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Let Z be the simple graph; then, we can obtain the energy E(Z) of a graph Z by taking the absolute sum of the eigenvalues of the
adjacency matrix of Z. In this research, we have computed different energy invariants of the noncompleted extended P-Sum
(NEPS) of graph Zi. In particular, we investigate the Randic, Seidel, and Laplacian energies of the NEPS of path graph Pni

with any
baseB. Here, n denotes the number of vertices and i denotes the number of copies of path graph Pn. Some of the results depend on
the number of zeroes in base elements, for which we use the notation j.

1. Introduction

'eNEPS of the graphs is a graph Z whose vertex set is equal
to the simple Cartesian product of the vertices’ sets of the
graphs [1]. If Z1, Z2, Z3, . . . , ZK are K graphs having
v(Z1), v(Z2), v(Z3), . . . , v(ZK) vertices sets, respectively,
then the vertex set of NEPS of graphs is defined as

V(Z) � v Z1( 􏼁 × v Z2( 􏼁 × v Z3( 􏼁 × · · · × v ZK( 􏼁. (1)

'e existence of the edges of NEPS graph is depending
on the base elements:

β1, β2, β3, . . . , βK( 􏼁 ∈B, (2)

whereas some βi � 0 and some βi � 1. When βi � 0, it means
there is no edge because in this case ui � vi. However, when
βi � 1, then there exists an edge between (u1, u2, . . . , uK)

and (v1, v2, . . . , vK) iff Zi has an edge between ui and vi.
'e NEPS of the graph is abbreviated as noncomplete

extended p-sum of the graph. It has many graph operations
as special cases, and names are as follows: the product, the
sum, and the strong product of graphs [1]. 'e energy of
graph is the summation of |λi| of adjacency matrix A(G) of
graph G [2, 3]. Energy of graphs, first introduced by Ivan

Gutman, has remarkable chemical application; see [4–6], for
details.

'is energy have applications in image analysis [7, 8],
which is been used in investigation of medical fields like in
brain activity. Randic energy of graph G is the summation of
|ρi|, where ρi are the eigenvalues of the Randic matrix R(G)

[9, 10]. It has endless applications in chemistry and became
an attractive field of research; for further details, see [11–13].
In [7], Haemers defined the Seidel energy; let the Seidel
matrix of a graph G be represented as SE(G), and θi are the
eigenvalues of this matrix; then, the energy of graph is the
summation of |θi|, where θ − i is of the Seidel matrix. More
results on this energy can be found in [14–16].'ese energies
have lot of work in calculating upper and lower bounds of
different graphs. In Section 2, we first show NEPS of the
cyclic graph and how the energy of NEPS with any other
basis do not have any effect on energies, see [17–19]. 'en,
how this result is used in calculating Randic, Seidel, and
Laplacian energy of this graph?

Example 1. Consider two graphs P2 and C3; then, the vertex
set of NEPS of P2 and C3 is stated as

V(Z) � V P2( 􏼁 × V C3( 􏼁. (3)
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Let V(P2) � (1, 2) and V(C3) � (1′, 2′, 3′); then,

V(Z) � 1, 1′( 􏼁, 1, 2′( 􏼁, 1, 3′( 􏼁, 2, 1′( 􏼁, 2, 2′( 􏼁, 2, 3′( 􏼁􏼈 􏼉. (4)

'e NEPS graph is dependent on the base elements, and
the possible base elements are (1, 1), (1, 0), (0, 1){ }. If we take
the base element (1, 1), then the graphical view of
NEPS P2 × C3: (1, 1)􏼈 􏼉 is expressed as in Figure 1.

If we take base element (0, 1), then its graph is shown in
Figure 2.

Now, for (1, 0), we have Figure 3.
If we take three copies of P2 and (1, 1, 1) as the base

element, then its NEPS graph is expressed as in Figure 4.
Now, for three copies of P2, with base (1, 0, 1), the NEPS

graph is shown in Figure 5.
'e NEPS graph was first time introduced by

D. Cvetkovic and R. Lucic [3], and after some time, it was
redefined by S.C. Shee [20]. It has defined various graph
operations; some of the results we explain as follows. Let Z1
and Z2 be any two graphs; if we take bases (1, 0), (0, 1){ },
then the resulting graphZ is the sum ofZ1 andZ2; if the base
element is (1, 1), then the graphZ is the tensor product ofZ1
and Z2. Furthermore, the connectedness of the NEPS graph
in [2] and NEPS operation on cordial graphs in [8] have been
discussed.

