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Decision-making is a complex issue due to the vague, imprecise, and indeterminate environment especially when attributes are
more than one and further bifurcated. To solve such types of problems, the concept of neutrosophic hypersoft set is proposed by
Smaranndache. In this paper, the primary focus is to extend the concept of neutrosophic hypersoft sets (NHSs) to the neu-
trosophic hypersoft matrices (NHSMs) with the essential study of matrices with suitable examples. �en, the analytical study of
some common operations for NHSM has been created. Lastly, decision-making issues have been presented by establishing a new
algorithm based on a score function, and it has been interpreted with the help of numerical example for the selection of teachers at
the college level. In this study, NHSM algorithm is elaborated e�ciently and conveniently for optimal choice selection to solve
decision-making problems.

1. Introduction

In decision-making, among the multiattributive and mul-
tiobjective problems, in uncertain and vague environments,
it is di�cult to di�erentiate valid from invalid and logical
from illogical. In these cases, decision makers get more
confused and uncertain. Zadeh developed fuzzy sets [1] to
deal with such type of information. Another issue in in-
formation is vagueness. Likewise, it is the type of uncertainty
where the investigators cannot’ separate between two unique
things, and to deal with vagueness, intuitionistic fuzzy sets
[2] are used. Later, Molodtsov [3] presents soft sets to
manage uncertainties and vagueness, and this research was
e�ectively applied in numerous applications such as game
theory, activity research, and probability [4]. Maji et al. [5, 6]
exhibited a logical study of the soft sets, which incorporates
every essential operators and property. �e study was ex-
tended to fuzzy soft set [7] and intuitionistic softsets [8] to
deal uncertainity and vagueness. As a result, Smarandache

[9, 10] has presented the idea of neutrosophic sets, which is a
generalization of the crisp set, fuzzy set, and intuitionistic
fuzzy set.

In any case, from the philosophical perspective, truth-
ness, indeterminacy, and falsity of neutrosophic set always
lies in [0,1]. Maji [11] has extended the concept of a soft set
to neutrosophic soft set. �e matrix representation and
aggregate operators of this idea were presented by Deli and
Broumi in [12]. Multicriteria decision-making MCDM
problems were solved by utilizing a neutrosophic soft set,
and many mathematicians have proposed their examination
work in various scienti¡c ¡elds by proposing TOPSIS,
VIKOR, etc. techniques, and this idea is likewise utilized in
advancing decision-making theories along with application
in the neutrosophic environment [13–17]. Akram et al.
[18–20] established group decision-making methods based
on hesitant N-soft sets, Pythagorean fuzzy TOPSIS, and
ELECTRIC I method in Pythagorean fuzzy information.
Garg [21, 22] had carried out lot of work related to decision-
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making problems using different tools relating to fuzzy,
intuitionistic, and neutrosophic theories. Mehmood et al.
[23, 24] used bipolar soft sets and spherical fuzzy sets for
decision-making problems. Sabbir and Naz [25] also worked
on bipolar soft sets.

Smarandache [26] displayed another strategy to manage
uncertainty by providing the extension of the soft set to the
hypersoft set and its hybrids, such as a fuzzy hypersoft set,
intuitionistic hypersoft set, and neutrosophic hypersoft set,
by changing the function into a multiargument function.

1.1. Motivation

(1) Multicriteria decision problems (MCDM) consist of
several attributes and indeterminacy. To deal with
such types, neutrosophic sets (NSs) are used because
(NSs) fully deal with indeterminacy, whereas to deal
with vagueness and uncertainty, neutrosophic soft
sets (NS’s) are used. However, when attributes are
more than one and further bifurcated, the concept of
neutrosophic soft set (NSs) cannot be used to tackle
such issues. +ere was a dire need to define the new
environment. For this purpose, the concept of
neutrosophic hypersoft set (NHSS) was proposed by
[27]. Matrices are more reliable, logical, and practical
for the decision makers and play an important role in
understanding, modeling, and solving the MCDM
problems.

(2) how MCDM problems can be represented in the
matrices’ form consisting of more than one attribute,
which is further bifurcated? +e answer to this
question leads us to develop the matrix theory by
combining the concept of NHSS and soft matrix
theory and, hence, the motivation of the present
study.

(3) In this exploration, the primary focus is to extend the
neutrosophic hypersoft set (NHSS) concept to the
neutrosophic hypersoft matrices (NHSM) by the
essential study of matrices. +is study helps us apply
all the definitions, operators, and properties of
matrices to NHSS and decision-making problems,
especially when attributes are more than one and
further subdivided.

Section 1 contains an introduction about soft set, neu-
trosophic soft set, hypersoft set, and neutrosophic hypersoft
sets. Section 2 deals with mathematical preliminaries, which
will be used in the rest of the paper. In Section 3 the concept
of NHSM has been discussed broadly with definitions and
suitable examples. In Section 4 basic operators of NHSM are
proposed along with their properties. In Section 5, a deci-
sion-making algorithm has been developed with the help of
score function and it is applied in the selection for the hiring
of teachers. +is algorithm is briefer and more accurate
rather than others, and Section 6 contains some comparison
in Table 7 with the existing techniques of Hashmi et al. [28],
and finally, we will discuss the conclusion of the research
paper.

2. Preliminaries

In this section, we present some definitions which will help
understand the rest of the article.

2.1. Soft Set [6]. LetU be the universal set andE be the set of
attributes with respect toU. LetP(U) be the power set ofU
and A⊆E. A pair (F,A) is called a soft set over U, and its
mapping is given as

F: A⟶ P(U). (1)

It is also defined as

(F,A) �
F(e) ∈ P(U)

e ∈ E,F(e) � ∅ if e≠A
 . (2)

2.2.Neutrosophic Soft Set [11]. LetU be the universal set and
E be the set of attributes with respect toU. LetP(U) be the
set of neutrosophic values ofU andA⊆E. A pair (F,A) is
called a neutrosophic soft set over U, and its mapping is
given as

F: A⟶ P(U). (3)

2.3. Hypersoft Set [21]. Let U be the universal set and
P(U)be the power set of U. Consider ℓ1, ℓ2, ℓ3, . . . , ℓn, for
n≥ 1, and let n be well-defined attributes, whose corre-
sponding attributive values are, respectively, the set
L1,L2,L3, . . . ,Ln with Li ∩Lj � ∅, for i≠ j and
i, j ε 1, 2, 3, . . . , n{ }; then, the pair (F,L1 × L2×

L3, . . . ,Ln) is said to be hypersoft set over U, where

F: L
1

× L
2

× L
3
, . . . ,L

n⟶ P(U). (4)

