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This work concerns the numerical solutions of a category of nonlinear and linear time-fractional partial differential equations
(TFPDEs) that are called time-fractional inhomogeneous KdV and nonlinear time-fractional KdV equations, respectively. The
fractional derivative operators are of the Caputo type. Two-variable second-kind Chebyshev wavelets (SKCWs) are constructed
using one-variable ones; then, utilizing corresponding integral operational matrices leads to an approximate solution to the
problem under study. Also, it is found that the perturbation term tends to zero even if a finite number of the basis functions is
adopted. To exhibit the applicability and efficiency of the proposed scheme, two models of the KdV equations are given.

1. Introduction

Many scientists and researchers are interested in fractional
integral and derivative operators as mathematical tools for
modeling diverse physical, chemical, and biological phe-
nomena [1–5]. Fractional operators have the memory prop-
erty, and this characteristic converts them into a powerful
tool for studying real-world problems [6–8]. Different frac-
tional derivative operators have been introduced by
researchers for successfully and effectively modeling scien-
tific phenomena. For example, the fractional pseudohyper-
bolic telegraph partial differential equation employing the
Caputo fractional derivative was solved in [9] utilizing the
explicit finite difference method. Generalized Caputo and
Caputo fractional derivatives were studied in [10], and the
nonlinear heat equation in the sense of the generalized
Caputo derivative was solved by fractional Green’s func-
tions, the generalized Laplace transform, and generalized
Mellin transform. A type of the fractional diffusion equation
in the sense of the Grunwald–Letnikov derivative was solved
by Gorenflo and Abdel-Rehim in [11] using a difference
scheme. The ð2 + 1Þ-dimensional fractional Ablowitz–
Kanup–Newell–Segur equation in the sense of the conform-
able derivative was studied to extract general analytical wave
solutions in [12] implementing the exp ð−ϕðξÞÞ-expansion

method. A modified definition of the conformable fractional
derivative was presented in [13], and then, the exact solu-
tions of linear and nonlinear time- and space-fractional
mixed partial differential equations involving a new frac-
tional derivative were obtained applying the invariant sub-
space method. Abu-Shady and Kaabar proposed the
generalized fractional derivative (GFD) and showed that this
operator coincides with the Caputo and Riemann–Liouville
fractional derivatives [14, 15]. Therefore, this computational
tool can be used to model different scientific phenomena.
Nonlinear fractional partial differential equations (FPDEs)
have attracted wide attention for describing many phenom-
ena in engineering, physics, material science, and acoustics
[7, 16–19]. Korteweg and de Vries introduced a class of non-
linear evolution equations, namely, KdV equations, for the
first time in 1895, to describe the nonlinear shallow-water
waves [20]. The KdV equations emerge in diverse phenom-
ena of physics like the one-dimensional waves in shallow-
water waves; the Ferma-Pasto-Ulam problem in the contin-
uum limit; the evolution of long, ion-acoustic waves in a
plasma, and so on. Time-fractional KdV equations are
obtained by replacing the first-order time derivatives with
fractional ones of the arbitrary orders. Many works have
been done on the KdV and generalized KdV equations. For
example, Bagheri and Khani used rational functions,
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trigonometric functions, and hyperbolic functions, to reach
the exact solutions of a fractional model of the KdV equation
[21]. A balance method was given to obtain some closed
forms of solutions of the KdV equation in [22]. Authors in
[23] applied the q-homotopy analysis transform method to
study the modified coupled KdV equations. An extended
tanh-function method was used in [24] to achieve soliton
solutions of modified coupled KdV and generalized Hir-
ota–Satsuma coupled KdV equations. Sahoo and Saha
applied the ðG′/GÞ-expansion method to solve the time-
fractional KdV equation [25]. Kaya et al. applied radial basis
functions to KdV and mKdV equations [26]. Momani et al.
[27] utilized the variational iteration method for time-
fractional KdV. The analytical traveling wave solutions of
the nonlinear fractional KdV equation are obtained by intro-
ducing an approximate-analytical method in [28]. Authors
in [29] dealt with obtaining exact solutions to the fractional
KdV equation. In [30–34], the new iteration method, Ado-
mian decomposition method, variational iteration method,
and homotopy perturbation method were utilized to derive
approximate solutions to different forms of the KdV
equations.

The target of the current work is to achieve approximate
solutions for two models of the KdV by means of the
second-kind Chebyshev wavelets. From a viewpoint of com-
parison, the proposed method has a less computational size
compared to some existing methods. The orthogonal
second-kind Chebyshev polynomials are utilized as basis
functions in diverse methods to obtain approximate solu-
tions of integrodifferential equations [35], integral equations
[36, 37], ordinary differential equations [38, 39], and partial
differential equations [40, 41]. In the present paper, an
approach based on the second-kind Chebyshev polynomials
is presented to work out time-fractional inhomogeneous
KdV and nonlinear time-fractional KdV equations. Finding
analytic solutions to linear and especially nonlinear equa-
tions is hard; hence, presenting or modifying computational
methods to find an approximate solution to these problems
is noteworthy.

The main goal of this paper is to assess the numerical
solutions of the linear inhomogeneous fractional KdV equa-
tion and nonlinear time-fractional KdV equations. An
orthogonal collocation scheme is proposed based upon the
SKCW functions. Two-dimensional integral operational
matrices of fractional and integer orders are derived utilizing
one-dimensional ones. Resultant matrices accompanied by
the collocation method convert the main problem into an
algebraic equation by collocating this algebraic equation at
tensor points fðθi, ϑjÞg, i = 0, 1,⋯,M1, j = 0, 1,⋯,M2 lead-
ing to a linear or nonlinear algebraic system. θi and ϑj are
roots of the second-kind Chebyshev polynomials of degrees
M1 and M2, respectively. By solving the resulted system, an
approximate solution is achieved.