'e energy of the graph Z is defined as the absolute sum
of the eigenvalues of the adjacency matrix of Z. It was first
time introduced by Ivan Gutman [5]. 'e adjacency matrix
of the simple graph Z is a matrix whose entries are zeroes
and ones. If the vertices vivj ∈ E, then Aij � 1; otherwise,
Aij � 0. It is denoted by A(Z).

A Randic matrix R(Z) is a matrix whose entries are
denoted by rij and is defined as R � [rij]. If ui and uj are not
adjacent or ui � uj, then rij � 0, but if ui and uj are adjacent,

then rij � 1/
����
didj

􏽱
, where di and dj are degrees of ui and uj,

respectively. 'e Randic energy of a graph Z can be eval-
uated by taking the absolute sum of the eigenvalues of the
Randic matrix. If the eigenvalues of the Randic matrix are
denoted by μi, then we can express the Randic energy of Z as
[21]

RE(Z) � 􏽘
n

i�1
μi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (5)

Milan Randic is the first person who has introduced the
Randic index [22] such as

R(Z) � 􏽘
i∼j

1
����
didj

􏽱 . (6)

Gutman et al. have explained that the Randic index is
used to form the Randic matrix [5]. 'eye also introduced
the energy of the graphs [9, 10]; then, they extended this
topic and defined the Randic energy [15]. Dasa et al. have
discussed the upper and lower bounds on the Randic energy
of the graphs [4].

Let Z be a graph having vertices v1, v2, v3, . . . , vn􏼈 􏼉; then,
the Seidel matrix of Z is a n × n matrix including the entries
−1, 0, and 1.'e Seidel matrix is expressed as S(Z) � [sij]. If

(1,1')

(2,3')(2,2')(2,1')

(1,3')(1,2')

Figure 1: NEPS P2 × C3: (1, 1)􏼈 􏼉.

(1,1')

(2,3')(2,2')(2,1')

(1,3')(1,2')

Figure 2: NEPS P2 × C3: (0, 1)􏼈 􏼉.

(1,1') (1,3')(1,2')

(2,3')(2,2')(2,1')

Figure 3: NEPS P2 × C3: (1, 0)􏼈 􏼉.

(1,1',1'')

(2,1',1'')

(1,1',2'')

(2,1',2'')

(1,2',2'')

(2,2',2'')

(1,2',1'')

(2,2',1'')

Figure 4: NEPS P2 × P2 × P2: (1, 1, 1)􏼈 􏼉.
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(1,1',2'')

(2,1',2'')

(1,2',2'')

(2,2',2'')

(1,2',1'')

(2,2',1'')

Figure 5: NEPS P2 × P2 × P2: (1, 0, 1)􏼈 􏼉.
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vi � vj, then sij � 0; if vi ≠ vj and there exist an edge between
vi and vj in Z, then sij � −1, but if vi ≠ vj and there does not
exist an edge between vi and vj in Z, then sij � 1. Let the
eigenvalues of the Seidel matrix be denoted by θi, then the
Seidel energy is expressed as the absolute sum of eigenvalues
and written as

SE(Z) � 􏽘
n

i�1
θi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (7)

Liu Jian-ping and Liu Bo-lian have explained [14] the
seidel energy. Seidel energy and its bounds have been cal-
culated by a sharp method which is made by P. Nageswari
and P. B. Sarasija [11].

Now, we discuss on Laplacian energy As D(Z) is a
diagonal matrix whose entries are the degree of the vertices
of Z and A(Z) is the adjacency matrix, then the Laplacian
matrix is stated as L(Z) � D(Z) − A(Z). If the eigenvalues
of the Laplacian matrix is denoted by μi, then the Laplacian
energy of the graph Z is expressed as

LE(Z) � 􏽘

n

i�1
μi − d(Z)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌, (8)

where d(Z) � 2|E(Z)|/|V(Z)|. 'e Laplacian matrix has
been introduced by Grone and Merris [23] such as
L(Z) � D(Z) − A(Z). Gutman and Zhou, in 2006 [6], de-
fined a result that energy of graph cannot be exceeded from
the Laplacian energy of that graph; also, they explained some
properties of Laplacian energy in [24]. Zhou has been
working on energy and Laplacian energy [25] and gave some
useful results. Dragan Stevanovica, Ivan Stankovicb, and
Marko Milosevicb have explained some positive and neg-
ative results between the relation of energy and Laplacian
energy.