2.4. Neutrosophic Hypersoft Set [23]. Let U be the universal
set and P(U) be the power set of U. Consider
ℓ1, ℓ2, ℓ3, . . . , ℓn, for n≥ 1; let n be well-defined attributes,
whose corresponding attributive values are, respectively, the
set L1,L2,L3, . . . ,Ln with Li ∩Lj � ∅, for i≠ j and
i, j ε 1, 2, 3, . . . , n{ }, and their relation
L1 × L2 × L3, . . . ,Ln � S; then, the pair (F,S) is said to
be neutrosophic hypersoft set (NHSS) over U, where

F: L
1

× L
2

× L
3

. . . ,L
n⟶ P(U),

F L
1

× L
2

× L
3
, . . . ,L

n
 

� 〈x,T(F(S)),I(F(S)),F(F(S))〉, x ∈ U{ },

(5)

where T is the membership value of truthiness, J is the
membership value of indeterminacy, and F is the mem-
bership value of falsity such thatT,J,F: U⟶ [0, 1] also
0≤T(F(S)) + J(F(S)) + F(F(S))≤ 3.
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3. Neutrosophic Hypersoft Matrix (NHSM)

In this section, we have introduced some definition with
suitable examples.

3.1. NHSM. Let U � u1, u2, . . . , uα  and P(U) be the
universal set and power set of universal set, respectively; also,
consider L1,L2, . . . ,Lβ, for β≥ 1, where β is well-defined
attributes, whose corresponding attributive values are, re-
spectively, the set La

1 ,Lb
2, . . . ,Lz

β and their relation
La

1 × Lb
2 × · · · × Lz

β, where a, b, c, . . . , z � 1, 2, . . . , n; then,
the pair (F,La

1 × Lb
2 × · · · × Lz

β) is said to be neutrosophic
hypersoft set over U, where F: (La

1 × Lb
2 × · · · × Lz

β)

⟶ P(U) and it is defined as F(La
1 × Lb

2 × · · · × Lz
β) �

〈u, TL(u), IL(u), FL(u)〉u ∈ U,L ∈ (La
1 × Lb

2 × · · · ×

Lz
β)}. Table 1 represents the tabular form of NHSS RL.
If Oij � XRL

(ui,Lk
j ), where i � 1, 2, 3, . . . ,

α, j � 1, 2, 3, . . . , β, and k � a, b, c, . . . , z, then a matrix is
defined as

Oij α×β �

O11 O12 . . . O1β

O21 O22 . . . O2β

⋮ ⋮ ⋱ ⋮

Oα1 Oα2 . . . Oαβ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6)

where Oij � (TLk
j
(ui), ILk

j
(ui), FLk

j
(ui), ui ∈ U, ,Lk

j

∈ (La
1 × Lb

2 × · · · × Lz
β)) � (To

ijk,Jo
ijk,Fo

ijk).
+us, we can represent any neutrosophic hypersoft set in

terms of a neutrosophic hypersoft matrix (NHSM), and it
means that they are interchangeable.

Example 1. Teachers’ recruitment problem (TRP) is the
most complex and absurd task. +ere is no fixed and fab-
ricated design to know their subject knowledge or peda-
gogical skills. +erefore, decision makers find themselves in
a blind alley. Consequently, based on their own knowledge
and experience, they select a person who does not meet the
institutional requirement. +us, TRP is typically a multi-
criteria decision-making MCDM problem.

Assumptions:

(i) Independent attributes are considered
(ii) Everyone attends the interview
(iii) Hesitant environment is not yet considered

Formulation of the Problem. Let us consider an institute that
wants to hire a teacher appropriate to its requirements, and
they received the following statistics-based CVs. LetU be the
set of candidates for the teaching at the college level:

U � T
1
,T

2
,T

3
,T

4
,T

5
 . (7)

Also, consider the set of attributes as

A1 � Qualification,

A2 � Experience,

A3 � Gender,

A4 � Publications.

(8)

Parameters:

(i) Ti � universal set of teachers, where i � 1, 2, 3, 4, 5
(ii) Ai � attributes, where i � 1, 2, 3, 4 that are further

categorized into the following:
(iii) Aa

1 � qualification
(iv) Aa

1 � BSHons.,MS/Mphill,Phd,PostDoctorate 

(v) Ab
2 � experience � 5yr, 8yr, 10yr, 15yr 

(vi) Ac
3 � gender � Male, Female{ }

(vii) Ad
4 � publications � 3, 5, 8, 10+{ }

Let the function be F: Aa
1 × Ab

2 × Ac
3 × Ad

4⟶ P(U)

Below are Tables 2–5 of their neutrosophic values
assigned by different decision makers.

+e neutrosophic hypersoft set is defined as

F: A
a
1 × A

b
2 × A

c
3 × A

d
4 ⟶ P(U). (9)

Let us assume

F A
a
1 × A

b
2 × A

c
3 × A

d
4  � F(Mphill, 5yr,male, 3) � T

1
,T

2
,T

4
,T

5
 ,

F A
a
1 × A

b
2 × A

c
3 × A

d
4  � F(Mphill, 5yr,male, 3)

� ≪T1
, (Mphill 0.5, 0.3, 0.6{ }, 5yr 0.3, 0.4, 0.7{ },male 0.5, 0.6, 0.9{ }, 3 0.6, 0.4, 0.5{ })≫ ,

≪T2
, (Mphill 0.3, 0.2, 0.1{ }, 5yr 0.6, 0.5, 0.3{ },male 0.7, 0.8, 0.3{ }, 3 0.7, 0.5, 0.3{ })≫ ,

≪T4
(Mphill 0.7, 0.3, 0.6{ }, 5yr 0.6, 0.4, 0.8{ },male 0.8, 0.5, 0.4{ }, 3 0.6, 0.2, 0.1{ })≫ ,

≪T5
(Mphill 0.5, 0.4, 0.5{ }, 5yr 0.3, 0.6, 0.7{ },male 0.9, 0.2, 0.1{ }, 3 0.4, 0.5, 0.3{ })≫ ,.

(10)

+en, a neutrosophic hypersoft set of above-assumed
relation in the tabular form is represented in Table 6.

And, its matrix is defined as
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[O]4×4 �

(Mphill, (0.5, 0.3, 0.6)) (5yr, (0.3, 0.4, 0.7)) (male, (0.5, 0.6, 0.9)) (3, (0.6, 0.4, 0.5))

(Mphill, (0.3, 0.2, 0.1)) (5yr, (0.6, 0.5, 0.3)) (male, (0.7, 0.8, 0.3)) (3, (0.7, 0.5, 0.3))

(Mphill, (0.7, 0.3, 0.6)) (5yr, (0.6, 0.4, 0.8)) (male, (0.8, 0.5, 0.4)) (3, (0.6, 0.2, 0.1))

(Mphill, (0.5, 0.4, 0.5)) (5yr, (0.3, 0.6, 0.7)) (male, (0.9, 0.2, 0.1)) (3, (0.4, 0.5, 0.3))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

Table 1: Matrix representation of NHSS.