The organization of this paper is as follows: the frac-
tional operators, one- and two-variable second-kind Cheby-
shev wavelets are introduced, and then, operational matrices
of the integral are derived in Section 2. In Section 3, two
models of the equations under study are presented. Then,
it can be seen how using appropriate approximations results

in a residual function. In Section 4, some error bounds of the
resulted approximations are computed. The established
approach is utilized for two equations in Section 5, and a
conclusion is provided in the last section.

2. Fractional Operators and SKCWs

This section presented some definitions of the fractional cal-
culus, the SKCWs are introduced, and their integral opera-
tional matrices of integer and fractional orders are gained.

2.1. Fractional Operators

Definition 1. The Caputo fractional derivative operator of g
ðθ, ϑÞ ∈ CnðΩÞ with the order μ ∈ℝ is given as the following
[42]:

C
0D

μ

ϑg θ, ϑð Þ =
1

Γ n − μð Þ
ðϑ
0
ϑ − ηð Þn−μ−1 ∂

ng θ, ηð Þ
∂ηn

dη, n − 1 < μ < n, n ∈ℕ,

∂ng θ, ϑð Þ
∂ϑn

,  μ = n ∈ℕ:

8>>><
>>>:

ð1Þ

Definition 2. The Riemann-Liouville fractional integral oper-
ator of gðθ, ϑÞ ∈ CðΩÞ with the order μ ∈ℝ is given as [42]

RL
0 J

μ
ϑg θ, ϑð Þ =

1
Γ μð Þ

ðϑ
0
ϑ − ηð Þμ−1g θ, ηð Þdη,  μ > 0,

RL
0 J

0
ϑg θ, ϑð Þ = g θ, ϑð Þ:

8><
>:

ð2Þ

Some features of the above-mentioned operators are as fol-
lows:

RL
0 J

μ1
ϑ

RL
0 J

μ2
ϑ g θ, ϑð Þ = RL

0 J
μ2
ϑ

RL
0 J

μ1
ϑ g θ, ϑð Þ = RL

0 J
μ1+μ2
ϑ g θ, ϑð Þ,

RL
0 J

μ
ϑ t

σ = Γ σ + 1ð Þ
Γ σ + μ + 1ð Þ ϑ

σ+μ, σ > −1,

C
0D

μ
ϑϑ

σ =
0, μ > σb c,
Γ σ + 1ð Þ

Γ σ − μ + 1ð Þ ϑ
σ−μ,  σb c ≥ μ,

8><
>:

C
0D

μ

ϑ
RL
0 J

μ
ϑg θ, ϑð Þ

� �
= g θ, ϑð Þ,

RL
0 J

μ
ϑ

C
0D

μ

ϑg θ, ϑð Þ
� �

= g θ, ϑð Þ − g θ, 0ð Þ,  0 < μ ≤ 1:

ð3Þ

2.2. SKCWs. The one-variable second-kind Chebyshev wave-
let ψnmðϑÞ is defined on the interval J = ½0, 1Þ as

ψnm ϑð Þ = 2k/2~Um 2kϑ − 2n + 1
� �

, n − 1
2k−1

< ϑ < n

2k−1
,

0, otherwise,

8<
:

ð4Þ
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where ~UmðϑÞ =
ffiffiffiffiffiffiffi
2/π

p
UmðϑÞ,m = 0, 1,⋯,M − 1. UmðϑÞ,m

= 0, 1,⋯,M − 1, are the Chebyshev polynomials of the sec-
ond kind which are orthogonal with respect to the weight

function ωðϑÞ = ð1 − ϑ2Þ1/2 on the interval ½−1, 1�; on the
other hand,

ð1
−1
Um ϑð ÞUk ϑð Þω ϑð Þdϑ =

π

2 , m = k,

0, m ≠ k:

8<
: ð5Þ

These polynomials are obtained from the following for-
mula:

Um+1 ϑð Þ = 2ϑUm ϑð Þ −Um−1 ϑð Þ, m = 1, 2,⋯,
U0 ϑð Þ = 1,U1 ϑð Þ = 2ϑ:

ð6Þ

From (4), ψnmðϑÞ involves four arguments, n = 1,⋯,
2k−1, k ∈ℕ,m is the degree of the second-kind Chebyshev
polynomials, and ϑ is the time variable. The SKCWs are
orthogonal with respect to the weight functions ωnðϑÞ = ωð

2kϑ − 2n + 1Þ, n = 1, 2,⋯, 2k−1, over the interval Jn = ½ðn −
1Þ/2k−1, n/2k−1Þ.

Every function g ∈ L2ωn
ðJnÞ can be expanded as

g ϑð Þ = 〠
∞

n=1
〠
∞

m=0
Gnmψnm ϑð Þ, ð7Þ

where

Gnm =
ð1
0
g ϑð Þψnm ϑð Þωn ϑð Þdϑ: ð8Þ

Using a truncated form of the series in (7), an approxi-
mation to gðϑÞ is gained as follows:

g ϑð Þ ≈ gm ϑð Þ = 〠
2k−1

n=1
〠
M−1

m=0
Gnmψnm ϑð Þ = �GT �Ψ ϑð Þ, ð9Þ

where �G and �ΨðϑÞ are ð2k−1MÞ-order vectors as follows:

The two-variable SKCWs can be defined on the interval
J = ½0, 1Þ × ½0, 1Þ using (4) as follows:

where ni = 1,⋯, 2ki−1,mi = 0, 1,⋯,Mi − 1, ki ∈ℕ, i = 1, 2: It
is clear that ψn1m1n2m2