We discuss some important results that are made on the
path graphs by defining its spectrum, whereas the spectrum
of Z is the nonincreasing sequence of the distinct eigen-
values μ1, μ2, μ3, . . . , μn of the adjacency matrix A(Z) of Z.
In particular, we explained some results regarding Randic,
seidel, and Laplacian energies of NEPS of path graphs. Some
results of the Randic, seidel, and Laplacian energies depend
on j and i, for i> j. Whereas, j and i denote the number of
zeroes in base elements (β1, β2, β3, . . . , βK) ∈B and number
of copies of the path graph, respectively. Also, the dimen-
sions of the base elements are based on i.

Such as, if we take j � 1 and i � 3, then, in this case,
possible base elements are

(1, 1, 0), (1, 0, 1), (0, 1, 1){ }. One more important point is
that we will discuss on all base elements but will not includ
the ones such as (1, 1, . . . , 1).

2. Main Results

Our main focus is to compute Randic, seidel, and Laplacian
energy. 'e broad generation of energies that is consisted on
different graph matrices was the first to categorize the
Laplacian energy. 'is is defined in the form of spectrum.
'e spectrum of the Laplacian matrix consists of the
eigenvalues.

Theorem 1. Let n and m be the number of vertices and edges
of NEPS Zi � P2i

: B􏽮 􏽯, respectively, for i � 2, 3, . . . , K, where
i denotes the number of copies of P2. 7en,

RE NEPS Zi � P2i
: B􏽮 􏽯􏽨 􏽩 � 2m. (9)

Proof. Let Z � NEPS Zi � P2i
: B􏽮 􏽯, for i � 2, 3, . . . , K, be a

graph. Here, i denotes the number of copies of P2 (which is a
path graph heaving 2 vertices and 1 edge) andB denotes the
base element which depend on the number of copies of P2.

In that case, the spectrum of the Randic matrix of Z is
defined as

2m

n
􏼚

n

2
time􏼒 􏼓,

−2m

n

n

2
time􏼒 􏼓􏼛 ,

RE(Z) �
n

2
×
2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

n

2
×

−2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� m + m � 2m.

(10)

'us, we conclude the proof:

RE NEPS Zi � P2i
: B􏽮 􏽯􏽨 􏽩 � 2m. (11)

□

Theorem 2. Let n and m be the number of vertices and edges
of NEPS Zi � P3i

: B􏽮 􏽯, respectively, where number of copies
of P3 and number of zeroes in the base element are designated
by i and j, respectively. 7en, for any j and i> j, we have

RE NEPS Zi � P3i
: B􏽮 􏽯􏽨 􏽩 � 3j2i− j

. (12)

Proof. Let Z � NEPS Zi � P3i
: B􏽮 􏽯, for i � 2, 3, . . . , K, be a

graph. For any j and i> j, we have the spectrum of the
Randic matrix of Z:

1 3j2i− j− 1time􏼐 􏼑, 0 n − 3j2i− jtime􏼐 􏼑, −1 3j2i− j− 1time􏼐 􏼑􏽮 􏽯.

(13)

'us, we follow the result:

RE(Z) � 3j2i− j− 1
􏼐 􏼑|1| + n − 3j2i− j

􏼐 􏼑|0| + 3j2i− j− 1
􏼐 􏼑| − 1|

� 3j2i− j− 1
+ 3j2i− j− 1

,

RE(Z) � RE NEPS Zi � P3i
: B􏽮 􏽯􏽨 􏽩 � 3j2i− j

.

(14)

□

Theorem 3. Let n � 4i and m be the number of vertices and
edges of NEPS Zi � P4i

: B􏽮 􏽯, respectively. 7en, for any j and
i> j, we have

RE NEPS Zi � P4i
: B􏽮 􏽯􏽨 􏽩 � 􏽘

i−j

t�0

i−j
Ct × 2i+j− t

. (15)

Proof. Let Z � NEPS Zi � P4i
: B􏽮 􏽯 be a graph. 'en, for

any j≥ 1 and i> j, we have the spectrum of the Randic
matrix as given below:
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−1
2t

i−j
Ct ×

n

2i− j+1 time􏼠 􏼡,
1
2t

i−j
Ct ×

n

2i− j+1 time􏼠 􏼡􏼨 􏼩, (16)

where 0≤ t≤ i − j,

RE(Z) � 􏽘

i−j

t�0

i−j
Ct ×

n

2i− j+1
⎛⎝ ⎞⎠ ×

−1
2t

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+ 􏽘

i−j

t�0

i−j
Ct ×

n

2i− j+1
⎛⎝ ⎞⎠

×
1
2t

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� 2 × 􏽘

i−j

t�0

i−j
Ct ×

n

2i− j+1
⎛⎝ ⎞⎠ ×

1
2t􏼒 􏼓.

