ ∈ C(0, 1)∩L(0, 1), then
the fractional differential equation:

D
α
0+σ(t) � 0, (79)

has

σ(t) � C1t
α− 1

+ C2t
α− 2

+ · · · + CNt
α− N

, (80)

Ci ∈ R, i � 1, 2, . . . , N, as unique solution.

Since Dα
0+Iα0+σ(t) � σ for all σ ∈ C(0, 1)∩L(0, 1). From

Lemma 4, we deduce the following lemma.

Lemma 5. Assume that σ ∈ C(0, 1)∩ L(0, 1), with fractional
derivative of order α> 0 that belongs to σ ∈ C(0, 1)∩L(0, 1).
(en,

I
α
0+D

α
0+σ(t) � σ(t) + C1t

α− 1
+ C2t

α− 2
+ · · · + CNt

α− N
, (81)

for some Ci ∈ R, i � 1, 2, . . . , N, as unique solution.

)e unique solution of (78) is given by

σ(t) � 􏽚
t

a
G(t, s)g(s, u(s))ds. (82)

Recall that the Green function related to the problem
(78) is given by

Gf(t, s) �

t
α− 1

(1 − s)
α− 1

(α − λ + λs) − (α − λ)(t − s)
α− 1

(α − λ)Γ(α)
, 0≤ s≤ t≤ 1,

t
α− 1

(1 − s)
α− 1

(α − λ + λs)

(α − λ)Γ(α)
, 0≤ t≤ s≤ 1.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(83)

Consider the space X � (C[0, 1],Rn), E � C[0, 1] be
endowed with the ordering σ ≤ ς if σ(t)≤ ς(t) for all
t ∈ C[0, 1] and define P ∈ E by P � (σ, ς) ∈ E:{

σ(t), ς(t)≥ 0} ⊂ R2, X � R.
)is space defines the metric ϱ: X × X⟶ E such that

ϱ(σ, ς) � sup
t∈[0,1]

|σ(t) − ς(t)|{ }ψ(t), (84)

∀σ, ς ∈ X and ψ(t) � et. )en, (X, ϱ) is a TVS-valued cone
metric space. A function σ ∈ C([0, 1],X) is a unique so-
lution of the fractional differential integral equation (82) if
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and only if σ � u∗ is a solution of the nonlinear fractional
differential equation (78).

Now, we prove the following theorem.

Theorem 8. Suppose the following condition hold:

(i) Gf(t, s) ∈ C([0, 1] × [0, 1], X)≥ 0 for all t, s ∈ [0, 1]

(ii) 􏽒
1
0 Gf(t, s)≤ c(s) for all t, s ∈ [0, 1]

(iii) g ∈ C([0, 1] × X,X) is sequentially continuous
(iv) there exists a continuous function

g: [0, 1] × R⟶ R+, such that

|g(t, σ(s)) − g(t, ς(s))|≤ e
− ϑ

c(s)|σ(s) − ς(s)|, (85)

for all t ∈ [0, 1] and ϑ> 0, such that

c(s) �
t
α− 1

[αλ + α(α + 1)] − (α + 1) αt
α

+ λt
α

􏼂 􏼃

α(α + 1)(α − λ)Γ(α)
. (86)

(en, the fractional differential Equation 4.1 has a
common solution as a fixed point σ∗ ∈ C([0, 1],X).

Proof. Let us define a map G, f: P⟶ E by

Gfσ(t) � 􏽚
1

0
Gf(t, s)g(s, σ(s))ds, (87)

for t ∈ [0, 1], then Gfnσ0 is sequentially continuous. )is
implies that f ∈ Gfnσ0 and fnσ0 possess a fixed point
u∗ ∈ Gf. To prove the existence of fixed point of Gf, we
prove that Gf is sequentially and contraction. To show Gf is
sequentially continuous, let Gfσ ≠Gfς, for all σ, ς ∈ [0, 1].
By condition (iv), we have

|Gfσ − Gfς| � 􏽚
1

0
Gf(t, s)g(s, σ(s))ds − 􏽚

1

0
Gf(t, s)g(s, ς(s))ds

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
,

≤ 􏽚
1

0
Gf(t, s)|g(s, σ(s)) − g(s, ς(s))|ds,

≤ 􏽚
t

0

t
α− 1

(1 − s)
α− 1

(α − λ + λs) − (α − λ)(t − s)
α− 1

(α − λ)Γ(α)
ds + 􏽚

1

t

t
α− 1

(1 − s)
α− 1

(α − λ + λs)

(α − λ)Γ(α)
ds􏼢 􏼣e

− ϑ
|σ(s) − ς(s)|e

t
,

≤
t
α− 1

[αλ + α(α + 1)] − (α + 1) αt
α

+ λt
α

􏼂 􏼃

α(α + 1)(α − λ)Γ(α)
􏼢 􏼣e

− ϑ
|σ(s) − ς(s)|.