ðθ, ϑÞ = ψn1m1
ðθÞψn2m2

ðϑÞ. Every

two-variable g ∈ L2Wn1n2
ðJÞ can be written as follows:

g θ, ϑð Þ = 〠
∞

n1=1
〠
∞

m1=0
〠
∞

n2=1
〠
∞

m2=0
Gn1m1n2m2

ψn1m1n2m2
θ, ϑð Þ, ð12Þ

where the coefficients Gn1m1n2m2
are computed as

Gn1m1n2m2
=
ð1
0

ð1
0
g θ, ϑð Þψn1m1n2m2

θ, ϑð ÞWn1n2
θ, ϑð Þdϑ dθ,

ð13Þ

and Wn1n2
ðθ, ϑÞ = ωn1

ðθÞωn2
ðϑÞ. By considering the trun-

cated series of the infinite series in (12), one gets the follow-
ing approximation to gðθ, ϑÞ:

g θ, ϑð Þ ≈ gM1M2
θ, ϑð Þ = 〠

2k1−1

n1=1
〠

M1−1

m1=0
〠
2k2−1

n2=1
〠

M2−1

m2=0
Gn1m1n2m2

ψn1m1n2m2
θ, ϑð Þ

=GTΔ θ, ϑð Þ =GT Ψ θð Þ ⊗Ψ ϑð Þð Þ,
ð14Þ

where G and Δ are ð2k1−1M1Þð2k2−1M2Þ × 1 vectors and ⊗
denotes the Kronecker product.

2.3. Operational Matrices of the Integration. The integration
of the one-variable basis in (10) can be approximated as

ðϑ
0
�Ψ ηð Þdη ≈P 1 �Ψ ϑð Þ, ð15Þ

�G = G10,G11,⋯,G1 M−1ð Þ,G20,G21,⋯,G2 M−1ð Þ,⋯,G2k−10,G2k−11,⋯,G2k−1 M−1ð Þ
h iT

,

�Ψ ϑð Þ = ψ10 ϑð Þ, ψ11 ϑð Þ,⋯, ψ1 M−1ð Þ ϑð Þ, ψ20 ϑð Þ, ψ21 ϑð Þ,⋯, ψ2 M−1ð Þ ϑð Þ,⋯, ψ2k−10 ϑð Þ, ψ2k−11 ϑð Þ,⋯, ψ2k−1 M−1ð Þ ϑð Þ
h iT

:

ð10Þ

ψn1m1n2m2
θ, ϑð Þ = 2 k1+k2ð Þ/2 ~Um1

2k1θ − 2n1 + 1
� �

~Um2
2k2ϑ − 2n2 + 1
� �

, n1 − 1
2k1−1

< θ < n1
2k1−1

, n2 − 1
2k2−1

< t < n2
2k2−1

,

0, otherwise,

8<
: ð11Þ
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where P 1 is the operational matrix of the integration, and its
entries are calculated as

P 1 i, j½ �≔
ðϑ
0
�Ψi ηð Þdη, �Ψj ϑð Þ

� �
ωn

,  i, j = 1, 2,⋯, 2k−1M:

ð16Þ

If RL
0 J

μ
ϑ is the fractional integral of order μ > 0 [7], then

the operational matrix of the integration of the fractional
order μ, P ðμÞ, is given as

RL
0 J

μ
ϑ
�Ψ ϑð Þ ≈P μð Þ �Ψ ϑð Þ, ð17Þ

where

Now, the two-dimensional operational matrices of the
integration are constructed using P 1 and P ðμÞ:

ðθ
0
Δ ξ, ϑð Þdξ ≈ Pθ Δ θ, ϑð Þ = P 1 ⊗ I

� �
Δ θ, ϑð Þ,

ðϑ
0
Δ θ, ηð Þdη ≈ PϑΔ θ, ϑð Þ = I ⊗P 1� �

Δ θ, ϑð Þ,

RL
0 J

μ
ϑΔ θ, ηð Þ ≈ P μð Þ

ϑ Δ θ, ϑð Þ = I ⊗P μð Þ
� �

Δ θ, ϑð Þ,

ð19Þ

where Pθ, Pϑ, and PðμÞ
ϑ are two-dimensional operational

matrices regarding the classic and fractional integral opera-
tors, respectively, and I is the ðM ×MÞ identity matrix.

3. Methodology

To show the applicability of the proposed scheme, the time-
fractional inhomogeneous KdV equation and nonlinear
time-fractional KdV equation are considered.

3.1. Time-Fractional Inhomogeneous KdV Equation. A form
of this model is given as follows [27]:

C
0D

μ

ϑu θ, ϑð Þ + p θ, ϑð Þ ∂u θ, ϑð Þ
∂θ

+ q θ, ϑð Þ ∂
3u θ, ϑð Þ
∂θ3

= f θ, ϑð Þ, θ, ϑð Þ ∈ J, μ ∈ 0, 1ð �,

ð20Þ

with

u θ, 0ð Þ = ρ1 θð Þ, u 0, ϑð Þ = ϕ1 ϑð Þ, ∂u 0, ϑð Þ
∂θ

= ϕ2 ϑð Þ, ∂
2u 0, ϑð Þ
∂θ2

= ϕ3 ϑð Þ, ð21Þ

where functions ρ1, ϕ1, ϕ2, ϕ3 are known continuous ones.
By considering the highest orders of derivative operators
regarding θ and ϑ, the following approximation is given:

∂4u θ, ϑð Þ
∂t∂θ3

≈ CTΔ θ, ϑð Þ: ð22Þ

Triple integrating (22) regarding θ and using conditions
(21) lead to the following approximations:

∂3u θ, ϑð Þ
∂ϑ∂θ2

≈CTPθΔ θ, ϑð Þ + ∂3u 0, ϑð Þ
∂ϑ∂θ2

=CTPθΔ θ, ϑð Þ
+ ϕ3′ ϑð Þ ≈ CTPθΔ θ, ϑð Þ + FT

1Δ θ, ϑð Þ,
ð23Þ

∂2u θ, ϑð Þ
∂ϑ∂θ

≈CT Pθð Þ2Δ θ, ϑð Þ + FT
1 PϑΔ θ, ϑð Þ + ϕ2′ ϑð Þ

≈CT Pθð Þ2Δ θ, ϑð Þ + FT
1 PϑΔ θ, ϑð Þ + FT

2Δ θ, ϑð Þ,
ð24Þ

∂u θ, ϑð Þ
∂t

≈CT Pθð Þ3Δ θ, ϑð Þ + FT
1 Pθð Þ2Δ θ, ϑð Þ + FT

2 PθΔ θ, ϑð Þ
+ ϕ1′ ϑð Þ ≈ CT Pθð Þ3Δ θ, ϑð Þ + FT

1 Pθð Þ2Δ θ, ϑð Þ
+ FT

2 PθΔ θ, ϑð Þ + FT
3Δ θ, ϑð Þ:

ð25Þ
Now, by integrating (23) regarding ϑ, an approximation

to uðθ, ϑÞ is obtained:

u θ, ϑð Þ ≈CT Pθð Þ3PϑΔ θ, ϑð Þ + FT
1 Pθð Þ2PϑΔ θ, ϑð Þ

+ FT
2 PθPϑΔ θ, ϑð Þ + FT

3 PϑΔ θ, ϑð Þ + ρ1 θð Þ
≈CT Pθð Þ3PϑΔ θ, ϑð Þ + FT

1 Pθð Þ2PϑΔ θ, ϑð Þ
+ FT

2 PθPϑΔ θ, ϑð Þ + FT
3 PϑΔ θ, ϑð Þ + FT

4Δ θ, ϑð Þ:
ð26Þ

Again, by integrating (22) regarding ϑ and θ, approxima-
tions to uθθ and uθ are obtained:

∂3u θ, ϑð Þ
∂θ3

≈CTPϑΔ θ, ϑð Þ + ρ1′′′ θð Þ ≈CTPϑΔ θ, ϑð Þ + FT
5Δ θ, ϑð Þ,

ð27Þ

RL
0 J

μ
ϑ
�Ψ ϑð Þ = RL

0 J
μ
ϑψ10 ϑð Þ,⋯, RL0 J

μ
ϑψ1 M−1ð Þ ϑð Þ,⋯, RL0 J

μ
ϑψ2k−10 ϑð Þ,⋯, RL0 J

μ
ϑψ2k−1 M−1ð Þ ϑð Þ

h iT
,

RL
0 J

μ
ϑψmn ϑð Þ = 2k/2RL0 J

μ
ϑ
~Um 2kϑ − 2n + 1
� �

,  n − 1
2k−1

< ϑ < n

2k−1
,

0, otherwise:

8<
:

ð18Þ
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∂2u θ, ϑð Þ
∂θ2

≈CTPϑPθΔ θ, ϑð Þ + FT
5 PϑΔ θ, ϑð Þ + ϕ3 ϑð Þ

≈CTPϑPθΔ θ, ϑð Þ + FT
5 PθΔ θ, ϑð Þ + FT

6Δ θ, ϑð Þ,
ð28Þ

∂u θ, ϑð Þ
∂θ

≈ CTPϑ Pϑð Þ2Δ θ, ϑð Þ + FT
5 Pθð Þ2Δ θ, ϑð Þ

+ FT
6 PθΔ θ, ϑð Þ + ϕ2 ϑð Þ ≈CTPϑ Pθð Þ2Δ θ, ϑð Þ

+ FT
5 Pθð Þ2Δ θ, ϑð Þ + FT

6 PθΔ θ, ϑð Þ + FT
7Δ θ, ϑð Þ:

ð29Þ
Now, an approximation to C

0D
μ
ϑuðθ, ϑÞ is computed

using (23):

C
0D

μ
ϑu θ, ϑð ÞRL0 J

1−μ
ϑ

∂u θ, ϑð Þ
∂ϑ

	 

≈ RL

0 J
1−μ
ϑ CT Pθð Þ3Δ θ, ϑð Þ�

+ FT
1 Pθð Þ2Δ θ, ϑð Þ + FT

2 PθΔ θ, ϑð Þ + FT
3Δ θ, ϑð Þ�

≈ CT Pθð Þ3P 1−μð Þ
ϑ Δ θ, ϑð Þ + FT

1 Pθð Þ2P 1−μð Þ
ϑ Δ θ, ϑð Þ

+ FT
2 PθP

1−μð Þ
ϑ Δ θ, ϑð Þ + FT

3 P
1−μð Þ
ϑ Δ θ, ϑð Þ:

ð30Þ

Substituting approximations (27)–(30) into (20) yields
Rðθ, ϑÞ as the residual function as follows:

R θ, ϑð Þ =CT Pθð Þ3P 1−μð Þ
ϑ Δ θ, ϑð Þ + FT

1 Pθð Þ2P 1−μð Þ
ϑ Δ θ, ϑð Þ

+ FT
2 PθP

1−μð Þ
ϑ Δ θ, ϑð Þ + FT

3 P
1−μð Þ
ϑ Δ θ, ϑð Þ

+ p θ, ϑð Þ CTPϑ Pθð Þ2Δ θ, ϑð Þ + FT
5 Pθð Þ2Δ θ, ϑð Þ�

+ FT
6 PθΔ θ, ϑð Þ + FT

7Δ θ, ϑð Þ� + q θ, ϑð Þ CTPϑΔ θ, ϑð Þ�
+ FT

5Δ θ, ϑð Þ� − f θ, ϑð Þ:
ð31Þ

3.2. Time-Fractional Nonlinear KdV Equation. In this paper,
the following class of time-fractional nonlinear KdV equa-
tions is studied:

C
0D

μ

ϑu θ, ϑð Þ + 6u θ, ϑð Þ ∂u θ, ϑð Þ
∂θ

+ ∂3u θ, ϑð Þ
∂θ3

= 0, θ, ϑð Þ ∈ J, μ ∈ 0, 1ð �,

ð32Þ

with the conditions in (21). Substituting approximations
(26)–(30) into (32) yields the following residual function:

R θ, ϑð Þ =CT Pθð Þ3P 1−μð Þ
ϑ Δ θ, ϑð Þ + FT

1 Pθð Þ2P 1−μð Þ
ϑ Δ θ, ϑð Þ

+ FT
2 PθP

1−μð Þ
ϑ Δ θ, ϑð Þ + FT

3 P
1−μð Þ
θ Δ θ, ϑð Þ

+ CT Pθð Þ3PϑΔ θ, ϑð Þ + FT
1 Pθð Þ2PϑΔ θ, ϑð Þ�

+ FT
2 PθPϑΔ θ, ϑð Þ + FT

3 PθΔ θ, ϑð Þ + FT
4Δ θ, ϑð Þ�

× CTPϑ Pθð Þ2Δ θ, ϑð Þ + FT
5 Pθð Þ2Δ θ, ϑð Þ�

+ FT
6 PθΔ θ, ϑð Þ + FT

7Δ θ, ϑð Þ� + CTPϑΔ θ, ϑð Þ + FT
5Δ θ, ϑð Þ:

ð33Þ

Collocating residual functions (31) and (33) at points f
ðθi, ϑjÞg, i = 1, 2,⋯, 2k1−1M1, j = 1, 2,⋯, 2k2−1M2 results in
a system of algebraic equations, where θi and ϑj are roots

of ~U2k1−1M1
ðθÞ and ~U2k2−1M2

ðϑÞ, respectively. This algebraic
system can be handled by the Newton scheme. Therefore,
an approximate solution is acquired from (26).

Two models were solved by the variational iteration
method in [27], and some figures of approximate solutions
were depicted. The nonlinear time-fractional KdV equation
(32) was solved by El-Wakil et al. in [43] using He’s varia-
tional iteration method and presented a second-order solu-
tion including some parameters. Authors in [44] obtained
an approximate solution utilizing the iteration method after
spending many algebraic computational costs. Inc et al.
acquired new numerical solutions of fractional-time KdV
equation by a technique of fictitious time integration and
group preserving [45]. Authors in [46–48] used algebraic
computational methods such as the modified extended tanh
method, Sardar-subequation method, and He’s semi-inverse
variation method and the ansatz method to construct some
soliton solutions of the nonlinear time-fractional KdV
equation.

4. Error Bound

In this section, error bounds are derived for the residual
functions/perturbation terms for two given models in Sec-
tion 3. First, some error bounds are computed for approxi-
mation errors.

4.1. Time-Fractional Inhomogeneous KdV Equation. Con-
sider Equation (20) and suppose that uM1M2

ðθ, ϑÞ is its
approximate solution obtained from the presented algo-
rithm in Section 3. Thus, uM1M2

ðθ, ϑÞ satisfies the following
equations:

C
0D

μ

ϑuM1M2
θ, ϑð Þ + p θ, ϑð Þ ∂uM1M2

θ, ϑð Þ
∂θ

+ q θ, ϑð Þ ∂
3uM1M2

θ, ϑð Þ
∂θ3

= f θ, ϑð Þ −RM1M2
θ, ϑð Þ,

ð34Þ

where RM1M2
ðθ, ϑÞ is called the residual function/perturba-

tion term. By subtracting Equation (34) from Equation (20),
one gets

RM1M2
θ, ϑð Þ = C

0D
μ

ϑu θ, ϑð Þ−C
0D

μ
ϑuM1M2

θ, ϑð Þ
� �
+ p θ, ϑð Þ ∂u θ, ϑð Þ

∂θ
−
∂uM1M2

θ, ϑð Þ
∂θ

	 


+ q θ, ϑð Þ ∂3u θ, ϑð Þ
∂θ3

−
∂3uM1M2

θ, ϑð Þ
∂θ3

 !
:

ð35Þ

Suppose that pðθ, ϑÞ, qðθ, ϑÞ are continuous functions
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over J. By taking L2-norm on Equation (35), one has

RM1M2

�� ��
L2
≤ C

0D
μ

ϑu − C
0D

μ

ϑuM1M2

��� ���
L2
+ pk kL2

∂u
∂θ

−
∂uM1M2

∂θ

����
����
L2

+ qk kL2
∂3u
∂θ3

−
∂3uM1M2

∂θ3

�����
�����
L2

:

ð36Þ

First, error bounds are calculated for terms on the right-
hand side in (36). Assume that TM1M2