La
1 Lb

2 . . . Lz
β

u1 XRL
(u1,La

1) XRL
(u1,Lb

2) . . . XRL
(u1,Lz

β)

u2 XRL
(u2,La

1) XRL
(u2,Lb

2) . . . XRL
(u2,Lz

β)

⋮ ⋮ ⋮ ⋱ ⋮
uα XRL

(uα,La
1) XRL

(uα,Lb
2) . . . XRL

(uα,Lz
β)

Table 2: Decision makers will assign neutrosophic numbers to each candidate Ti against qualification.

Aa
1(qualification) T1 T2 T3 T4 T5

BS Hons. (0.4,0.5,0.8) (0.7,0.6,0.4) (0.4,0.5,0.7) (0.5,0.3,0.7) (0.5,0.3,0.8)
MS/MPhil. (0.5,0.3,0.6) (0.3,0.2,0.1) (0.3,0.6,0.2) (0.7,0.3,0.6) (0.5,0.4,0.5)
Ph.D. (0.8,0.2,0.4) (0.9,0.5,0.3) (0.9,0.4,0.1) (0.6,0.3,0.2) (0.6,0.1,0.2)
Post doctorate (0.9,0.3,0.1) (0.5,0.2,0.1) (0.8,0.5,0.2) (0.8,0.2,0.1) (0.7,0.4,0.2)

Table 3: Decision makers will assign neutrosophic numbers to each candidate Ti against experience.

Ab
2(experience) T1 T2 T3 T4 T5

5 yr. (0.3,0.4,0.7) (0.6,0.5,0.3) (0.5,0.6,0.8) (0.6,0.4,0.8) (0.3,0.6,0.7)
8 yr. (0.4,0.2,0.5) (0.8,0.1,0.2) (0.4,0.7,0.3) (0.4,0.8,0.7) (0.7,0.5,0.6)
10 yr. (0.7,0.2,0.3) (0.9,0.3,0.1) (0.8,0.3,0.2) (0.5,0.4,0.3) (0.5,0.2,0.1)
15 yr. (0.8,0.2,0.1) (0.6,0.4,0.3) (0.9,0.4,0.1) (0.6,0.2,0.3) (0.5,0.3,0.2)

Table 4: Decision makers will assign neutrosophic numbers to each candidate Ti against gender.

Ac
3(Gen de r) T1 T2 T3 T4 T5

Male (0.5, 0.6, 0.9) (0.7, 0.8, 0.3) (0.6, 0.4, 0.3) (0.8, 0.5, 0.4) (0.9, 0.2, 0.1)
Female (0.6, 0.4, 0.7) (0.3, 0.6, 0.4) (0.8, 0.2, 0.1) (0.4, 0.5, 0.6) (0.8, 0.4, 0.2)

Table 5: Decision makers will assign neutrosophic numbers to each candidate Ti against publication.

Ad
4(publication) z T1 T2 T3 T4 T5

3 — (0.6, 0.4, 0.5) (0.7, 0.5, 0.3) (0.6, 0.4, 0.3) (0.6, 0.2, 0.1) (0.4, 0.5, 0.3)
5 — (0.8, 0.2, 0.4) (0.7, 0.3, 0.2) (0.8, 0.3, 0.1) (0.3, 0.4, 0.5) (0.3, 0.5, 0.8)
8 — (0.5, 0.3, 0.4) (0.6, 0.3, 0.4) (0.5, 0.7, 0.2) (0.8, 0.4, 0.1) (0.7, 0.4, 0.3)
10+ — (0.4, 0.9, 0.6) (0.8, 0.4, 0.2) (0.2, 0.6, 0.5) (0.7, 0.5, 0.2) (0.6, 0.4, 0.7)

Table 6: +e tabular form of the above relation.

Aa
1 Ab

2 Ac
3 Ad

4

T1 (Mphill, (0.5, 0.3, 0.6)) (5yr, (0.3, 0.4, 0.7)) (male, (0.5, 0.6, 0.9)) (3, (0.6, 0.4, 0.5))

T2 (Mphill, (0.3, 0.2, 0.1)) (5yr, (0.6, 0.5, 0.3)) (male, (0.7, 0.8, 0.3)) (3, (0.7, 0.5, 0.3))

T4 (Mphill, (0.7, 0.3, 0.6)) (5yr, (0.6, 0.4, 0.8)) (male, (0.8, 0.5, 0.4)) (3, (0.6, 0.2, 0.1))

T5 (Mphill, (0.5, 0.4, 0.5)) (5yr, (0.3, 0.6, 0.7)) (male, (0.9, 0.2, 0.1)) (3, (0.4, 0.5, 0.3))
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3.2. Square NHSM. Let O � [Oij] be the NHSM of order
α × β, where Oij � (To

ijk,Jo
ijk,Fo

ijk). +en, O is said to be
square NHSM if α � β. It means that if an NHSM has the
same number of rows (attributes) and columns (alterna-
tives), it is a square NHSM.

Example 2. Above defined Example 1 is also the example of
square NHSM.

3.3. Transpose of Square NHSM. Let O � [Oij] be the square
NHSM of order α × β, where Oij � (To

ijk,Jo
ijk,Fo

ijk); then,

Ot is said to be transpose of square NHSM if rows and
columns of O are interchanged. It is denoted as

O
t

� Oij 
t

� T
o
ijk,J

o
ijk,F

o
ijk 

t
� T

o
jki,J

o
jki,F

o
jki  � Oji .

(12)

Example 3. Transpose of the matrix define in Example 1 is
given as

[O]
t
4×4 �

(Mphill, (0.5, 0.3, 0.6)) (Mphill, (0.3, 0.2, 0.1)) (Mphill, (0.7, 0.3, 0.6)) (Mphill, (0.5, 0.4, 0.5))

(5yr, (0.3, 0.4, 0.7)) (5yr, (0.6, 0.5, 0.3)) (5yr, (0.6, 0.4, 0.8)) (5yr, (0.3, 0.6, 0.7))

(male, (0.5, 0.6, 0.9)) (male, (0.7, 0.8, 0.3)) (male, (0.8, 0.5, 0.4)) (male, (0.9, 0.2, 0.1))

(3, (0.6, 0.4, 0.5)) (3, (0.7, 0.5, 0.3)) (3, (0.6, 0.2, 0.1)) (3, (0.4, 0.5, 0.3))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

3.4. Symmetric NHSM. Let O � [Oij] be the square NHSM
of order α × β, where Oij � (To

ijk,Jo
ijk,Fo

ijk); then, O is said
to be symmetric NHSM if Ot � O, i.e., (To

ijk,Jo
ijk,

Fo
ijk) � (To

jki,J
o
jki,F

o
jki).