(88)

)is implies that

|Gfσ, Gfς|≤ e
− ϑ

c(s)|σ − ς|et
. (89)

Since c(s)< 1, we have

|Gfσ, Gfς|≤ e
− ϑ

|σ − ς|et
. (90)

)us, for each σ, ς ∈ X, we have

ϱ(Gfσ, Gfς)≤ e
− ϑ
M(σ, ς). (91)

Taking logarithms on both sides of (91) using F1(z) �

ln(z) and the property of F, we get

ln(ϱ(Gfσ, Gfς))≤ ln e
− ϑ
M(σ, ς)􏼐 􏼑 (92)

equivalent to

ϑ + F(ϱ(Gfσ, Gfς))≤F(M(σ, ς)), (93)

where

M(σ, ς) �
ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς)

2
. (94)

Using (94) in (93) and applying F-Kannan–Suzuki type
conditions leads to

1
2
ϱ(σ, Gσ)< ϱ(σ, ς)

⇒ϑ + F(ϱ(Gfσ, Gfς)) ≤F
ϱ(Gσ, Gfσ) + ϱ(Gς, Gfς)

2
􏼢 􏼣.

(95)

For c ∈ [0, 1), ϑ> 0 satisfies F-Kannan–Suzuki type
mapping. )erefore, Gf is a contraction mapping on X.
Since all the conditions of)eorem 8 are satisfied.)erefore,
there exists u∗ ∈ C([0, 1]) a common fixed point of G and f,
that is, u∗ is a solution to fractional nonlinear differential
equation (78). □
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4.2. (e Existence of Coincidence Solution for Nonlinear
Volterra-Integral Equations. )is section investigates the
coincidence solution for nonlinear Volterra-integral equa-
tions in the setting of TVS-valued cone metric spaces. Nieto
[58] initiated the study of the existing solution of an ordinary
differential equation. Since then, several authors utilized his
ideas to find the solution of ordinary differential equations.
In detail, one can see the literature in [55, 59–62] and the
references therein.

Integral equation methods help solve many problems of
the applied fields like mathematical economics and optimal
control theory because this problem is often reduced to
integral equations.

Integral equations appear in several forms. However, in
this section, we are interested with the integral equation,
namely, Volterra integral-differential equation which is of
the form

u
n
(t, σ) � f(t, σ) + 􏽚

σ

a
K(σ, t, u(t))dt, where u

n
�

d
n
u

dσn.

(96)

)e following integral equation inspired by [12, 63–66].

u(σ, ς) � l(σ, ς) + 􏽚
σ

0
g(σ, ς, ε, u(ε, ς))dε

+ 􏽚
σ

0
􏽚
ς

0
h(σ, ς, ], τ, u(], τ))dεd],

(97)

where l, g, h are given functions and u is unknown function
to be found.

Let C(G, f) be the class of continuous functions from
the set G to the set f. We denote E � R+ × R+,E1 �

l(σ, ς, s): 0≤ s≤ σ ≤∞, ς ∈ R+{ } and E2 � l(σ, ς, s, t):{

0≤ s≤ σ ≤∞, 0≤ t≤ ς≤∞}. We denote that l ∈ C(E,R),
g ∈ C(E1 × R,R) and h ∈ C(E2 × R,R)

Denote X be the space of functions z ∈ C(R+ × R+,R)

satisfying

|z(σ, t)| � O e
λ(σ+ς)

􏼐 􏼑, (98)

where λ is a positive constant, that is,

|z(σ, ς)|≤M0 e
λ(σ+ς)

􏼐 􏼑, (99)

for constant M0 > 0. Let (X, ‖.‖) be a Banach space. Define a
norm in the space X by

|z|X � sup
(σ,ς)∈E

|z(σ, ς)|e(− λ(σ+ς))
􏽨 􏽩. (100)

Define the mapping G, f: X × X⟶ [0,∞) by

Gf
n
u(σ, ς) � l(σ, ς) + 􏽚

σ

0
g(σ, ς, ε, u(ε, ς))dε

+ 􏽚
σ

0
􏽚
ς

0
h(σ, ς, ], τ, u(], τ))dεd],

(101)

and

Gf
n
v(σ, ς) � l(σ, ς) + 􏽚

σ

0
g(σ, ς, ε, v(ε, y))dε

+ 􏽚
σ

0
􏽚
ς

0
hσ, ς, ], τ, v(], τ))dεd],

(102)

for u, v ∈ X. )e coincidence fixed point of Gfnu and Gfnv

is also a solution of the Volterra integral-differential
equation (97).