ðθ, ϑÞ is the Taylor

series expansion of uðθ, ϑÞ, Θ1 = max
ðθ,ϑÞ∈J

juðM1+M2−μÞðθ, ϑÞj,
and Jn1n2

= ½ðn1 − 1Þ/2k1−1, n1/2k1−1� × ½ðn2 − 1Þ/2k2−1, n2/
2k2−1�. One has,

So, one gets

C
0D

μ

ϑu − C
0D

μ

ϑuM1M2

��� ���
L2
≤

πΘ1
M1! M2 − μð Þ!2M1 k1−1ð Þ2M2 k2−1ð Þ23

:

ð38Þ

In a similar way, if Θ2,l = max
ðθ,ϑÞ∈J

juðM1+M2−lÞðθ, ϑÞj, l = 0, 1
, 2, 3, one has

C
0D

μ

ϑu − C
0D

μ

ϑuM1M2

��� ���2
L2
=
ð1
0

ð1
0
D

μ
ϑu θ, ϑð Þ − C

0D
μ

ϑuM1M2
θ, ϑð Þ

� �2
W θ, ϑð Þdϑ dθ

= 〠
2k1−1

n1=1
〠
2k2−1

n2=1

ðn1/2k1−1

n1−1ð Þ/2k1−1

ðn2/2k2−1

n2−1ð Þ/2k2−1
D

μ
ϑu θ, ϑð Þ − C

0D
μ

ϑuM1M2
θ, ϑð Þ

� �2
Wn1n2

θ, ϑð Þdϑ dθ

≤ 〠
2k1−1

n1=1
〠
2k2−1

n2=1

ðn1/2k1−1

n1−1ð Þ/2k1−1

ðn2/2k2−1

n2−1ð Þ/2k2−1
D

μ
ϑu θ, ϑð Þ − C

0D
μ

ϑTM1M2
θ, ϑð Þ

� �2
Wn1n2

θ, ϑð Þdϑ dθ

≤ 〠
2k1−1

n1=1
〠
2k2−1

n2=1

ðn1/2k1−1

n1−1ð Þ/2k1−1

ðn2/2k2−1

n2−1ð Þ/2k2−1

max
ξn1 ,ηn2ð Þ∈Jn1n2

u M1+M2−μð Þ ξn1
, ηn2

� ���� ���
M1! M2 − μð Þ!2M1 k1−1ð Þ2M2 k2−1ð Þ

0
BB@

1
CCA

2

Wn1n2
θ, ϑð Þdϑ dθ

≤
Θ1

M1! M2 − μð Þ!2M1 k1−1ð Þ2M2 k2−1ð Þ

	 
2ð1
0

ð1
0
W θ, ϑð Þ|fflfflfflffl{zfflfflfflffl}
ω θð Þω ϑð Þ

dϑ dθ

= Θ1
M1! M2 − μð Þ!2M1 k1−1ð Þ2M2 k2−1ð Þ

	 
2ð1
0
θ1/2 1 − θð Þ1/2dθ

ð1
0
ϑ1/2 1 − ϑð Þ1/2dϑ

= Θ1
M1! M2 − μð Þ!2M1 k1−1ð Þ2M2 k2−1ð Þ

	 
2 π

8
� �2

:

ð37Þ

∂lu
∂θl

−
∂luM1M2

∂θl

�����
�����
2

L2

=
ð1
0

ð1
0

∂lu θ, ϑð Þ
∂θl

−
∂luM1M2

θ, ϑð Þ
∂θl

 !2

W θ, ϑð Þdϑ dθ

= 〠
2k1−1

n1=1
〠
2k2−1

n2=1

ðn1/2k1−1

n1−1ð Þ/2k1−1

ðn2/2k2−1

n2−1ð Þ/2k2−1
∂lu θ, ϑð Þ

∂θl
−
∂luM1M2

θ, ϑð Þ
∂θl

 !2

Wn1n2
θ, ϑð Þdϑ dθ

≤ 〠
2k1−1

n1=1
〠
2k2−1

n2=1

ðn1/2k1−1

n1−1ð Þ/2k1−1

ðn2/2k2−1

n2−1ð Þ/2k2−1
∂lu θ, ϑð Þ

∂θl
−
∂lTM1M2

θ, ϑð Þ
∂θl

 !2

Wn1n2
θ, ϑð Þdϑ dθ

≤ 〠
2k1−1

n1=1
〠
2k2−1

n2=1

ðn1/2k1−1

n1−1ð Þ/2k1−1

ðn2/2k2−1

n2−1ð Þ/2k2−1

max
ξn1 ,ηn2ð Þ∈Jn1n2

u M1+M2−lð Þ ξn1
, ηn2

� ���� ���
M1 − lð Þ!M2!2M1 k1−1ð Þ2M2 k2−1ð Þ

0
BB@

1
CCA

2

Wn1n2
θ, ϑð Þdϑ dθ

≤
Θ2,l

M1 − lð Þ!M2!2M1 k1−1ð Þ2M2 k2−1ð Þ

	 
2 π

8
� �2

:

ð39Þ
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Thus, one gets

∂lu
∂θl

−
∂luM1M2

∂θl

�����
�����
L2

≤
πΘ2,l

M1 − lð Þ!M2!2M1 k1−1ð Þ2M2 k2−1ð Þ23
, l = 0, 1, 2, 3:

ð40Þ

Therefore, a bound is obtained for inequality (36) using
(37) and (39) as follows:

RM1M2

�� ��
L2

πΘ1
M1! M2 − μð Þ!2M1 k1−1ð Þ2M2 k2−1ð Þ23

+ pk kL2
πΘ2,1

M1 − 1ð Þ!M2!2M1 k1−1ð Þ2M2 k2−1ð Þ23

+ qk kL2
πΘ2,3

M1 − 3ð Þ!M2!2M1 k1−1ð Þ2M2 k2−1ð Þ23
:

ð41Þ

It is evident from the right-hand side of (40) that
kRM1M2

k
L2
⟶ 0 when M1,M2 ⟶∞.