3.5. Scalar Multiplication of NHSM. Let O � [Oij] be the
NHSM of order α × β, where Oij � (To

ijk,Jo
ijk,Fo

ijk) and s

be any scalar then the product of matrix O and a scalar s is a
matrix formed by multiplying each element of matrix O by s.
It is denoted as sO � [sOij], where 0≤ s≤ 1.

Example 4. Let us consider a NHSM [O]4×4:

[O]4×4 �

(Mphill, (0.5, 0.3, 0.6)) (5yr, (0.3, 0.4, 0.7)) (male, (0.5, 0.6, 0.9)) (3, (0.6, 0.4, 0.5))

(Mphill, (0.3, 0.2, 0.1)) (5yr, (0.6, 0.5, 0.3)) (male, (0.7, 0.8, 0.3)) (3, (0.7, 0.5, 0.3))

(Mphill, (0.7, 0.3, 0.6)) (5yr, (0.6, 0.4, 0.8)) (male, (0.8, 0.5, 0.4)) (3, (0.6, 0.2, 0.1))

(Mphill, (0.5, 0.4, 0.5)) (5yr, (0.3, 0.6, 0.7)) (male, (0.9, 0.2, 0.1)) (3, (0.4, 0.5, 0.3))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

And, 0.1 is the scalar; then, scalar multiplication of
NHSM [O]4×4 is given as

[(0.1)O]4×4 �

(Mphill, (0.05, 0.03, 0.06)) (5yr, (0.03, 0.04, 0.07)) (male, (0.05, 0.06, 0.09)) (3, (0.06, 0.04, 0.05))

(Mphill, (0.03, 0.02, 0.01)) (5yr, (0.06, 0.05, 0.03)) (male, (0.07, 0.08, 0.03)) (3, (0.07, 0.05, 0.03))

(Mphill, (0.07, 0.03, 0.06)) (5yr, (0.06, 0.04, 0.08)) (male, (0.08, 0.05, 0.04)) (3, (0.06, 0.02, 0.01))

(Mphill, (0.05, 0.04, 0.05)) (5yr, (0.03, 0.06, 0.07)) (male, (0.09, 0.02, 0.01)) (3, (0.04, 0.05, 0.03))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(15)

Proposition 1. Let O � [Oij] and M � [Mij] be two
NHSM, where Oij � (To

ijk,Jo
ijk,Fo

ijk) and Mij � (TM
ijk,

JM
ijk,FM

ijk).

For two scalars s, t ∈ [0, 1], then

(i) s(tO) � (st)O

(ii) If s< t, then sO< tO

(iii) If O⊆M, then sO⊆sM

Proof

(i) s(tO) � s[tOij] � s[(tTo
ijk, tJo

ijk, tFo
ijk)] �

[(stTo
ijk, stJo

ijk, stFo
ijk)] � st[(To

ijk,Jo
ijk,Fo

ijk)] �

st[Oij] � (st)O

(ii) Since To
ijk,Jo

ijk,Fo
ijk ∈ [0, 1], so sTo

ijk ≤ tTo
ijk,

sJo
ijk ≤ tJo

ijk, sFo
ijk ≤ tFo

ijk

(iii) Now, sO � [sOij] � [(sTo
ijk, sJo

ijk, sFo
ijk)]≤

[(tTo
ijk, tJo

ijk, tFo
ijk)] � [tOij] � tO
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(iv) O⊆M⇒ [Oij]⊆ [Mij]

⇒To
ijk ≤T

M
ijk,J

o
ijk ≤J

M
ijk,F

o
ijk ≥F

M
ijk

⇒sT
o
ijk ≤ sT

M
ijk, sJ

o
ijk ≤ sJ

M
ijk, sF

o
ijk ≥ sF

M
ijk

⇒s Oij ⊆ s Mij 

⇒sO⊆ sM.

(16)

□

Theorem 1. Let O � [Oij] be the NHSM of order α × β,
where Oij � (To

ijk,Jo
ijk,Fo

ijk). 8en,

(i) (sO)t � sOt, where s ∈ [0, 1]

(ii) (Ot)t � O

(iii) If O � [Oij] is the upper triangular NHSM, then Ot is
lower triangular NHSM and vice versa

Proof

(i) Here, (sO)t, sOt ∈ NHSMα×β, so

(sO)
t

� sT
o
ijk, sJ

o
ijk, sF

o
ijk  

t

� sT
o
jki, sJ

o
jki, sF

o
jki  

� s T
o
jki,J

o
jki,F

o
jki  

� s T
o
ijk,J

o
ijk,F

o
ijk  

t
� sO

t
.

(17)

(ii) Since Ot ∈ NHSMα×β, so (Ot)t ∈ NHSMα×β. Now,

O
t

 
t

� T
o
ijk,J

o
ijk,F

o
ijk  

t
 

t

� T
o
jki,J

o
jki,F

o
jki   

t

� T
o
ijk,J

o
ijk,F

o
ijk   � O.

(18)

(iii) proved with the help of example. □

3.6. Trace of NHSM. Let O � [Oij] be the square NHSM of
order α × β, where Oij � (To

ijk,Jo
ijk,Fo

ijk) and α � β. +en,
trace of NHSM is denoted as tr(O) and is defined as
tr(O) � 

α,z
i�1,k�a[To

iik − (Jo
iik + Fo

iik)].

Example 5. Let us consider a NHSM [O]4×4:

[O]4×4 �

(Mphill, (0.5, 0.3, 0.6)) (5yr, (0.3, 0.4, 0.7)) (male, (0.5, 0.6, 0.9)) (3, (0.6, 0.4, 0.5))

(Mphill, (0.3, 0.2, 0.1)) (5yr, (0.6, 0.5, 0.3)) (male, (0.7, 0.8, 0.3)) (3, (0.7, 0.5, 0.3))

(Mphill, (0.7, 0.3, 0.6)) (5yr, (0.6, 0.4, 0.8)) (male, (0.8, 0.5, 0.4)) (3, (0.6, 0.2, 0.1))

(Mphill, (0.5, 0.4, 0.5)) (5yr, (0.3, 0.6, 0.7)) (male, (0.9, 0.2, 0.1)) (3, (0.4, 0.5, 0.3))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

+en, tr(O) � (0.5 − 0.3 − 0.6) + (0.6 − 0.5 − 0.3)

+(0.8 − 0.5 − 0.4) + (0.4 − 0.5 − 0.3) � − 1.1.
Proposition 2. Let O � [Oij] be the square NHSM of order
α × β, where Oij � (To

ijk,Jo
ijk,Fo

ijk) andα � β. s be any
scalar then tr(sO) � str(O).