(17)

For n � 4i, we have

RE(Z) � RE NEPS Zi � P4i
: B􏽮 􏽯􏽨 􏽩 � 􏽘

i−j

t�0

i−j
Ct × 2i+j− t

.

(18)

Hence, it is done. □

Theorem 4. For n number of vertices and m � n/2 number of
edges, we have

SE NEPS Gi � P2i
: B􏽮 􏽯􏽨 􏽩 � alogn

2−1 +(2n − 3), (19)

where alogn
2−1 � alogn

2−2 + 2log
n
2− 1, for a1 � 1.

Proof. Let Z � NEPS Zi � P2i
: B􏽮 􏽯, for i � 2, 3, . . . , K, be a

graph. 'en, for n vertices of Z, we have m � n/2 edges in Z;
we have the spectrum of the seidel matrix as

alogn
2−1,

2m

n

n

2
time􏼒 􏼓,

−6m

n

n

2
− 1time􏼒 􏼓􏼚 􏼛, (20)

where alogn
2−1 � alogn

2−2 + 2log
n
2− 1, for a1 � 1.

'us, we have

SE(Z) � alogn
2−1 +

n

2
2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

n

2
− 1􏼒 􏼓

−6m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

� alogn
2−1 + 4m −

6m

n

� alogn
2−1 + 2m 2 −

3
n

􏼒 􏼓,

(21)

for m � n/2; we have

� alogn
2−1 +(2n − 3). (22)

□

Theorem 5. Let n � 3i be the number of vertices; we have
m � 8n/9 as edges of NEPS Zi � P3i

: B􏽮 􏽯, where i is the
number of copies of P3. Furthermore, suppose that j is the
number of zeroes in the base element; then, for any j≥ 1 and
i � j + 2, we have

SE NEPS Zi � P3i
: B􏽮 􏽯􏽨 􏽩 � 8aj+1 +

14n − 18
9

, (23)

where a1 � 1 and aj+1 � 3aj + 2.

Proof. Let Z � NEPS Zi � P3i
: B􏽮 􏽯 be the graph. 'en, for

j≥ 1 and i � j + 2, we have the spectrum of the seidel matrix
of Z as given below:

−45m

8n
aj+1 � 3aj + 2time􏼐 􏼑,

−9m

8n

15n

27
time􏼒 􏼓,

27m

8n
􏼚

aj+1 � 3aj + 2time􏼐 􏼑, n − 2(sumof two eigenvalues)􏽯,

(24)

where a1 � 1 and aj+1 � 3aj + 2, for any j≥ 1.
By using this spectrum, we have

SE(Z) � aj+1􏼐 􏼑
−45m

8n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

15n

27
􏼒 􏼓

−9m

8n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+ aj+1􏼐 􏼑
27m

8n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+(n − 2)

� aj+1􏼐 􏼑
45m

8n
􏼒 􏼓 +

15n

27
􏼒 􏼓

−9m

8n
􏼒 􏼓

+ aj+1􏼐 􏼑
27m

8n
􏼒 􏼓 +(n − 2)

�
9m

n
􏼒 􏼓aj+1 +

5m

8
+ n − 2.

(25)

For m � 8n/9, we have

SE(Z) � SE NEPS Zi � P3i
: B􏽮 􏽯􏽨 􏽩 � 8 aj+1􏼐 􏼑 +

14n − 18
9

.

(26)

□

Theorem 6. Let n and m � n/2 be the number of vertices and
edges of the graph Z � NEPS Zi � P2i

: B􏽮 􏽯, respectively, for
i � 2, 3, . . . , K. 7en,

LE NEPS Zi � P2i
: B􏽮 􏽯􏽨 􏽩 � n. (27)

Proof. We have n and m � n/2 be the number of vertices
and edges of the graph Z � NEPS Zi � P2i

: B􏽮 􏽯, respec-
tively, for i � 2, 3, . . . , K. 'en, the average degree of Z is
d(Z) � 2m/n.