4.2. Time-Fractional Nonlinear KdV Equation. Consider
Equation (32) and suppose that uM1M2

ðθ, ϑÞ is its approxi-
mate solution obtained from the proposed method. Thus,
uM1M2

ðθ, ϑÞ satisfies the following equation:

C
0D

μ

ϑuM1M2
θ, ϑð Þ + 6uM1M2

θ, ϑð Þ ∂uM1M2
θ, ϑð Þ

∂θ

+
∂3uM1M2

θ, ϑð Þ
∂θ3

= −RM1M2
θ, ϑð Þ:

ð42Þ

Subtracting Equation (41) from (32) leads to the

Table 1: Maximum absolute errors for μ = 1 and different values of M1,M2 for Example 1.

M1 =M2 2 3 4 5

MAE 5:2885 × 10−3 7:0306 × 10−4 2:3882 × 10−5 2:0614 × 10−6

Table 2: Absolute errors for k1 = k2 = 1,M1 =M2 = 4 at equally spaced points for Example 1.

θi = ϑi μ = 0:7 μ = 0:8 μ = 0:9 μ = 1
0 4:8935 × 10−7 5:4663 × 10−7 4:4250 × 10−7 1:4522 × 10−11

0.2 6:1889 × 10−7 6:0321 × 10−7 4:6254 × 10−7 1:2627 × 10−7

0.4 8:5473 × 10−7 8:0229 × 10−7 7:3242 × 10−7 6:8164 × 10−7

0.6 5:8306 × 10−6 5:6182 × 10−6 3:6174 × 10−6 1:1872 × 10−6

0.8 1:7757 × 10−5 1:6597 × 10−5 1:0738 × 10−5 1:7657 × 10−6

1 9:7134 × 10−5 7:8075 × 10−5 3:3765 × 10−5 2:3881 × 10−5

9

8

7

6

5

0 0.2 0.4 0.6 0.8 1

x

𝜇 = 0.7
𝜇 = 0.8
𝜇 = 0.9

Exact solution
𝜇 = 1

Figure 1: Exact and approximate solutions for k1 = k2 = 1,M1 =M2 = 4, and μ = 0:7, 0:8, 0:9, 1 at time ϑ = 3 for Example 1.
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following equation:

RM1M2
θ, ϑð Þ = C

0D
μ
ϑu θ, ϑð Þ − C

0D
μ
ϑuM1M2

θ, ϑð Þ
� �
+ 6 u θ, ϑð Þ ∂u θ, ϑð Þ

∂θ
− uM1M2

θ, ϑð Þ ∂uM1M2
θ, ϑð Þ

∂θ

	 


+ ∂3u θ, ϑð Þ
∂θ3

−
∂3uM1M2

θ, ϑð Þ
∂θ3

 !
:

ð43Þ

The nonlinear term uuθ − uM1M2
uθM1M2

can be written
as

uuθ − uM1M2
uθM1M2

= u − uM1M2

� �
uθ

+ uθ − uθM1M2

� �
uM1M2

= u − uM1M2

� �
uθ − uθM1M2

+ uθM1M2

� �
+ uθ − uθM1M2

� �
uM1M2

= u − uM1M2

� �
uθ − uθM1M2

� �
+ u − uM1M2

� �
uθM1M2

+ uθ − uθM1M2

� �
uM1M2

:

ð44Þ

Now, using bounds obtained in the previous section, an
error bound of (42) can be calculated as follows:

RM1M2

�� ��
L2

πΘ1
M1! M2 − μð Þ!2M1 k1−1ð Þ2M2 k2−1ð Þ23

+ 6 πΘ2,0
M1!M2!2M1 k1−1ð Þ2M2 k2−1ð Þ23
�

× πΘ2,1
M1 − 1ð Þ!M2!2M1 k1−1ð Þ2M2 k2−1ð Þ23

+ uθM1M2

��� ���
L2

	 


+
πΘ2,1 uM1M2

�� ��
L2

M1 − 1ð Þ!M2!2M1 k1−1ð Þ2M2 k2−1ð Þ23

#

+
πΘ2,3 uM1M2

�� ��
L2

M1 − 3ð Þ!M2!2M1 k1−1ð Þ2M2 k2−1ð Þ23
:

ð45Þ

Obviously, the right-hand side of (44) tends to zero,
when M1,M2 are sufficiently large.
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0 0

0.4 0.4
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0.50

0.48
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0.44

0.42

0.40
0 0

0.4 0.4

(b)
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0.4 0.4
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5. × 10–6
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1. × 10–6

(c)

Figure 2: (a) Exact solution, (b) approximate solution, and (c) absolute error function for k1 = k2 = 1,M1 =M2 = 5, and μ = 1 for Example 2.
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5. Numerical Examples

The two models given in Section 3 are considered to illus-
trate the accuracy and applicability of the proposed scheme.
Maximum absolute errors are computed when the derivative
order is an integer (classical case). The results are compared
to the exact ones. Computations and simulations are han-
dled by Maple 16.