Proof.

tr(sO) � 
α,z

i�1,k�a

sT
o
iik − sJ

o
iik + sF

o
iik(   � s 

α,z

i�1,k�a

T
o
iik − J

o
iik + F

o
iik(   � str(O). (20)

□

6 Journal of Mathematics



3.7. Max-Min Product of NHSM. Let O � [Oij] and M �

[Mjm] be two NHSM, where Oij � (To
ijk,Jo

ijk,Fo
ijk) and

Mjm � (TM
jkm,JM

jkm,FM
jkm). +en, O and M are said to be

conformable if their dimensions are equal to each other
(number of columns of O is equal to number of rows ofM ).
If O � [Oij]α×β and M � [Mjm]β×c, then O⊗M � [Sim]α×c,
where

Sim  �
maxjk min T

o
ijk, J

M
jkm ,minjk max I

o
ijk, J

M
jkm ,

minjk max F
o
ijk,F

M
jkm 

⎛⎜⎝ ⎞⎟⎠.

(21)

Theorem 2. Let O � [Oij]α×βand M � [Mjm]β×c be two
NHSM, where Oij � (To

ijk,Jo
ijk,Fo

ijk) and Mjm � (TM
jkm,

JM
jkm,FM

jkm). 8en,

(O⊗M)
t

� M
t ⊗O

t
. (22)

Proof. Let O⊗M � [Sim]α×c; then, (O⊗M)t �

[Smi]c×α, Ot � [Oji]β×α, andM
t � [Mmj]c×β.

Now,

(O⊗M)
t

� T
S
kmi,J

S
kmi,F

S
kmi 

c×α

�
maxjk min TM

mjk,To
jki ,minjk max JM

mjk,Jo
jki ,

minjk max FM
mjk,F0

jki 

⎛⎝ ⎞⎠

c×α

� T
M
mjk,J

M
mjk,F

M
mjk 

c×β ⊗ T
o
jki,J

o
jki,F

0
jki β×α � M

t ⊗O
t
.

(23)

□
3.8. Operators of NHSMs. Let O � [Oij] and M � [Mij] be
two NHSM, where Oij � (To

ijk,Jo
ijk,Fo

ijk) and
Mij � (TM

ijk,JM
ijk,FM

ijk). +en,

(i) Union:

O∪M � S, (24)

where Ts
ijk � max(To

ijk,TM
ijk), Js

ijk � ((Jo
ijk +

JM
ijk)/2), and Fs

ijk � min(Fo
ijk,FM

ijk).
(ii) Intersection:

O∩M � S, (25)

where

T
s
ijk � min T

o
ijk,T

M
ijk ,

J
s
ijk �

J
o
ijk + J

M
ijk 

2
,

F
s
ijk � max F

o
ijk,F

M
ijk .

(26)

(iii) Arithmetic mean:

O⊕M � S, (27)

where

T
s
ijk �

T
o
ijk + T

M
ijk 

2
,

J
s
ijk �

J
o
ijk + J

M
ijk 

2
,

F
s
ijk �

F
o
ijk + F

M
ijk 

2
.

(28)

(iv) Weighted arithmetic mean:

O⊙ w
M � S, (29)

where

T
s
ijk �

w
1
T

o
ijk + w

2
T

M
ijk 

w
1

+ w
2 ,

J
s
ijk �

w
1
J

o
ijk + w

2
J

M
ijk 

w
1

+ w
2 ,

F
s
ijk �

w
1
F

o
ijk + w

2
F

M
ijk 

w
1

+ w
2 · w

1
, w

2 > 0.

(30)

(v) Geometric mean:

O⊙M � S, (31)

where
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T
s
ijk �

���������

T
o
ijk · T

M
ijk



,

J
s
ijk �

���������

J
o
ijk · J

M
ijk



,

F
s
ijk �

���������

F
o
ijk · F

M
ijk



.

(32)

(vi) Weighted geometric mean:

O⊙ w
M � S, (33)

where

T
s
ijk �

����������������

T
o
ijk 

w1

· T
M
ijk 

w2
w1+w2



,

J
s
ijk �

���������������

J
o
ijk 

w1

· J
M
ijk 

w2
w1+w2



,

F
s
ijk �

����������������

F
o
ijk 

w1

· F
M
ijk 

w2
w1+w2



,

w
1
, w

2 > 0.

(34)

(vii) Harmonic mean:

O⊘M � S, (35)

where

T
s
ijk �

2To
ijkT

M
ijk

T
o
ijk + T

M
ijk

,

J
s
ijk �

2Jo
ijkJ

M
ijk

J
o
ijk + J

M
ijk

,

F
s
ijk �

2Fo
ijkF

M
ijk

F
o
ijk + F

M
ijk

.

(36)

(viii) Weighted harmonic mean:

O⊘wM � S, (37)

where

T
s
ijk �

w
1

+ w
2

w
1/To

ijk  + w
2/TM

ijk 
,

J
s
ijk �

w
1

+ w
2

w
1/Jo

ijk  + w
2/JM

ijk 
,

F
s
ijk �

w
1

+ w
2

w
1/Fo

ijk  + w
2/FM

ijk 
,

(38)

Proposition 3. Let O � [Oij] and M � [Mij] be two
NHSM, where Oij � (To

ijk,Jo
ijk,Fo

ijk) and Mij � (TM
ijk,

JM
ijk,FM

ijk).
8en,

(i) (O∪M)t � Ot ∪Mt

(ii) (O∩M)t � Ot ∩Mt

(iii) (O⊕M)t � Ot⊕Mt

(iv) (O⊕wM)t � Ot⊕Mt

(v) (O⊙M)t � Ot ⊙Mt

(vi) (O⊙ wM)t � Ot ⊙ wMt

(vii) (O⊘M)t � Ot⊘Mt

(viii) (O⊘wM)t � Ot⊘wMt

Proof. (i)

(O∪M)
t

� max T
o
ijk,T

M
ijk ,

Jo
ijk + JM

ijk 

2
, min F

o
ijkF

M
ijk ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

t

� max T
o
jki,T

M
jki ,

J
o
jki + J

M
jki 

2
, min F

o
jki,F

M
jki ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� T
o
jki,J

o
jki,F

o
jki  ∪ T

M
jki,J

M
jki,F

M
jki  

� T
o
ijk,J

o
ijk,F

o
ijk  

t
∪ T

M
ijk,J

M
ijk,F

M
ijk  

t

� O
t ∪Mt

.