Now, the spectrum of the Laplacian matrix can be
expressed as

2 −
2m

n

n

2
time􏼒 􏼓, 0 −

2m

n

n

2
time􏼒 􏼓􏼚 􏼛. (28)

By using this spectrum, we get the required result:

LE(Z) �
n

2
× 2 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

n

2
× 0 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
� n − m + m � n. (29)

□

Theorem 7. Let n and m be the number of vertices and edges
of NEPS Zi � P3i

: B􏽮 􏽯, respectively, where number of copies
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of P3 and number of zeroes in the base element are designated
by i and j, respectively. 7en, for j≥ 1, we have the following.

Case I: for i � j + 1, we have

LE NEPS Zi � P3i
: B􏽮 􏽯􏽨 􏽩 �

10n

9
. (30)

Case II: for i � j + 2, we have

LE NEPS Zi � P3i
: B􏽮 􏽯􏽨 􏽩 �

106n

81
. (31)

Case III: for i � j + 3, we have

LE NEPS Zi � P3i
: B􏽮 􏽯􏽨 􏽩 �

1210n

729
. (32)

Proof. Let n and m be the number of vertices and edges of
Z � NEPS Zi � P3i

: B􏽮 􏽯, respectively, whose average degree
is 2m/n, where the number of copies of P3 and number of
zeroes in the base element are designated by i and j,
respectively.

Case I: for any j and i � j + 1, then the spectrum of the
Laplacian matrix is

3 −
2m

n
􏼚

n

3
time􏼒 􏼓, 1 −

2m

n

n

3
time􏼒 􏼓, 0 −

2m

n

n

3
time􏼒 􏼓􏼛,

LE(Z) �
n

3
× 3 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

n

3
× 1 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

n

3
× 0 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
n

3
× 3 −

2m

n
􏼒 􏼓 +

n

3
×

2m

n
− 1􏼒 􏼓 +

n

3
×

2m

n
􏼒 􏼓

�
2
3

(n + m).

(33)

In this case, for n � 3i, number of vertices, we have m �

2n/3 edges. Using this condition, we follow the result:

LE(Z) � LE NEPS Zi � P3i
: B􏽮 􏽯􏽨 􏽩 �

10n

9
. (34)

Case II: for any j and i � j + 2, we have the spectrum of
the Laplacian matrix as given below:

5 −
2m

n

n

9
time􏼒 􏼓, 4 −

2m

n

n

9
time􏼒 􏼓, 2 −

2m

n

2n

9
time􏼒 􏼓, 1 −

2m

n

n

3
time􏼒 􏼓, 0 −

2m

n

2n

9
time􏼒 􏼓􏼚 􏼛. (35)

By following this spectrum, we have calculated the
Laplacian energy:

LE(Z) �
n

9
× 5 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

n

9
× 4 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
2n

9
× 2 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

n

3
× 1 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+
2n

9
× 0 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
n

9
× 5 −

2m

n
􏼒 􏼓 +

n

9
× 4 −

2m

n
􏼒 􏼓 +

2n

9
× 2 −

2m

n
􏼒 􏼓 +

n

3
×

2m

n
− 1􏼒 􏼓 +

2n

9
×

2m

n
􏼒 􏼓.

(36)

After some simplification, we obtain LE(Z) �
2
9

(5n + m). (37)
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In this case, for n � 3i, number of vertices, we have m �

8n/9 edges. 'e condition has carried out this case:

LE(Z) � LE NEPS Zi � P3i
: B􏽮 􏽯􏽨 􏽩 �

106n

81
. (38)

Case III: for any j and i � j + 3, we have the spectrum of
the Laplacian matrix as given below:

9 −
2m

n
􏼚

n

27
time􏼒 􏼓, 6 −

2m

n

n

9
time􏼒 􏼓, 4 −

2m

n

n

9
time􏼒 􏼓,

2 −
2m

n

n

3
time􏼒 􏼓, 1 −

2m

n

7n

27
time􏼒 􏼓, 0 −

2m

n

4n

27
time􏼒 􏼓􏼛.