Now we prove the results by establishing the existence
solution of a coincidence fixed point for a pair of self
mappings:

Theorem 9. Suppose the following conditions holds:

(i) For the continuous functions g, h ∈ X, we have

|g(σ, ς, ε, u(ε, ς)) − g(σ, ς, ε, v(ε, ς))|≤ c1(σ, ς, ε)|u − v|,

|h(σ, ς, ], τ, u(], τ)) − h(σ, ς, ], τ, v(], τ))|≤ c2(σ, ς, ], τ)|u − v|,

(103)

where c1 ∈ C(E1, [0,∞)) and c2 ∈ C(E2, [0,∞)).
(ii) (ere exists a nonnegative constant δ such that δ < 1

and

􏽚
σ

0
c1(σ, ς, ε)eλ(ε+ς)dε + 􏽚

σ

0
􏽚
ς

0
c2(σ, ς, ], τ)e

λ(]+τ)dτd]≤ δe
λ(σ+ς)− ϑ

,

(104)

for all σ, ς, ε, ], τ ∈ E1 ∪E2.

)en, the nonlinear Volterra-integral equation (97) has a
unique solution in E1 ∪E2 which is the coincidence fixed
point of equations (101) and (102).

Proof. Let G, f: X⟶ X be two operators such that
Gfv ∈ X and Gfnv ∈ X. Now we verify that the two op-
erators are contractive maps inX. Let u, v ∈ X. On contrary
we claim that G and f are not contractive maps inX. From
equations (101) and (102), using condition (i) and (ii) of
)eorem 9, we have
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Gf
n
u − Gf

n
v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌X � l(σ, ς) + 􏽚

σ

0
g(σ, ς, ε, u(ε, ς))dε + 􏽚

σ

0
􏽚
ς

0
h(σ, ς, ], τ, u(], τ))dτd]

− l(σ, ς) − 􏽚
σ

0
g(σ, ς, ε, v(ε, ς))dε − 􏽚

σ

0
􏽚
ς

0
h(σ, ς, ], τ, v(], τ))dτd],

≤ 􏽚
σ

0
|g(σ, ς, ε, u(ε, ς)) − g(σ, ς, ε, v(ε, ς))|dε

+ 􏽚
σ

0
􏽚
ς

0
|h(σ, ς, ], τ, u(], τ)) − h(σ, ς, ], τ, v(], τ))|dτd],

≤ 􏽚
σ

0
c1(σ, ς, ε)eλ(σ+ς)dε + 􏽚

σ

0
􏽚
ς

0
c2(σ, ς, ], τ)e

λ(]+τ)dτd]􏼔 􏼕|u − v|X,

≤ δe
λ(σ+ς)− ϑ

|u − v|X,

≤ δe
λ(σ+ς)− ϑ

|u − v|X,

Gf
n
u − Gf

n
v

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌X ≤ δe

− ϑ
|u − v|Xe

λ(σ+ς)
,

ϱ(Gfu, Gfv) ≤ δe
− ϑ

M(u, v),

(105)

which is a contradiction. Hence u is a common fixed of G

and f, also a solution to integral (97).
From (105), since δ < 1 and using FKS2 of Definition 13,

where

M(u, v) �
ϱ(Gu, Gfu) + ϱ(Gv, Gfv)

2
, (106)

we have

ϱ(Gfu, Gfv) ≤ e
− ϑ

M(u, v). (107)

Using F1(z) � ln z by taking natural logarithms in both
sides of (107), we get

ϑ + ϱ(Gfu, Gfv)≤M(u, v). (108)

By (106), we obtain a F-Kannan–Suzuki contraction as
defined in Definition 13. )us, all conditions imposed in
)eorem 6 and )eorem 9 are satisfied. Hence, u∗ is a
common fixed point of G and f in X. □

5. Conclusion

)e novelty of this study to fixed point theory is the fixed
point result given in )eorem 6. )is theorem provides
the common fixed points conditions for a pair of two self
mappings in TVS-valued cone metric spaces. )is paper
extended and generalised the results due to Batra et al.
[37], Filipovic et al. [38], Morales and Rojas [9], Rahimi
et al. [39], and Wangwe and Kumar [40] using a pair of
two self-mappings in F-Kannan–Suzuki type mapping in
TVS-valued cone metric space, where we consider a map
to be sequentially convergent, one to one and continuous.
By doing so, we extended several other results of the same
setting in the literature. )ese results have some appli-
cations in many areas of applied mathematics, especially
in nonlinear Riemann–Liouville fractional differential
equation and nonlinear Volterra-integral differential
equation.
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[57] Z. Bai and H. Lü, “Positive solutions for boundary value
problem of nonlinear fractional differential equation,” Journal
of Mathematical Analysis and Applications, vol. 311, no. 2,
pp. 495–505, 2005.

[58] J. J. Nieto and R. Rodŕıguez-López, “Contractive mapping
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