(39)

Remaining parts are proved in a similar way. □
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Proposition 4. Let O � [Oij] and M � [Mij] be two upper
triangular NHSM, where Oij � (To

ijk,Jo
ijk,Fo

ijk) and
Mij � (TM

ijk,JM
ijk,FM

ijk). 8en, (O∪M), (O∩M), (O⊕M),
(O⊕wM), (O⊙M), and (O⊙ wM) are all upper triangular
NHSM and vice versa.

Theorem 3. Let O � [Oij] and M � [Mij] be two NHSM,
where Oij � (To

ijk,Jo
ijk,Fo

ijk) and Mij � (TM
ijk,JM

ijk,FM
ijk).

8en,

(i) (O∪M)◇ � O◇ ∩M◇

(ii) (O∩M)◇ � O◇ ∪M◇

(iii) (O⊕M)◇ � O◇⊕M◇

(iv) (O⊕wM)◇ � O◇⊕M◇

(v) (O⊙M)◇ � O◇ ⊙M◇

(vi) (O⊙ wM)◇ � O◇ ⊙ wM◇

(vii) (O⊘M)◇ � O◇⊘M◇

(viii) (O⊘wM)◇ � O◇⊘wM◇

Proof. (i)

(O∪M)
◇

� max T
o
ijk,T

M
ijk ,

Jo
ijk + JM

ijk 

2
, min F

o
ijk,F

M
ijk ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

◇

� min F
o
ijk,F

M
ijk ,

J
o
ijk + J

M
ijk 

2
, max T

o
ijk,T

M
ijk ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� F
o
ijk,J

o
ijk,T

o
ijk ∩ F

M
ijk,J

M
ijk,T

M
ijk 

� T
o
ijk,J

o
ijk,F

o
ijk 
◇
∩ T

M
ijk,J

M
ijk,F

M
ijk 
◇

� O
◇ ∩M◇.

(40)

Remaining parts are proved in a similar way. □

Theorem 4. Let O � [Oij] and M � [Mij] be two NHSM,
where Oij � (To

ijk,Jo
ijk,Fo

ijk) and Mij � (TM
ijk,JM

ijk,FM
ijk).

8en,

(i) (O∪M) � (M∪O)

(ii) (O∩M) � (M∩O)

(iii) (O⊕M) � (M⊕O)

(iv) (O⊕wM) � (M⊕wO)

(v) (O⊙M) � (M⊙O)

(vi) (O⊙ wM) � (M⊙ wO)

(vii) (O⊘M) � (M⊘O)

(viii) (O⊘wM) � (M⊘wO)

Proof. (i)

(O∪M) � max T
o
ijk,T

M
ijk ,

J
o
ijk + J

M
ijk 

2
, min F

o
ijk,F

M
ijk ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

max T
M
ijk,T

o
ijk ,

J
M
ijk + J

o
ijk 

2
, min F

M
ijk,F

o
ijk ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� T
M
ijk,J

M
ijk,F

M
ijk ∪ T

o
ijk,J

o
ijk,F

o
ijk 

� (M∪O).

(41)

Remaining parts are proved in a similar way. □
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Theorem 5. Let � [Oij], M � [Mij], and N � [Mij]be
NHSM, where Oij � (To

ijk,Jo
ijk,Fo

ijk), Mij � (TM
ijk,JM

ijk,

FM
ijk), and Nij � (TN

ijk,JN
ijk,FN

ijk). 8en,

(i) (O∪M)∪N � O∪ (M∪N)

(ii) (O∩M)∩N � O∩ (M∩N)

(iii) ((O⊕M)⊕N≠O⊕ (M⊕N)

(iv) (O⊙M)⊙N≠O⊙ (M⊙N)

(v) (O⊘M)⊘N≠O⊘ (M⊘N)

Proof. (i)

(O∪M)∪N � max T
o
ijk,T

M
ijk ,

J
o
ijk + J

M
ijk 

2
, min F

o
ijk,F

M
ijk ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦∪ T

N
ijk,J

N
ijk,F

N
ijk  

� max T
o
ijk,J

M
ijk,T

N
ijk ,

J
o
ijk + J

M
ijk + J

N
ijk 

3
, min F

o
ijk,F

M
ijk,F

N
ijk ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� max T
O
ijk,T

M
ijk,T

N
ijk ,

J
O
ijk + J

M
ijk + J

N
ijk 

3
, min F

O
ijk,F

M
ijk,F

N
ijk ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� T
O
ijk,J

O
ijk,F

O
ijk ∪ max T

M
ijk,T

N
ijk ,

J
M
ijk + J

N
ijk 

2
, min F

M
ijk,F

N
ijk ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� T
O
ijk,J

O
ijk,F

O
ijk ∪ T

M
ijk,J

M
ijk,F

M
ijk ∪ T

N
ijk,J

N
ijk,F

N
ijk  

� O∪ (M∪N).

(42)

Remaining parts are proved in a similar way. □

Theorem 6. Let � [Oij], M � [Mij], and N � [Mij]be
NHSM, where Oij � (To

ijk,Jo
ijk,Fo

ijk), Mij � (TM
ijk,JM

ijk,

FM
ijk), and Nij � (TN

ijk,JN
ijk,FN

ijk). 8en,

(i) O∩ (M⊕N) � (O∩M)⊕ (O∩N)

(ii) (O⊕M)∩N � (O∩N)⊕ (M∩N)

(iii) O∪ (M⊕N) � (O∪M)⊕ (O∪N)

(iv) (O⊕M)∪N � (O∪N)⊕ (M∪N)

Proof. (i)

O∩ (M⊕N) � T
o
ijk,J

o
ijk,F

o
ijk ∩

T
M
ijk + T

N
ijk 

2
,
J

M
ijk + J

N
ijk 

2
,
F

M
ijk + F

N
ijk 

2
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� min T
o
ijk,

T
M
ijk + T

N
ijk 

2
⎛⎝ ⎞⎠,

J
o
ijk + J

M
ijk + J

N
ijk /2   

2
, max F

o
ijk,

F
M
ijk + F

N
ijk 

2
⎛⎝ ⎞⎠⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� min
T

O
ijk + T

M
ijk 

2
,
T

O
ijk + T

N
ijk 

2
⎛⎝ ⎞⎠,

J
O
ijk + J

M
ijk /2  + J

O
ijk + J

N
ijk /2  

2
,⎛⎝⎡⎢⎢⎣

max
F

O
ijk + F

M
ijk 

2
,
F

O
ijk + F

N
ijk 

2
⎛⎝ ⎞⎠⎞⎠⎤⎥⎥⎦

� min T
o
ijk,T

M
ijk ,

J
o
ijk + J

M
ijk 

2
, max F

o
ijk,F

M
ijk ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

⊕ min T
o
ijk,T

N
ijk ,

J
o
ijk + J

N
ijk 

2
, max F

o
ijk,F

N
ijk ⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

� T
o
ijk,J

o
ijk,F

o
ijk ∩ T

M
ijk,J

M
ijk,F

M
ijk  ⊕ T

o
ijk,J

o
ijk,F

o
ijk ∩ T

N
ijk,J

N
ijk,F

N
ijk  

� (O∩M)⊕ (O∩N).