(39)

Using this spectrum, we have

LE(Z) �
n

27
× 9 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

n

9
× 6 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

n

9
× 4 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

n

3
× 2 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+
7n

27
× 1 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+
4n

27
× 0 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
n

27
× 9 −

2m

n
􏼒 􏼓 +

n

9
× 6 −

2m

n
􏼒 􏼓 +

n

9
× 4 −

2m

n
􏼒 􏼓 +

n

3
×

2m

n
− 2􏼒 􏼓

+
7n

27
×

2m

n
− 1􏼒 􏼓 +

4n

27
×

2m

n
􏼒 􏼓.

(40)

After some calculations, we obtain

LE(Z) �
2
27

(7n + 13m). (41)

In this case, for n � 3i, number of vertices, we have m �

32n/27 edges. By this condition, we have

LE(Z) � LE NEPS Zi � P3i
: B􏽮 􏽯􏽨 􏽩 �

1210n

729
. (42)

□

Theorem 8. Let n � 4i and m are the number of vertices and
edges of NEPS Zi � P4i

: B􏽮 􏽯, respectively; then, for j≥ 1, we
have the following.

Case I: for i � j + 1, we have

LE NEPS Zi � P4i
: B􏽮 􏽯􏽨 􏽩 � n × 12071 × 10− 4

. (43)

Case II: for i � j + 2, we have

LE NEPS Zi � P4i
: B􏽨 􏽩􏽨 􏽩 � n × 15731 × 10− 4

. (44)

Proof. Let Z � NEPS Zi � P4i
: B􏽮 􏽯 be a graph that depends

on j and i. We discuss the cases for different conditions of i

and j.

Case I: for j≥ 1 and i � j + 1, we have the spectrum for
the Laplacian energy as

0 −
2m

n

n

4
time􏼒 􏼓, 0.5858 −

2m

n

n

4
time􏼒 􏼓, 2 −

2m

n

n

4
time􏼒 􏼓, 3.4142 −

2m

n

n

4
time􏼒 􏼓􏼚 􏼛, (45)

where d(Z) � 2m/n is the degree of the graph, and in
this case, we have m � 3n/4 edges in graph Z:
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LE(Z) �
n

4
× 0 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

n

4
× 0.5858 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

n

4
× 2 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

n

4
× 3.4142 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
n

4
×

2m

n
􏼒 􏼓 +

n

4
×

2m

n
− 0.5858􏼒 􏼓 +

n

4
× 2 −

2m

n
􏼒 􏼓 +

n

4
× 3.4142 −

2m

n
􏼒 􏼓.

(46)

After the simplification, we obtain

LE(Z) � LE NEPS Zi � P4i
: B􏽮 􏽯􏽨 􏽩 � n × 12071 × 10− 4

.

(47)

Case II: for j≥ 1 and i � j + 2, we have the spectrum for
the Laplacian energy as

0 −
2m

n

n

8
time􏼒 􏼓, 0.7076 −

2m

n

n

8
time􏼒 􏼓, 1 −

2m

n

n

4
time􏼒 􏼓,􏼚

2.3973 −
2m

n

n

8
time􏼒 􏼓, 3 −

2m

n

n

8
time􏼒 􏼓4 −

2m

n

n

8
time􏼒 􏼓,

5.8951 −
2m

n

n

8
time􏼒 􏼓􏼛.

(48)

Now, in this case, we have m � 9n/8 edges in graph Z:

LE(Z) �
n

8
× 0 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

n

8
× 0.7076 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

n

4
× 1 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

n

8
× 2.3973 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

+
n

8
× 3 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

n

8
× 4 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
+

n

8
× 5.8951 −

2m

n

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

�
n

8
× 0 −

2m

n
􏼒 􏼓 +

n

8
× 0.7076 −

2m

n
􏼒 􏼓 +

n

4
× 1 −

2m

n
􏼒 􏼓 +

n

8
× 2.3973 −

2m

n
􏼒 􏼓

+
n

8
× 3 −

2m

n
􏼒 􏼓 +

n

8
× 4 −

2m

n
􏼒 􏼓 +

n

8
× 5.8951 −

2m

n
􏼒 􏼓.

(49)

After some calculations, we get the result

LE(Z) � LE NEPS Zi � P4i
: B􏽮 􏽯􏽨 􏽩 � n × 15731 × 10− 4

.

(50)

□

3. Conclusion

In this study, we investigated the Randic, seidel, and Lap-
lacian energies of the NEPS of path graph Pni

with any base
B. Here, n denotes the number of vertices and i denotes the
number of copies of path graph Pn. Some of the results
depend on the number of zeroes in base elements, for which
we use the notation j.
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