Example 1. As a first example, the following linear inhomo-
geneous time-fractional KdV equation:

C
0D

μ

ϑu θ, ϑð Þ + ∂u θ, ϑð Þ
∂θ

+ ∂3u θ, ϑð Þ
∂θ3

= 2ϑ2−μ
Γ 3 − μð Þ cos θð Þ, θ, ϑð Þ ∈ J, μ ∈ 0, 1ð �,

ð46Þ

subject to the initial and boundary conditions:

u θ, 0ð Þ = 0, u 0, ϑð Þ = 0, ∂u 0, ϑð Þ
∂θ

= 0, ∂
2u 0, ϑð Þ
∂θ2

= 0: ð47Þ

The exact solution is uðθ, ϑÞ = ϑ2 cos ðθÞ, if μ = 1. Maxi-
mum absolute errors (MAE) are listed in Table 1 for μ = 1,
k1 = k2 = 1,M1 =M2 = 2, 3, 4, 5. As seen, the errors decrease
when M1,M2 increase. Values of absolute errors of the
exact and numerical solutions, at equally spaced points θi
= ϑj = 0:2i, i = 0, 1,⋯, 5, are seen in Table 2 for k1 = k2 = 1,
M1 =M2 = 4, μ = 0:7,0:8,0:9,1. The results have more accu-
racy as μ⟶ 1. Plots of numerical solutions are depicted
in Figure 1 for k1 = k2 = 1,M1 =M2 = 4, μ = 0:7,0:8,0:9,1,
and ϑ = 3. It can be found that the approximate solutions
approach the exact one when μ⟶ 1.

Example 2. Consider the time-fractional nonlinear KdV
equation as follows:

C
0D

μ

ϑu θ, ϑð Þ + 6u θ, ϑð Þ ∂u θ, ϑð Þ
∂θ

+ ∂3u θ, ϑð Þ
∂θ3

= 0, θ, ϑð Þ ∈ J, μ ∈ 0, 1ð �,

ð48Þ

0 0.2 0.4 0.6 0.8 1

0.49

0.48

0.47

0.46

x

𝜇 = 0.3
𝜇 = 0.5
𝜇 = 0.7

𝜇 = 0.9

Exact solution
𝜇 = 1

Figure 3: Exact and approximate solutions for k1 = k2 = 1,M1 =M2 = 6, and μ = 0:3, 0:5, 0:7, 0:9, 1 at time ϑ = 0:45 for Example 2.

Table 3: Absolute errors for k1 = k2 = 1,M1 =M2 = 6 at equally spaced points for Example 2.

θi = ϑi μ = 0:3 μ = 0:5 μ = 0:7 μ = 0:9 μ = 1
0 6:6378 × 10−8 6:8466 × 10−8 5:5505 × 10−8 2:4525 × 10−8 1:3170 × 10−9

0.2 8:6724 × 10−5 6:7852 × 10−5 4:4262 × 10−5 1:5860 × 10−5 3:1335 × 10−9

0.4 6:5214 × 10−4 5:1748 × 10−4 3:4307 × 10−4 1:2522 × 10−4 3:7353 × 10−10

0.6 2:0195 × 10−3 1:6274 × 10−3 1:0975 × 10−3 4:0827 × 10−4 1:2169 × 10−8

0.8 4:2767 × 10−3 3:5051 × 10−3 2:4073 × 10−3 9:1284 × 10−4 3:0611 × 10−8

1 7:2448 × 10−3 6:0506 × 10−3 4:2372 × 10−3 1:6379 × 10−3 4:9306 × 10−8
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with

u θ, 0ð Þ = 1
2 sec h2 θ

2

	 

, u 0, ϑð Þ = 1

2 sec h2 ϑ

2

	 

, ∂u 0, ϑð Þ

∂θ
= 1
2 sec h2 ϑ

2

	 

tanh ϑ

2

	 

,

∂2u 0, ϑð Þ
∂θ2

= 1
2 sec h2 ϑ

2

	 

tanh2 ϑ

2

	 

+ 1
2 sec h2 ϑ

2

	 

−
1
2 + 1

2 tanh2 ϑ

2

	 
	 

:

ð49Þ

The exact solution is uðθ, ϑÞ = ð1/2Þ sec h2ðθ/2 − ϑ/2Þ, if
μ = 1. Plots of exact and approximate solutions and the abso-
lute error function are depicted in Figure 2 for k1 = k2 = 1,
M1 =M2 = 5, and μ = 1. A graphical comparison between
exact and approximate solutions is observed in Figure 3 for
k1 = k2 = 1 ;M1 =M2 = 4; μ = 0:3,0:5,0:7,0:9,1; and ϑ = 0:45.
It can be found that the approximate solutions approach
the exact one when μ⟶ 1. Values of absolute errors are
listed in Table 3 for M1 =M2 = 6 ; μ = 0:3,0:5,0:7,0:9,1; and
θi = ϑi = 0:2i, i = 0, 1,⋯, 5. It can be seen from Figure 3 and
Table 3 that the approximate solutions approach the exact
one when μ⟶ 1.

6. Conclusion

In this paper, the second-kind Chebyshev wavelets were
employed to solve time-fractional inhomogeneous KdV
and time-fractional nonlinear KdV equations. Using the pre-
sented scheme, the main problem was converted into a sys-
tem of algebraic equations wherein obtaining its solution is
easier than finding the solution of the problem under study.
In comparison with the Adomian decomposition, homotopy
analysis, and homotopy perturbation methods, the SKCW
method possesses fewer computational costs. The few num-
bers of the basis functions lead to an approximate solution
with appropriate accuracy. As seen from Table 1, by increas-
ing values of Mi, i = 1, 2, the maximum absolute errors
decrease. In Tables 2 and 3, values of absolute errors at
equally spaced points decrease as μ⟶ 1; then, approximate
solutions are getting close to exact ones. This can be seen in
Figures 1 and 3. It was seen from illustrative examples that
the method is an efficient numerical scheme to find an
approximate solution for linear or nonlinear PDEs. The
authors intend to test the proposed approach on other non-
linear fractional partial differential equations such as New-
ell–Whitehead–Segel and Phi-four.
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