(43)
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+e remaining parts are proved in a similar way. □

4. Neutrosophic Hypersoft Matrix (NHSM) in
Decision-Making Using Score Function

Suppose that some decision makers wish to select from α
number of objects. Each object is further characterized by β
number of attributes, whose respective attributes form a
relation just like NHSM. Each decision makes different
neutrosophic values to these respective attributes. Corre-
sponding to these neutrosophic values for the required
relation, we get a NHSM of order α × β. From this NHSM,
we calculate values’ matrices, which help to obtain a score
matrix. And, finally, we calculate the total score of each
object from the score matrix.

Value matrices are the real matrices that obey all the
properties of real matrices. Score function is also a real
matrix which is obtained from two or more value matrices.

Definition 1. Let O � [Oij] be the NHSM of order α × β,
where Oij � (To

ijk,Jo
ijk,Fo

ijk); then, the value of matrix O is
denoted asV(O), and it is defined asV(O) � [VO

ij] of order
α × β, whereVO

ij � To
ijk − Jo

ijk, − Fo
ijk. +e score of two

NHSM O � [Oij] and M � [Mij] of order α × β is given as
S(O,M) � V(O) + V(M) and S(O,M) � [Sij], where
Sij � VO

ij + VM
ij . +e total score of each object in universal

set is | 
n
j�1 Sij|.

Algorithm is graphically represented with Figure 1.

Step 1: construct a NHSM as defined in Section 3.1.
Step 2: calculate the value matrix from NHSM. Let O �

[Oij] be the NHSM of order α × β, where
Oij � (To

ijk,Jo
ijk,Fo

ijk); then, the value of matrix O is
denoted asV(O), and it is defined asV(O) � [VO

ij] of
order α × β, whereVO

ij � To
ijk − Jo

ijk, − Fo
ijk.

Step 3: compute the score matrix with the help of value
matrices. +e score of two NHSM O � [Oij] and M �

[Mij] of order and α × β is given as S(O,M)

� V(O) + V(M) and S(O,M) � [Sij], where
Sij � VO

ij + VM
ij .

Step 4: compute the total score from the score matrix.
+e total score of each object in the universal set is
|

j�1
j�1Sij|.

Step 5: find the optimal solution by selecting an object
of maximum score from the total score matrix.

4.1. Numerical Example. Teachers’ recruitment problem
(TRP) is the most complex and absurd task.+ere is no fixed
and fabricated design to know their subject knowledge or
pedagogical skills. +erefore, decision makers find them-
selves in a blind alley. Consequently, based on their own
knowledge and experience, they select a person who does not
meet the institutional requirement; thus, TRP is typically a
multicriteria decision-making MCDM problem.

Assumptions:

(i) Independent attributes are considered
(ii) Everyone attends the interview
(iii) Hesitant environment is not yet considered

Formulation of the Problem. Let us consider an institute that
wants to hire a teacher appropriate to its requirements, and
he received the following statistics-based CVs. Let U be the
set of candidates for the teaching at the college level:

U � T
1
,T

2
,T

3
,T

4
,T

5
,T

6
,T

7
,T

8
,T

9
,T

10
,T

11
,T

12
,T

13
,T

14
,T

15
 . (44)

Also, consider the set of attributes as

A1 � Qualification,

A2 � Experience,

A3 � Gender,

A4 � Publications.

(45)

Parameters:

Ti � universal set of teachers, where i � 1, 2, 3, 4, 5
Ai � attributes, where i � 1, 2, 3, 4 that are further cat-
egorized into the following:

(i) Aa
1 � Qualification

(ii) Aa
1 � BSHons.,MS/Mphill,Phd,PostDoctorate 

(iii) Ab
2 � Experience � 5yr, 8yr, 10yr, 15yr 

(iv) Ac
3 � Gender � Male, Female{ }

(v) Ad
4 � Publications � 3, 5, 8, 10+{ }

+e function F: Aa
1 × Ab

2 × Ac
3 × Ad

4⟶ P(U).
Let us assume the relation F((Aa

1 × Ab
2 × Ac

3 × Ad
4) �

F(Mphill, 5yr,male, 3) which is the actual requirement of
college for the selection of candidates.

Four candidates T2,T6,T8,T14  are shortlisted on the
basis of assumed relation, i.e., (Mphill, 5yr,male, 3).

A jury of two members A,B{ } is set for the selection of
shortlisted candidates. +ese jury members give their
valuable opinion in the form of NHSSs separately as
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A � F(Mphill, 5yr,male, 3)

� ≪T2
, (Mphill 0.5, 0.3, 0.6{ }, 5yr 0.3, 0.4, 0.7{ },male 0.5, 0.6, 0.9{ }, 3 0.6, 0.4, 0.5{ })≫ ,

≪T6
, (Mphill 0.3, 0.2, 0.1{ }, 5yr 0.6, 0.5, 0.3{ },male 0.7, 0.8, 0.3{ }, 3 0.7, 0.5, 0.3{ })≫ ,

≪T8
(Mphill 0.7, 0.3, 0.6{ }, 5yr 0.6, 0.4, 0.8{ },male 0.8, 0.5, 0.4{ }, 3 0.6, 0.2, 0.1{ })≫ ,

≪T14
, (Mphill 0.5, 0.4, 0.5{ }, 5yr 0.3, 0.6, 0.7{ },male 0.9, 0.2, 0.1{ }, 3 0.4, 0.5, 0.3{ })≫ ,,

B � F(Mphill, 5yr,male, 3)

� ≪T2
, (Mphill 0.8, 0.1, 0.2{ }, 5yr 0.7, 0.4, 0.3{ },male 0.4, 0.6, 0.3{ }, 3 0.5, 0.3, 0.5{ })≫ ,

≪T6
, (Mphill 0.8, 0.2, 0.1{ }, 5yr 0.7, 0.4, 0.3{ },male 0.8, 0.2, 0.1{ }, 3 0.9, 0.3, 0.2{ })≫ ,

≪T8
(Mphill 0.5, 0.3, 0.4{ }, 5yr 0.7, 0.3, 0.2{ },male 0.9, 0.2, 0.1{ }, 3 0.4, 0.2, 0.7{ })≫ ,

≪T14
, (Mphill 0.7, 0.4, 0.2{ }, 5yr 0.2, 0.4, 0.7{ },male 0.7, 0.2, 0.1{ }, 3 0.6, 0.3, 0.4{ })≫ ,.

(46)

Let us apply the above define algorithm for the calcu-
lation of total score.

Step I (construction of NHSM):the above two NHSSs
are given in the form of NHSMs as

[A] �

(Mphill, (0.5, 0.3, 0.6)) (5yr, (0.3, 0.4, 0.7)) (male, (0.5, 0.6, 0.9)) (3, (0.6, 0.4, 0.5))

(Mphill, (0.3, 0.2, 0.1)) (5yr, (0.6, 0.5, 0.3)) (male, (0.7, 0.8, 0.3)) (3, (0.7, 0.5, 0.3))

(Mphill, (0.7, 0.3, 0.6)) (5yr, (0.6, 0.4, 0.8)) (male, (0.8, 0.5, 0.4)) (3, (0.6, 0.2, 0.1))

(Mphill, (0.5, 0.4, 0.5)) (5yr, (0.3, 0.6, 0.7)) (male, (0.9, 0.2, 0.1)) (3, (0.4, 0.5, 0.3))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[B] �

(Mphill, (0.8, 0.1, 0.2)) (5yr, (0.7, 0.4, 0.3)) (male, (0.4, 0.6, 0.3)) (3, (0.5, 0.3, 0.5))

(Mphill, (0.8, 0.2, 0.1)) (5yr, (0.7, 0.4, 0.3)) (male, (0.8, 0.2, 0.1)) (3, (0.9, 0.3, 0.2))

(Mphill, (0.5, 0.3, 0.4)) (5yr, (0.7, 0.3, 0.2)) (male, (0.9, 0.2, 0.1)) (3, (0.4, 0.2, 0.7))

(Mphill, (0.7, 0.4, 0.2)) (5yr, (0.2, 0.4, 0.7)) (male, (0.7, 0.2, 0.1)) (3, (0.6, 0.3, 0.4))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(47)

Step II: calculation of the value matrices of NHSMs
defined in Step I:

Find optimal
solution by
selecting an
object of
maximum

score

Compute
total score

Compute
score
matrix

Calculate
value

Construct
NHSM 

Figure 1: Flowchart of the proposed algorithm.
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[V(A)] �

(Mphill, (− 0.4)) (5yr, (− 0.8)) (male, (− 1)) (3, (− 0.3))

(Mphill, (0)) (5yr, (− 0.2)) (male, (− 0.4)) (3, (− 0.1))

(Mphill, (− 0.2)) (5yr, (− 0.6)) (male, (− 0.1)) (3, (0.3))

(Mphill, (− 0.4)) (5yr, (− 1)) (male, (0.6)) (3, (− 0.4))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

[V(B)] �

(Mphill, (0.5)) (5yr, (0)) (male, (− 0.5)) (3, (− 0.3))

(Mphill, (0.5)) (5yr, (0)) (male, (0.5)) (3, (0.4))

(Mphill, (− 0.2)) (5yr, (0.2)) (male, (0.6)) (3, (− 0.5))

(Mphill, (0.1)) (5yr, (− 0.9)) (male, (0.4)) (3, (− 0.1))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(48)

Step III: computation of the score matrix by adding
value matrices obtained in Step II:

[S(A,B)] �

(Mphill, (0.1)) (5yr, (− 0.8)) (male, (− 1.5)) (3, (− 0.6))

(Mphill, (0.5)) (5yr, (− 0.2)) (male, (0.1)) (3, (0.3))

(Mphill, (− 0.4)) (5yr, (− 0.4)) (male, (0.5)) (3, (− 0.2))

(Mphill, (− 0.3)) (5yr, (− 1.9)) (male, (1)) (3, (− 0.5))

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (49)

Step IV: calculation of the score matrix:

Total score �

2.8

0.1

0.5

1.7

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (50)

Step V: the candidateT2 will be selected for teaching at
the college level as the total score of T2 is highest
among the rest of the total score of candidates.

5. Result and Comparison Analysis

We propose an algorithm for NHSM of the real-world
problems, and results are compared with the algorithms on
NSM already established. Graphical representations of the
ranking of the proposed algorithm are given in Figure 1. +e
proposed algorithm is valid and practical. As it could be
observed in the comparison Table 7, the proposed method’s
best selection is comparable with the already established
method, which is expressive in itself and approve the reli-
ability and validity of the proposed method. According to
the refinement of the philosophy of neutrosophy, it could be
a more efficient technique.

5.1. Limitations and Advantages of Proposed Matrix 8eory.
+e neutrosophic soft set theory is not very efficient in
selecting the optimal object of a decision-making problem
that possesses some attributes which are further divided,
whereas neutrosophic hypersoft matrix theory can be
applied.

+e advantages of the proposed theory are

(1) Firstly, this new method’s specialty is that it may
solve any MCDM problem involving a huge number
of decision makers very easily along with a simple
computational procedure

(2) Secondly, when compared with existing methods for
MCDM problems under a neutrosophic environ-
ment, the proposed operators are consistent and
accurate, which illustrate their application’s
practicability

(3) +irdly, the proposed method considers the inter-
relationships of attributes in practical application,
while existing approaches cannot

(4) Lastly, the proposed algorithm for MCDM problems
in this paper can further consider more correlations
between attributes, which means that they have
higher accuracy and greater reference value

Table 7: Alternative rank comparison using NHSM and NSM techniques.

Method Alternative final ranking Optimal choice
Proposed in this paper T2 >T6 >T8 >T14 T2

Hashmi et al. [28] T2 >T8 >T14 >T6 T2

Journal of Mathematics 13



(5) +e matrix is useful for storing (neutrosophic
hypersoft set) in the computer memory, which is
very useful and applicable

6. Conclusion

+is paper has first defined NHSM theory and then intro-
duced some aggregate operators that are more functional to
make theoretical studies in the neutrosophic soft set arena.
Moreover, we have proposed the concept of the score
function. Additionally, the utilization of NHSM in the de-
cision-making problem (teacher recruitment problem
(TRP)) has been made with the score matrix’s assistance. At
the end, we compared the result with existing techniques and
showed that the purposed technique is more efficient and
refined. We expect, this paper will advance the future in-
vestigation on various calculations such as TOPSIS, VIKOR,
and AHP in other decision-making problems. Also, in fu-
ture, it can be linked with Pythagorean fuzzy interactive
Hamacher power aggression operators, interval-valued
q-rung orthopair fuzzy sets in decision-making, CN-q-
ROFS, connection number-based q-rung orthopair fuzzy set
and their application to the decision-making process, and
average operators based on the spherical cubic fuzzy
number.
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+e data used to support the findings of this study are
available from the author upon request.
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